Chapitre 13

Structures algébriques et exemples

Dans ce chapitre, nous allons étudier les différentes structures algébriques élémentaires (au sens
"particules élémentaires") que vous allez rencontrer. Il faudra apprendre a reconnaitre ces structures
dans les situations pratiques courantes. Les théorémes généraux que vous démontrerez pendant votre
scolarité pourront alors étre appliqués aux différentes situations concrétes.

Les termes "groupes", "anneaux" et "corps" sont & prendre au sens "groupe de personnes", "cercle

des poétes disparus" (et pas "seigneur des anneaux"), "corps de métier". Le terme "anneau" est en
fait la traduction de ’allemand "ring", qui a le double-sens des deux films énoncés ci-dessus.

1 Loi de composition interne

Dans ce paragraphe, on fixe un ensemble X non vide.

1.1 Définitions

Définition 1.1 (Loi de composition interne)

Une loi de composition interne sur X est une application de X x X dans X.

Remarques.

1. L’ensemble X x X (aussi X?) est le produit cartésien de X avec lui-méme, i.e. ensemble des
couples d’éléments de X.

2. On note souvent avec un symbole (x, ou +, ou x) une loi de composition interne, et si (x,y) €
X x X, onnote zxy (ou z+y ou x X y) I'image de (x,y) par la fonction x (plutot que %(zx,y)).

Exemples.

1. Toutes les additions et multiplications que vous connaissez dans N, Z, R, C sont des lois de
composition interne.

2. Le produit des réels est une loi de composition interne a R*, et aussi a R?.
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3. Si f et g sont des fonctions de R dans R, la somme f + g de f et g et le produit fg de f et g
(définis respectivement par (f +¢g)(x) = f(z) +g(x) et (fg)(z) = f(x)g(x)) sont aussi des fonctions
de R dans R : on a donc deux lois de coposition interne sur ’ensemble des fonctions de R dans R.

4. La division des réels n’est pas une oi de composition interne a R puisqu’on ne peut pas divser par
0. Par contre, c’est une loi de composition interne a R*.

5. Lacomposition des applications est une loi de composition interne sur I’ensemble X des fonctions
de X dans X.

Remarque.
On voit que le méme symbole peut étre utiliser pour des lois de composition interne différentes (par
exemple "+" pour les réels et pour les fonctions). C’est le contexte qui permettra de déterminer a
quelle loi de composition interne on a affaires.

| Définition 1.2 ]
Soit * une loi de composition interne sur X. Alors :

1.« est associative si pour tous z,y,z € X,ona z* (yxz) = (x xy) x z.

2. x est commutative si pour tout z,y € X, onaxxy =y .

Exemples.
1. N,Z,.
2. composée de fonctions,..

3. xxy =%+ y? est commutative non associative.

Définition 1.3 (Elément neutre)

Soit * une loi de composition interne sur X. La loi x admet un élément neutre s’il existe un élément
e € X tel que

VereX, rxe=exx =1.

Remarque.
Notez bien que pour I'existence d’un élément neutre, il faut les deux relations zxe =z et exx = .
Dans le cas ot la loi est commutative, comme x * e = e * x, une seule des relations doit étre vérifiée.

Proposition 1.4

Soit * une loi de composition interne sur X. Si x admet un élément neutre, celui-ci est unique.
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Méthode 1.5 (Montrer qu’une Ici admet un élément neutre)

On suppose qu’on a une lci x associative sur un ensemble X. On veut vérifier si elle admet un
élément neutre, et le cas échéant, le déterminer. Pour cela, on fixe x € X, et on résout les équations
rxe=e*xx =z d’inconnue e € X. On cherche une solution indépendante de z.

Exemples.

1. Les additions et multiplications dans R sont associatives, commutatives, et admettent un élément
neutre (0 et 1 respectivement).

2. La division dans R* n’est pas associative, puisque si a, b, ¢ sont trois réels non nuls, on a - = —

o 1o
S

a
et & = et ces deux quantités ne sont pas égales en général.

(e}

3. La composition des applications est une loi de composition interne associative sur X*, mais pas
commutative si X contient au moins deux éléments. Elle admet un élément neutre qui est I’application
identité.

4. zrzxy=z+zxy+y.

5. x*y = a?+y? n'a pas d’élément neutre.

1.2 Eléments réguliers et symétrisables

Définition 1.6 (Elément régulier)

Soit x une loi de composition interne sur X. Un élément a € X est

1. régulier a gauchesi:V (z,y) € X?, axr=axy =z =y.
2. régqulier a droitesi : ¥V (z,y) € X*, rxa=yxa=> T =1.

