DM4 - Etudes de fonctions

2025-2026

\triangle Exercice 1:

Première partie : un encadrement de sh

- a) Montrez que l'équation $2 \sinh(x) + 1 = 0$ admet une unique solution sur \mathbb{R} . On note a cette solution (on ne cherchera pas la valeur exacte de a....)
 - b) Justifiez que la fonction $u: x \mapsto \operatorname{ch}^2 x + \operatorname{sh} x$ est dérivable et montrez que pour tout réel $x, \operatorname{ch}^2 x + \operatorname{sh} x \geq 0$
- 2. Soit $f: x \mapsto e^{\operatorname{sh}(x)} x 1$.
 - a) Justifiez que f est dérivable deux fois sur $\mathbb R$ et calculez f'(x) et f''(x) pour tout $x \in \mathbb R$
 - b) En déduire les variations de f', puis de f sur \mathbb{R} .
- 3. Montrez que $1+x \leq e^{\operatorname{sh}(x)}$ pour tout $x \in \mathbb{R}$
- 4. En déduire que pour tout $x \in \mathbb{R}$,

$$1 - x \le \frac{1}{e^{\operatorname{sh}(x)}},$$

puis que pour tout $x \in]0, 1[$,

$$1 + x \le e^{\operatorname{sh}(x)} \le \frac{1}{1 - x}$$

5. Conclure que $\forall x \in]0,1[$,

$$\ln(1+x) \le \operatorname{sh}(x) \le -\ln(1-x)$$

Deuxième partie : étude d'une somme

Soit $p \in \mathbb{N}^*$ et soit $n \ge 2$. On considère la somme

$$S_n = \sum_{k=n}^{np} \operatorname{sh}\left(\frac{1}{k}\right)$$

1. Justifiez que $\forall k \in \mathbb{N}$ et $k \geq 2$,

$$\ln\left(1+\frac{1}{k}\right) \le \operatorname{sh}\left(\frac{1}{k}\right) \le -\ln\left(1-\frac{1}{k}\right)$$

2. En déduire que $\forall n \geq 2$,

$$\ln\left(\frac{np+1}{n}\right) \le S_n \le -\ln\left(\frac{n-1}{np}\right)$$

3. Déterminer la limite de S_n quand $n \to +\infty$

Première partie

a) Considérons la fonction $x \mapsto 2sh(x) + 1$.

Cette fonction est dérivable sur \mathbb{R} , de dérivée $x \mapsto 2ch(x)$.

Or, pour tout $x \in \mathbb{R}$, 2ch(x) > 0, donc la fonction est strictement croissante.

De plus,
$$\lim_{x \to -\infty} 2 \operatorname{sh}(x) + 1 = -\infty$$
 et $\lim_{x \to +\infty} 2 \operatorname{sh}(x) + 1 = +\infty$

Ainsi, d'après le théorème de la bijection monotone, $x \mapsto 2 \operatorname{sh}(x) + 1$ est bijective de \mathbb{R} dans l'image de \mathbb{R} qui est \mathbb{R} également, grâce aux limites et à la continuité de la fonction.

Comme 0 est dans \mathbb{R} (...), l'équation $2 \operatorname{sh}(x) + 1 = 0$ admet bien une unique solution.

b) La fonction u est dérivable comme produit et somme de fonction dérivable, et on a

$$u'(x) = 2 \operatorname{sh}(x) \operatorname{ch}(x) + \operatorname{ch}(x) = \operatorname{ch}(x)(2 \operatorname{sh}(x) + 1)$$

Comme ch(x) > 0, u'(x) est du signe de 2 sh(x) + 1, c'est à dire u décroissante sur $]-\infty, a]$, croissante sur $[a, +\infty[$

Elle a donc un minimum en a, et ce minimum vaut $u(a) = \operatorname{ch}(a)^2 + \operatorname{sh}(a)$.

Or $\operatorname{sh}(a) = -\frac{1}{2}$, et $\operatorname{ch}(a) \ge 1$ (1 est le minimum de ch), donc $\operatorname{ch}(a)^2 \ge 1$ et $u(a) \ge 1 - \frac{1}{2} > 0$.

Notez qu'on peut aussi utiliser le fait que $ch^2(x) = 1 + sh^2(x)$ pour montrez qu'en réalité,

$$u(a) = \frac{3}{4}$$

On a bien $\left| \operatorname{ch}^{2}(x) + \operatorname{sh}(x) > 0 \right|$

Vous êtes plusieurs aussi à utiliser un chemin totalement différent, qui marche bien également.

