RÉDUCTION DES ENDOMORPHISMES ET DES MATRICES CARRÉES

Exercices

Déterminer les éléments propres des matrices suivantes sur $\mathbb R$ et $\mathbb C$.

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \; ; \; B = \begin{pmatrix} 0 & -2 & 0 \\ 1 & 0 & -1 \\ 0 & 2 & 0 \end{pmatrix} \; ; \; C = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 4 & -6 \\ 4 & 8 & -12 \end{pmatrix}.$$

Déterminer les valeurs propres de la matrice $A \in \mathcal{M}_n(\mathbb{R})$.

$$A = \begin{pmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

Soit E l'espace des suites réelles convergeant vers 0 et $\Delta: E \to E$ l'endomorphisme qui à toute suite $(u_n)_{n\in\mathbb{N}}$ de E associe la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, \ v_n = u_{n+1} - u_n.$$

Déterminer les valeurs propres de Δ .

Soit $\varphi \in \mathcal{L}(\mathcal{M}_n(\mathbb{K}))$ défini par $\varphi(M) = M^{\mathsf{T}}$.

Déterminer un polynôme annulateur de φ et en déduire les éléments propres de φ .

Soit L l'endomorphisme de $\mathbb{R}_3[X]$ défini par $L(P) = X^3 P\left(\frac{1}{X}\right)$.

Déterminer la matrice de L dans la base canonique de $\mathbb{R}_3[X]$.

Donner les éléments propres de L.

- Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E tel que tout vecteur non nul en est vecteur propre. On souhaite montrer que u est une homothétie vectorielle.
 - 1. Montrer que pour tout $x \in E$ non nul, il existe un scalaire λ_x tel que $u(x) = \lambda_x x$.
 - 2. Comparer λ_x et λ_y pour x et y deux vecteurs non nuls. On pourra considérer les cas : la famille (x,y) est liée et la famille (x,y) est libre.
 - 3. Conclure.
- $\boxed{7}$ Soit u et v deux endomorphismes d'un espace vectoriel E.
 - 1. Soit λ une valeur propre non nulle de $u \circ v$. Montrer que λ est une valeur propre de $v \circ u$.
 - 2. Montrer que cette propriété reste valable pour $\lambda = 0$ si E est de dimension finie.
 - 3. On pose $E = \mathbb{R}[X]$ et pour tout $P \in E$, u(P) = P' et pour tout $x \in \mathbb{R}$, $v(P)(x) = \int_0^x P(t) dt$. Calculer le noyau de $u \circ v$ et celui de $v \circ u$. Conclusion ?

8 Matrices stochastiques

Soit $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathscr{M}_n(\mathbb{R}).$

On suppose que pour tout $(i,j) \in [1,n]^2$, $a_{i,j} \ge 0$ et pour tout $i \in [1,n]$, $\sum_{j=1}^n a_{i,j} = 1$.

- 1. Montrer que $1 \in Sp(A)$.
- 2. Justifier que si $\lambda \in \mathbb{C}$ est valeur propre de A alors $|\lambda| \leq 1$.
- 3. On suppose de plus que tous les cœfficients de A sont non nuls. Montrer que si $\lambda \in \mathbb{C}$ est valeur propre de A qui vérifie $|\lambda| = 1$ alors $\lambda = 1$.

9 Soit A et B deux éléments de $\mathcal{M}_n(\mathbb{C})$.

En multipliant à droite et à gauche la matrice $\begin{pmatrix} \lambda I_n & A \\ B & I_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$ par des matrices triangulaires par blocs bien choisis, montrer l'égalité des polynômes caractéristiques : $\chi_{AB} = \chi_{BA}$.

Soit $(A, B, C, D) \in (\mathcal{M}_n(\mathbb{K}))^4$ tel que AC = CA.

On souhaite montrer que $\det \begin{pmatrix} A & C \\ B & D \end{pmatrix} = \det(DA - BC)$.

- 1. On suppose dans cette question que A est inversible. Effectuer le produit par blocs $\begin{pmatrix} A & C \\ B & D \end{pmatrix} \begin{pmatrix} I_n & -A^{-1}C \\ 0_n & I_n \end{pmatrix}$ et en déduire le résultat souhaité.
- 2. On revient au cas général.
 - (a) Montrer que pour p assez grand, la matrice $A_p = A + \frac{1}{p}I_n$ est inversible.
 - (b) Montrer que si $(M_p)_{p\in\mathbb{N}}$ est une suite de $\mathscr{M}_n(\mathbb{K})$ convergeant vers M alors la suite $(\det(M_p))_{p\in\mathbb{N}}$ converge vers $\det(M)$.
 - (c) Conclure.