3. régulier s’il est régulier a gauche et a droite, i.e. si

V(a:,y)EXQ’ (a*x:a*yﬁx:yet x*a:y*a:}x:y).

Exemples.

1. Dans Z,..

2. Pas régulier : composée avec une fonction constante par exemple.

Méthode 1.7 (Simplification par un élément régulier)

Si a € X est régulier, on peut simplifier par a : par exemple, et on résout une équation a xx = a x b
d’'inconnue z € X (et o b € X, alors elle admet comme unique solution z = b.
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Définition 1.8 (Elément symétrisable)

Soit * une loi de composition interne sur X qui admet un élément neutre noté e. Un élément z € X
est symétrisable s’il existe y € X tel que zxy = y+x = e. L’élément y est alors un symétrique de x.

Remarque.
Comme pour I’élément neutre, notez bien que 'existence d’un symétrique pour x € X impose deux
conditions : z*xy = e et yxx = e. Lorque la loi est commutative, ces deux conditions n’en deviennent
qu’une seule.

Proposition 1.9 ‘

Soit * une loi de composition interne associative sur X qui admet un élément neutre. Soit € X un
élément symétrisable. Alors x admet un unique symétrique.

Méthode 1.10 (Montrer qu’un élément est symétrisable)

Comment montrer qu'un élément x € X est symétrisable, ou pas? On résout les équations = xy =
y*x = e d'inconnue y € X. S’il y a une solution, = est symétrisable, et y est son symétrique. Sinon,
x n’est pas symétrisable.

Exemples.

1. Dans Z muni de ’addition usuelle, tout élément est symétrisable et le symétrique est ’'opposé.
2. Dans N muni de 'addition, il n'y a que 0 qui est symétrisable.
3. Dans Z muni de la multiplication, il n'y a que 4+1 qui sont symétrisables.

4.  Dans R muni de la multiplication, 0 n’est pas symétrisable. Pour un réel non nul, le symétrique
est ici 'inverse.

5.  Dans X* muni de la composition des applications, les fonctions symétrisables sont les bijections,
et le symétrique d’une bijection est sa fonction réciproque.

6. Attention : soit f € X¥. Si f est injective, il existe g € XX telle que go f = idx. Mais f n’est
pas pour autant symétrisable, car il manque la condition f o g = idx, qui n’est vérifiée que si f est
bijective. De méme si f est surjective non injective.

Proposition 1.11 (Symétrique du symétrique)

Soit * une loi de composition interne associative sur X qui admet un élément neutre. Soit + € X un
élément symétrisable et 2’ son symétrique. Alors 2’ est symétrisable et son symétrique est x.

Proposition 1.12 (Produit d’éléments symétrisables)

Soit x une loi de composition interne associative sur X qui admet un élément neutre. Soient z,y € X
deux éléments symétrisables, et x’, 1y’ leurs symétriques respectifs. Alors z *y est symétrisable et son
symétrique est y’ x z’.
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Proposition 1.13 (Un élément symétrisable est régulier)

Soit x une loi de composition interne associative sur X qui admet un élément neutre. Alors tout
élément symétrisable est régulier.

Remarque.
On peut donc simplifier par un éléménet symétrisable.

1.3 Notations particuliéres

On suppose que X est muni d’une Ici x associative.

1. Souvent, on note xy au lieu de x*y. On note aussi " (si n € N*) pour x - - -xx n-fois. On a bien
str z"z™ = 2™t si n,m € N* (mais attention : pas z"y™ = (zy)" si la lci n’est pas commutative).

2. Si x admet un élément neutre, on définit 2° comme étant I’élément neutre.

3. Sixadmet un élément neutre, et x est symétrisable, on note alors en général =1 son symétyrique.
Attention, en général, cette notation n’a rien & voir avec I'inverse d’un réel, ou la fonction réciproque
d’une fonction bijective, sauf si on est dans un des exemples ci-dessus. Seul le contexte nous permet
de savoir.

4. Si % admet un élément neutre, et x est symétrisable, et n € Z, n < 0, on définit 2™ = (xfl)_n.
On a alors une définition de z™ pour tout n € Z, et x"z™ = x™t™.

On suppose que X est muni d’une Ici x associative et commutative.

1. Souvent, on note x + y au lieu de z *y. On note aussi nx (si n € N*) pour x * - - - x x n-fois. On a
bien sir nz + mz = (n 4+ m)x si n,m € N* et aussi nz + ny = n(z + y) car lci est commutative.