En utilisant $ch^2(x) = 1 + sh^2(x)$, on arrive

$$u(x) = \operatorname{sh}^{2}(x) + \operatorname{sh}(x) + 1$$

Depuis là, deux chemins, on peut :

- poser $X = \mathrm{sh}^2(x)$ pour tomber sur un polynôme avec $\Delta < 0$, donc toujours positif pour tout X, donc u(x) > 0 pour tout $x \in \mathbb{R}$
- écrire $u(x) = (\sinh^2(x) + \frac{1}{2})^2 + \frac{3}{4}$ (c'est en fait une forme canonique cachée) pour en déduire immédiatement u(x) > 0.
- 2. a) Par composition de fonction de classe C^{∞} sur \mathbb{R} , f est C^{∞} sur \mathbb{R} donc elle est dérivable autant de fois que l'on veut... Donc deux fois ;-)
 On a alors, $\forall x \in \mathbb{R}$

$$f'(x) = \operatorname{ch}(x)e^{\operatorname{sh}(x)} - 1$$
 et $f''(x) = \operatorname{sh}(x)e^{\operatorname{sh}(x)} + \operatorname{ch}^2(x)e^{\operatorname{sh}(x)} = (\operatorname{sh}(x) + \operatorname{ch}^2(x))e^{\operatorname{sh}(x)}$

b) D'après la question 1b et comme $e^{\sinh(x)} > 0$, on a f''(x) > 0 pour tout $x \in \mathbb{R}$, ainsi f' est strictement croissante.

Or $f'(0) = 1e^0 - 1 = 0$, donc f'(x) < 0 pour x < 0, et f'(x) > 0 pour x > 0. La fonction f est donc décroissante sur $]-\infty,0]$, puis croissante sur $[0,+\infty[$.

3. D'après l'étude précédente, f admet un minimum en 0 et on trouve $f(0) = e^0 - 0 - 1 = 0$. Ainsi, pour tout $x \in \mathbb{R}$, $f(x) \ge 0$, c'est à dire $e^{\sinh(x)} - x - 1 \ge 0$. On en déduit bien

$$1 + x \le e^{\operatorname{sh}(x)}$$

4. L'inégalité est vraie pour tout $x \in \mathbb{R}$, et pour tout $x \in \mathbb{R}$, $-x \in \mathbb{R}$ aussi. Donc on peut remplacer dans l'inégalité précédente :

$$1 - x \le e^{\sinh(-x)}$$

Or
$$\operatorname{sh}(-x) = -\operatorname{sh}(x)$$
 et $e^{-\operatorname{sh}(x)} = \frac{1}{e^{\operatorname{sh}(x)}}$

On en déduit

$$1 - x \le \frac{1}{e^{\sinh(x)}}$$

Attention : on a envie maintenant de passer à l'inverse, ce qui n'est pas possible pour tout $x \in \mathbb{R}$. ça tombe bien : on veut le faire pour $x \in]0,1[$

Pour tout $x \in]0,1[, 1-x>0$ et $\frac{1}{e^{\sinh(x)}}>0$ également : on peut appliquer l'inverse qui est décroissant sur $]0,+\infty[$:

$$\frac{1}{1-x} \ge \frac{1}{\frac{1}{e^{\operatorname{sh}(x)}}} \quad \operatorname{donc} \, e^{\operatorname{sh}(x)} \le \frac{1}{1-x}$$

En combinant l'inégalité obtenue en 3 avec celle ci, on a donc

$$\boxed{1+x \le e^{\sinh(x)} \le \frac{1}{1-x}}$$

5. Pour tout $x \in]0,1[$, 1+x>0, tout comme $e^{\sin(x)}$ et $\frac{1}{1-x}$: on va pouvoir appliquer la fonction ln a l'inégalité précédente. Comme cette fonction est croissante, on obtient

$$\ln(1+x) \le \sinh(x) \le -\ln(1-x)$$

Partie 2:

Assez impressionnante a priori, mais bien moins technique que la partie 1!

1. Pour tout $k \in \mathbb{N}$ et $k \geq 2$, $\frac{1}{k} \in]0,1[$, donc on peut remplacer dans l'inégalité obtenue en fin de première partie, et on a immédiatement

$$\boxed{\ln\left(1+\frac{1}{k}\right) \le \sinh\left(\frac{1}{k}\right) \le -\ln\left(1-\frac{1}{k}\right)}$$

2. Effectuons la somme de ces inégalités pour k variant de n à np. Il vient

$$\sum_{k=n}^{np} \ln \left(1 + \frac{1}{k}\right) \le \sum_{k=n}^{np} \operatorname{sh}\left(\frac{1}{k}\right) \le \sum_{k=n}^{np} - \ln \left(1 - \frac{1}{k}\right)$$

On reconnait S_n au milieu.