On considère la matrice $A = \begin{pmatrix} 2 & -6 & 6 \\ 1 & 5 & -3 \\ 1 & 6 & -4 \end{pmatrix}$. On admet que $A^4 - 3A^3 + 4A = 0_3$.

Déterminer les valeurs propres de \dot{A} .

Soit $n \in \mathbb{N}^*$. Soit $(\alpha, \beta) \in \mathbb{K}^2$ avec $\alpha \neq \beta$.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $(A - \alpha I_n)(A - \beta I_n) = 0_n$. On suppose que A n'est pas un multiple de I_n . Montrer que $\operatorname{Sp}(A) = \{\alpha, \beta\}$.

Déterminer un polynôme annulateur de $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K}).$

On suppose que A est inversible. Déterminer A^{-1} .

- Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible.
 - 1. Montrer que A^{-1} est un polynôme en A. Application: Montrer que si A est triangulaire supérieure alors A^{-1} est triangulaire supérieure.
 - 2. Montrer que A est triangulaire supérieure si et seulement si pour tout $k \in \mathbb{N}, k \ge 2, A^k$ est triangulaire supérieure.

Les matrices suivantes sont-elles diagonalisables/trigonalisables dans $\mathcal{M}_n(\mathbb{R})$? dans $\mathcal{M}_n(\mathbb{C})$? Si oui, les diagonaliser/trigonaliser.

$$A = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 5 & 5 \\ -1 & -3 & -3 \end{pmatrix} \quad D = \begin{pmatrix} -3 & 3 & -3 \\ 4 & 0 & 0 \\ 1 & 3 & -3 \end{pmatrix}$$

Soit
$$(a,b) \in (\mathbb{R}^*)^2$$
 tels que $|a| \neq |b|$.

On considère
$$A = \begin{pmatrix} a & b & a & \cdots & b \\ b & a & b & \cdots & a \\ a & b & a & \cdots & b \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & a & b & \cdots & a \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}) \text{ (avec } n \geq 2\text{)}.$$

- 1. Justifier que A est diagonalisable.
- 2. Calculer le rang de A. En déduire que 0 est valeur propre de A et déterminer la dimension du sous-espace propre associé.
- 3. Déterminer deux vecteurs propres associés à deux autres valeurs propres et diagonaliser A.

Soit $n \in \mathbb{N}^*$. On considère la matrice :

$$A_n = \begin{pmatrix} 0 & 1 & & 0 \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ 0 & & 1 & 0 \end{pmatrix}.$$

On note P_n son polynôme caractéristique.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$: $P_{n+2}(x) = xP_{n+1}(x) P_n(x)$. Calculer P_1 et P_2 .
- 2. Soit $x \in]-2,2[$. On pose $x = 2\cos(\alpha)$ avec $\alpha \in]0,\pi[$. Montrer que pour tout $n \in \mathbb{N}^*$: $P_n(x) = \frac{\sin((n+1)\alpha)}{\sin\alpha}$.
- 3. En déduire que pour tout $n \in \mathbb{N}^*$, P_n admet n racines et que A_n est diagonalisable.

18 Matrices compagnons

Soit $P = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$ un polynôme à cœfficients dans \mathbb{K} .

On appelle $matrice\ compagnon\ du\ polynôme\ P$ la matrice :

$$M = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

- 1. (a) Déterminer le polynôme caractéristique de M.
 - (b) Soit $\lambda \in \mathbb{K}$ une valeur propre de M. Déterminer la dimension du sous-espace propre associé à λ .
 - (c) À quelle condition M est-elle diagonalisable ?

- 2. Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Un endomorphisme u de E est dit cyclique lorsqu'il existe $x \in E$ tel que $(x, u(x), \dots, u^{n-1}(x))$ est une base de E.
 - (a) Montrer qu'un endomorphisme u est cyclique si et seulement s'il existe une base de E dans laquelle sa matrice est une matrice compagnon.
 - (b) Donner qu'une condition nécessaire et suffisante pour qu'un endomorphisme cyclique soit diagonalisable.

Matrices de rang 1

Soit $n \in \mathbb{N}$, $n \ge 2$. Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.

- 1. Montrer qu'il existe deux matrices colonnes U et V non nulles de $\mathcal{M}_{n,1}(\mathbb{R})$ telles que $M = UV^T$.
- 2. Déterminer un polynôme annulateur de M.
- 3. Montrer alors les équivalences :

$$M$$
 est diagonalisable $\Leftrightarrow \operatorname{tr}(M) \neq 0 \Leftrightarrow \mathscr{M}_{n,1}(\mathbb{R}) = \operatorname{Ker}(M) \oplus \operatorname{Im}(M)$.