2. Si* admet un élément neutre, on le note alors 0 (qui n’a rien a voir en général avec le "0" usuel).
On définit aussi Ox comme étant 1’élément neutre.

3.  Si x admet un élément neutre, et x est symétrisable, son symétrique est appelé 'opposé de x et
est noté —z. En notant 0 'élément neutre, on a x4+ (—x) =0 (i.e. zx 7! =e).

4. Six admet un élément neutre, et x est symétrisable, et n € Z, n < 0, on définit nx = —n(—=z).
On a alors une définition de nz pour tout n € Z, et nx + mz = (n + m)x.

1.4 Parties stables et loi induite

On suppose que X est muni d’une lci *.

Définition 1.14 (Partie stable)

Soit Y un sous-ensemble de X.
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1. La partie Y est stable par * si
Vyy eY, yxy €Y.

2. La partie Y est stable par passage au symétrique si pour tout y € Y, y est symétrisable, et son
symétrique est dans Y.

Exemples.

1.  R* pour la mulitplication.

2. Les fonctions bijectives pour la composition.

Proposition 1.15 (Loi induite)

Soit Y C X une partie stable par x. Alors x définie une loi de composition interne sur Y.

2 Groupes

2.1 Définition

Définition 2.1 (Groupe)

Un groupe est un couple (G,*) ot G est un ensemble non vide, x une loi de composition interne
associative sur GG, munie d'un élément neutre, et pour laquelle tout élément de G est symétrisable,
1.€.

l. Va,y,2€G, xx(yxz)=(rxy)x*-z.
2. deeG,VzelG,zxe=exx =1
3. VzxeG, 32 G, oxa'=d"xx=ec.

Un groupe commutatif est un groupe (G, *) dont la loi * est commutative, i.e.

Ve,ye G, vxy=1y*x.

Exemples.

1. Les exemples classiques comme (R,+), (Z,+), (Q,+), (C,+), ou 'élément neutre est 0 et le
symétrique d’'un nombre x est 'opposé —zx. Ce sont des groupes commutatifs.

2. (N, +) n’est pas un groupe, puisque si n € N*, alors —n ¢ N, donc n n’admet pas de symétrique.
3. (R, x) n’est pas un groupe, puisque 0 n’admet pas de symétrique pour X.

4. (R*, x) est un groupe commutatif. L’élément neutre est 1 et le symétrique pour un réel = # 0 est
I'inverse 1/x.
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5. Soit R l'ensemble des rotations du plan euclidien orienté de centre un point A fixé. Alors (R, o)
est un groupe commutatif. En effet, si r et " sont deux rotations de centre A, alors on sait que r o7’
est encore une rotation. De plus, 'application identité du plan, notée id, est une rotation de centre
A (et de mesure d’angle 0), et vérifie

VreR, roid=idor =r,

donc id est un élément neutre pour o. Enfin, si r est la rotation de centre A de mesure d’angle 6,
alors la rotation r’ de centre A et de mesure d’angle —0 vérifie r o’ = 1’ o r = id, donc 7’ et un
symétrique de r, prouvant que (R, o) est un groupe.

6. Plus généralement, si F est un ensemble non vide, ’ensemble P(FE) des permutations de E (i.e.
les fonctions bijectives de E dans F) est un groupe pour le composition des applications.

Proposition 2.2 |

Soit (G, *) un groupe, e un élément neutre. Alors

1. (G, *) admet un unique élément neutre.
2. Tout élément est régulier.
3.  Tout élément x € G admet un unique symétrique.

4. Soit x € G et x’ son symétrique. Alors z est le symétrique de z’.

Proposition 2.3 |

Soit (G, %) un groupe, e un élément neutre. Soient x,y € G tels que xxy = e. Alors y est le symétrique
de x.

Remarque.
Cette proposition est délicate : on sait que x admet un symétrique. En particulier, si on sait juste
que x xy = e, en général, x n’est pas symétrisable.

2.2  Sous-groupes

A partir d’ici, on notera 7! le symétrique d’un élément = d’un groupe.

| Définition 2.4 |
Soit (G, *) un groupe. Un sous-groupe de G est un sous-ensemble H non vide de G, stable par * et
par passage au symétrique, i.e. tel que

1. Siz€e H,alorsxz ! e H.

2. Six,ye H,alorsxxy € H.

Exemples.
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1. 7Z etc...