Pour les autres sommes :

$$\sum_{k=n}^{np} \ln \left(1 + \frac{1}{k} \right) = \sum_{k=n}^{np} \ln \left(\frac{k+1}{k} \right) = \sum_{k=n}^{np} \ln(k+1) - \ln(k)$$

On reconnait un telescopage et il vient

$$\sum_{k=n}^{np} \ln\left(1 + \frac{1}{k}\right) = \ln(np+1) - \ln(n) = \ln\left(\frac{np+1}{n}\right)$$

De même,

$$\sum_{k=n}^{np} -\ln\left(1 - \frac{1}{k}\right) = \sum_{k=n}^{np} -\ln\left(\frac{k-1}{k}\right) = \sum_{k=n}^{np} \ln(k) - \ln(k-1)$$

A nouveau un telescopage et

$$\sum_{k=n}^{np} -\ln\left(1 - \frac{1}{k}\right) = \ln(np) - \ln(n-1) = \ln\left(\frac{np}{n-1}\right) = -\ln\left(\frac{n-1}{np}\right)$$

On obtient bien l'encadrement voulu.

3. Il reste à calculer les limites de tout ça :

$$\frac{np+1}{n} = \frac{n(p+\frac{1}{n})}{n} = p + \frac{1}{n}$$

donc
$$\lim_{n \to +\infty} \frac{np+1}{n} = p$$
 et $\lim_{n \to +\infty} \ln \left(\frac{np+1}{n} \right) = \ln(p)$

De même
$$\lim_{n \to +\infty} \frac{n-1}{np} = \frac{1}{p}$$
 et donc $\lim_{n \to +\infty} -\ln\left(\frac{n-1}{np}\right) = -\ln(\frac{1}{p}) = \ln(p)$

Par le théorème des gendarmes, on a donc

$$\lim_{n \to +\infty} S_n = \ln(p)$$

Exercice 2 : Trigonométrie réciproque et calcul de dérivées

Soient les fonctions u et f définie par

$$u: x \mapsto \sqrt{\frac{1-x}{1+x}}$$
 et $f: x \mapsto \arctan\sqrt{\frac{1-x}{1+x}}$

- 1. Déterminer l'ensemble de définition de u, justifiez qu'elle est dérivable sur]-1,1[et calculer sa dérivée. On simplifiera au maximum
- 2. Déterminez l'ensemble de définition de f et justifiez qu'elle est dérivable sur l'intervalle]-1,1[.
- 3. Calculez f' et en déduire une expression plus simple de f.

1.
$$u(x)$$
 existe si et seulement si $x \neq -1$ et $\frac{1-x}{1+x} \geq 0$.

Un tableau de signe donne alors $x \in]-1,1]$, qui est donc l'ensemble de définition de u.

De plus, u est dérivable sur]-1,1[par composition de fonctions dérivables (le 1 est exclu a priori puisque la fonction racine carrée n'est pas dérivable en 0, mais on ne sait pas si c'est vraiment non dérivable... et ce n'est pas demandé!).

On a alors, pour tout $x \in]-1,1[$:

$$u'(x) = \frac{1}{2\sqrt{\frac{1-x}{1+x}}} \times \frac{-1-x-(1-x)}{(1+x)^2}$$

$$= \frac{1}{2}\sqrt{\frac{1+x}{1-x}} \times \frac{-2}{(1+x)^2}$$

$$= -\frac{1}{\sqrt{1-x}\sqrt{1+x}(1+x)}$$

$$= \frac{-1}{\sqrt{(1-x)(1+x)}} \times \frac{1}{1+x}$$

$$u'(x) = \frac{-1}{\sqrt{1-x^2}} \times \frac{1}{1+x}$$

2. la fonction arctan est définie sur \mathbb{R} , donc f est définie sur le même ensemble que u, c'est à dire sur [-1,1].

Elle est dérivable sur]-1,1[par composition de fonctions dérivables.

3. Pour tout $x \in]-1,1[$, on a

$$f'(x) = \frac{u'(x)}{1 + (u(x))^2}$$

$$= \frac{-1}{\sqrt{1 - x^2}} \times \frac{1}{1 + x} \times \frac{1}{1 + \frac{1 - x}{1 + x}}$$

$$= \frac{-1}{\sqrt{1 - x^2}} \times \frac{1}{1 + x} \times \frac{1 + x}{1 + x + 1 - x}$$

$$= \frac{-1}{2\sqrt{1 - x^2}}$$

On reconnait $\frac{1}{2}\arccos'(x)$!

Ainsi, il existe $C \in \mathbb{R}$ tel que, pour tout $x \in]-1,1], f(x) = \frac{1}{2}\arccos(x) + C$

Or
$$f(0) = \arctan(1) = \frac{\pi}{4}$$
 d'une part,

et $\arccos(0) = \frac{\pi}{2}$, donc on a $f(0) = \frac{\pi}{4} + C$ d'autre part.

On en déduit que C = 0 et donc que

$$f: x \mapsto \frac{1}{2}\arccos(x)$$