Soit
$$M = \begin{pmatrix} A & A \\ (0) & A \end{pmatrix}$$
 où $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que pour tout $P \in \mathbb{R}[X]$, $P(M) = \begin{pmatrix} P(A) & AP'(A) \\ (0) & P(A) \end{pmatrix}$.
- 2. Montrer que M est diagonalisable si et seulement si $A = 0_n$.

Soit p un endomorphisme de E, \mathbb{K} -espace vectoriel de dimension finie, tel que p^2 soit un projecteur.

- 1. Quelles sont les valeurs propres possibles pour p?
- 2. Montrer que p est diagonalisable si et seulement si $p^3 = p$.

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

Pour tout $M \in \mathscr{M}_n(\mathbb{R})$, on pose f(M) = AM.

- 1. Montrer que si $A^2 = A$ alors f est diagonalisable.
- 2. Montrer que f est diagonalisable si et seulement si A est diagonalisable.

23 Matrices nilpotentes

Soit $A \in \mathscr{M}_n(\mathbb{C})$.

On dit que la matrice A est nilpotente lorsqu'il existe $p \in \mathbb{N}$ tel que $A^p = 0_n$.

- 1. On suppose que A est nilpotente. Montrer que A est diagonalisable si et seulement si $A = 0_n$.
- 2. Montrer que A est nilpotente si et seulement si pour tout $k \in \mathbb{N}^*$, $\operatorname{tr}(A^k) = 0$.

Les matrices
$$A = \begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & -8 \\ 0 & 1 & 5 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$ sont-elles semblables ?

Déterminant circulant

On souhaite calculer le déterminant circulant
$$\Delta = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \cdots & a_{n-1} & a_0 \end{bmatrix}$$

On souhaite calculer le déterminant circulant
$$\Delta = \begin{vmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_{n-1} & a_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_1 \\ a_1 & \cdots & a_{n-1} & a_0 \end{vmatrix}$$
.

On considère la matrice $A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & \cdots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{C})$ et on pose $Q = \sum_{k=0}^{n-1} a_k A^k$.

- 1. Montrer qu'il existe $P \in \mathcal{G}l_n(\mathbb{C})$ et $D \in \mathcal{M}_n(\mathbb{C})$ diagonale telles que $A = PDP^{-1}$.
- 2. Montrer que $\Delta = \det(Q(A))$.
- 3. En déduire que $\Delta = \prod_{p=0}^{n-1} Q(e^{2ip\pi/n})$.

26 Deux applications de la diagonalisation

Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
.

- 1. Montrer que A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$. Déterminer $P \in \mathcal{M}_3(\mathbb{C})$ inversible et $D \in \mathcal{M}_3(\mathbb{C})$ diagonale telles que $A = PDP^{-1}$.
- 2. Application 1 : détermination du commutant Déterminer toutes les matrices qui commutent avec A.
- 3. Application 2 : résolution d'une équation matricielle On souhaite déterminer l'ensemble des matrices $X \in \mathcal{M}_3(\mathbb{C})$ vérifiant $X^2 = A$. Soit $X \in \mathcal{M}_3(\mathbb{C})$ vérifiant $X^2 = A$. On note φ_X (respectivement φ_A) l'endomorphisme de $\mathcal{M}_{3,1}(\mathbb{C})$ canoniquement associé à X(respectivement à A).
 - (a) Montrer que les sous-espaces propres de φ_A sont stables par φ_X .
 - (b) En déduire que tout vecteur propre de φ_A est un vecteur propre de φ_X .
 - (c) Montrer que la matrice $P^{-1}XP$ est diagonale. Quelles sont les valeurs possibles de ses cœfficients diagonaux?

En déduire l'ensemble des matrices $X \in \mathcal{M}_3(\mathbb{C})$ vérifiant $X^2 = A$.

- Soit E un \mathbb{C} -espace vectoriel de dimension finie non nulle. Soit u et v deux endomorphismes de E. On suppose que $u \circ v = v \circ u$.
 - 1. Montrer que u et v ont un vecteur propre en commun.
 - 2. Montrer alors qu'il existe une base de E dans laquelle les matrices de u et v sont triangulaires supérieures.
- Soit A et B deux matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ qui commutent. Montrer qu'il existe $P \in GL_n(\mathbb{K})$ telle que $P^{-1}AP$ et $P^{-1}BP$ soient diagonales.
- Existe-t-il une base de $\mathcal{M}_n(\mathbb{R})$ constituée de matrices diagonalisables dans \mathbb{R} ?