2. Rotations d’angle nm/4 de centre O.

Proposition 2.5 (Sous-groupes triviaux)

Soit (G, *) un groupe et e son élément neutre. Alors {e} et G sont des sous-groupes de (G, *), appelés
sous-groupes triviaux de G.

‘ Proposition 2.6 ‘

Soit H un sous-groupe d’un groupe (G, ). L’élément neutre de G est dans H.

’Méthode 2.7‘

Souvent, pour montrer qu'un candidat H a étre un sous-groupe est non vide, on montre qu’il contient
I’élément neutre.

Proposition 2.8 (Intersection de sous-groupes)

L’intersection de sous-groupes d’un méme groupe (G, *) est un sous-goupe de (G, %).

Proposition 2.9 ‘

Un sous-groupe H d’un groupe (G, *) est un groupe pour la loi induite.

Meéthode 2.10 (Montrer que (G, ) est un groupe)

— Soit on le montre directement, en montrant qu’on a une lci associative, un élément neutre
(méthode 1.5) et que tout élément est symétrisable (méthode 1.10).

— Mais en général, on montre que G est un sous-groupe d’un groupe connu. Cela évite de montrer
I’associativité, de trouver I’élément nutre, et de montrer que tout élément est symétrisable. Il
y a juste un probléme de stabilité par x et par passage au symétrique.

Proposition 2.11 ‘

Soit (G, *) un groupe et H C G. Alors H est un sous-groupe de (G, ) si et seulement si
1. H#0)

2. Va,ye H, zyt€H.

3 Anneaux

3.1 Définitions

Définition 3.1 (Anneau)

Un anneau est un triplet (A, +, x) tel que :

1. (A, +) est un groupe commutatif.

2. x une loi de composition interne associative sur A admettant un élément neutre.
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3. Laloi x est distributive sur +, i.e. pour tous z,y,z € A,onax X (y+z2) =x Xy+x X z et
(y+z2)xoz=yxx+zxuz.

Remarques.

1. La premieére loi de composition interne d’un anneau est appelé "addition", et la deuxiéme "mul-
tiplication", par analogie avec R. Mais bien entendu, ces opérations n’ont en général rien a voir avec
les opérations dans R si A n’est pas I’ensemble des réels.

2. L’élément neutre de la loi "+" est noté 0, et I’élément neutre de la loi " x" est noté 1. Encore une
fois, ce ne sont pas en général le 0 et le 1 réels. Cela peut-étre des fonctions par exemple. Le contexte
permet de savoir.

3. Le symétrique d’un élément z pour la loi "+" (I'addition) est appelé opposé, et est noté —zx.

4. Pour alléger les notations, on note en général xy =z x y et x —y =z + (—y).

Définition 3.2 (Anneau commutatif)

Un anneau (A, +, X) est commutatif si la loi X est commutative.

Exemples.

1. L’ensemble Z muni des lois usuelles est un anneau commutatif. Les éléments inversibles sont =4-1.

2. L’ensemble des suites réelles est un anneau muni de 'addition et du produit terme a terme. Les
suites inversibles sont les suites dont aucun terme n’est nul.

3. Les ensembles Q, R et C sont bien entendu des anneaux pour les lois usuelles, et seul 0 n’est pas
inversible.

Définition 3.3 (Elément régulier)

Un élément z d'un anneau (A, +, x) est régulier sl est régulier pour la lci x.

Définition 3.4 (Diviseur de zéro)

Un élément x d'un anneau (A, +, X) est un diviseur de zéro s’il est non nul, et s’il existe y # 0 tel
que
zy=0 ou yzx=0.

Définition 3.5 (Anneau intégre)

Un anneau (A, +, X) est intégre si A # {0} et s’il n’admet pas de diviseur de 0, ou encore si pour
tous z,y € A,
ry =0=—= (93:0 ou y:()).

Définition 3.6 (Elément inversible, ensemble A*)

Un élément = d’un anneau (A, +, X) est inversible s'il est symétrisable pour la loi x. On note A*
I’ensemble des éléments inversibles de A.

155



H. Thys, MP2I du lycée Victor Hugo de Besangon

Remarques.

1. Un élément n’admet pas nécessairement de symétrique pour x. En particulier, 0 n’a jamais de
symétrique pour X, sauf si A = {0}.
2. Siun élément x € A est inversible, son symétrique s’apelle I'inverse, et est noté z 1.

Exemples.

1. L’anneau Z est integre.

2. Les anneaux R, C munis des lois usuelles sont intégre, cf le paragraphe sur les coprs.

’Proposition 3.7‘

Soit (A, +, x) un anneau. Tout élément inversible est régulier.

| Méthode 3.8

Comme dans un groupe, on peut simplifier par un élément régulier, et en particulier par un élément
inversible : si ax = ay et a est régulier, alors x = y.

Remarque.
C’est bien entendu aussi vrai pour 'addition, puisque (A, +) est un groupe : si a + x = a + y, alors
x =y, pour tout a € A.

3.2 Propriétés

‘ Proposition 3.9 ‘

Soit (A, 4+, X) un anneau. Alors

1. Pourtoutz € A, 0xzx=2x0=0.

2. Tout élément de A admet un unique opposé et tout élément inversible de A admet un unique
inverse.

3. Soit z € A. Alors —(—x) = x et si = est inversible, x7! lest également, et (z71)~1 = .

Proposition 3.10 (Produit d’éléments inversibles)

Soit (A, +, x) un anneau, et z,y € A*. Alors zy € A* et (zy) ' =y 1oL

Remarque.

Attention a lordre! C’est y =1

x~! et pas dans l'autre sens.

Proposition 3.11 |

Soit (A, +, x) un anneau. Alors (A*, x) est un groupe.
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Proposition 3.12 (Calculs dans un anneau)

Soient (A, 4+, X) un anneau, et a,b € A tels que ab = ba. Soit n € N. Alors

1. (a+b)" = Xn: <Z) a""

k=0
n—1
2. d"=b"=(a—0) Z a"pnt
k=0

Remarque.
Ces égalités sont en particulier vraies dans un anneau commutatif. Mais attention : si a et b ne
commutent pas, les résultats tombent en défaut. Par exemple, (a+b)? = a?+ab+ba+b* # a®+2ab+b>
si ab # ba.

| Méthode 3.13]
Soit (A, +, X) un anneau, et x € A*. Alors

1. etz ! commutent, donc (x +z71)" = -

2. z et 1 commutent, donc (x +1)"=--- et (z —1)"=---.

3.3 Sous-anneaux

Définition 3.14 (Sous-anneau)

Un sous-anneau d'un anneau (A, +, X) est un sous-groupe B de (4, +), contenant 1, et stable par
multiplication, i.e.

1. BCA.

2. B4

3. Vx,zweB,x+yeB.
4. Vxe B, —x€B.

5. 1leB.

6. Vx,ye B, xye B.

Exemple.
Le sous-ensemble des suites convergentes est un sous-anneau de 'anneau des suites.

|Pr0positi0n 3.15 |

Un sous-anneau d’un anneau (A, +, X) est un anneau pour les lois induites.

| Méthode 3.16]
Cette proposition est trés utile pour montrer qu’un ensemble est un anneau, en montrant que c’est
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un sous-anneau d’un anneau connu. Cela évite en particulier de redémontrer I'associativité, la dis-
tributivité,... Par exemple, ’ensemble des suites convergentes est un anneau pour les lois usuelles,
puisque c’est un sous-anneau de ’anneau des suites.

Proposition 3.17 (Sous-anneau d’un anneau intégre)

Un sous-anneau d’un anneau intégre est un anneau intégre.

| Méthode 3.18]
Pour montrer qu’un ensemble est un anneau intégre, souvent on montre que c’est un sous-anneau
d’un anneau intégre connu, cf en particulier les sous-anneaux dun corps.

4 Corps

Définition 4.1 (corps)

Un corps est un anneau (K, +, X) commutatif, tel que K contienne au moins deux éléments, et dont
tous les éléments sauf 0 (élément neutre de 1'addition) sont inversibles.

Remarques.

1. On utilise les mémes notations que pour les anneaux : 0, 1, zy =z x y et z —y = = + (—y).
2. La distributivité a gauche est équivalente a celle a droite puisque 'addition et la multiplication

sont commutatives.
3. On parle souvent d’un corps K lorsque les deux lois sont implicites.

Exemples.

1. Les ensembles R et Q munis des opérations usuelles sont des corps.

2. Z n’est pas un corps pour les lois usuelles puisque si n € Z, |n| > 2, alors 1/n & Z.

Proposition 4.2 |

Soit (K, +, x) un corps. Alors
1. Pourtout x € K, 0 x x=0.

2. 0+#1k.
3. Tout élément de K admet un unique opposé et tout élément non nul de K admet un unique
inverse.

4. Soit ¥ € K. Alors —(—z) = x et si x # Ok, (z71)"1 = .

5. Soient z,y € K. Alors
2y =0 <= x=0o0uy=0.

Autrement dit, un corps est un anneau intégre.
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Remarque.
C’est évidemment une redite de la proposition 3.9, sauf en ce qui concerne 'intégrité.

Méthode 4.3 (Simplification dans un corps)

Dans un corps, on peut donc simplifier par tout élément non nul. Autrement dit, si z,y,z € K, et
x#0,alors xy =12z = y = 2.

Proposition 4.4 ‘

Soit (K, +, X) est un corps.

1. (K,+) est un groupe commutatif.

2. Soit K* = K \ {0}. Alors (K*, X) est un groupe commutatif dont I’élément neutre est 1.

‘ Définition 4.5 ‘

Soit (K, +, x) un corps. Un sous-corps de K est un sous-anneau de K stable par passage a l'inverse,
i.e. un sous-anneau C' de K tel que, si z € C et x # 0, alors 27! € C.

‘ Proposition 4.6 ‘

Un sous-corps d’un corps est un corps pour les lois induites.

5 Exemples fondamentaux

5.1 Groupes

Proposition 5.1 (Nombres complexes de module 1)

1. L’ensemble U des nombres complexes de module 1 est un sous-groupe de (C*, x).

2. Pour tout n € N*, 'ensemble U,, des racines n-éme de 'unité est un sous-groupe de (U, X)

Définition 5.2 (Permutation d’un ensemble)

Une permutation d’un ensemble E est une bijection de E dans lui-méme. On note S(E) I'ensemble
des permutations de F.

Proposition 5.3 (Groupe des permutations d’un ensemble)

Soit £ un ensemble non vide. L’ensemble S(E) des permutations de £ muni de la composition des
fonctions est un groupe (non commutatif en général).

5.2 Ensembles de fonctions

Dans tout ce paragraphe, on fixe un ensemble non vide X, et un corps K (généralement R ou C).

On rappelle que KX et F(X, K) désigne 'ensemble des fonctions de X vers K.
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‘Déﬁnition 5.4|
Soient f,g € KX, et A € K.

1. La somme f + g est la fonction de X vers K définie par :

VeeX, (f+9)(x) = fz)+g(x).

2. La fonction \f est la fonction de X vers K définie par :
Vae X, @) = Af(x).

3.  Le produit fg est la fonction de X vers K définie par :
Vo e X, (fo)(@) = f(x)g(a).

Remarques.

1. Ici, il est tres important de bien savoir quelles sont ces opérations "+", "x", "-" qu’on utilise :

c’est dans K ? Dans K¥ ? Cela demande un peu travail pour que la réponse vienne facilement.
2. Les opérations que I'on vient de définir sont les "lois usuelles" sur K. Ce sont les additions et
multiplications "point par point".

Proposition 5.5

L’ensemble KX muni des lois usuelles est un anneau commutatif. L’élément neutre pour I’addition est
la fonction identiquement nulle, et 1’élément neutre pour la multiplication est la fonction constante
égale a 1.

Proposition 5.6

Les éléments inversibles de ’anneau K sont les fonctions qui ne s’annulent pas, et les diviseurs de
0 sont les fonctions non nulles, qui s’annulent.

Il est temps de faire des exemples d’exemples...

Exemples.
1. Un cas trés frégent : X C Ret K =R : F(X,R).

2. Considérons le sous-ensemble G de F(X,R) constitué des fonctions qui ne s’annule pas, que 'on
munit de la multiplication point par point : ¢’est alors un groupe commutatif.

3.  Dans F(R,R) avec I’addition, les fonctions qui s’annulent en a € R fixé.
4. L’anneau F(X,R) n’est pas intégre si X contient au moins deux éléments.

5. Est-ce que I'ensemble des fonctions nulles en xy € X avec la fonction constante égale a 1 est un
sous-anneau de R* ? Non! (somme...)

6. Le sous-ensemble des fonctions continues de R dans R est un sous-anneau de (.F (R,R), +, ><).
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5.3 Suites réelles et complexes

Dans tout ce paragraphe, on fixe un corps K (R ou C).

On rappelle que K désigne 'ensemble des suites a valeurs dans K.

‘Déﬁnition 5.7|
Soient (uy,), (v,) € KN

1. La somme (u)nen + (Un)nen est la suite de terme général u,, + v,

2. Le produit (t,)nen(vn)nen est la suite de terme général w,v,,

Remarques.

1. Ici, il est treés important de bien savoir quelles sont ces opérations "+", "x", "." qu’on utilise :

c’est dans K ? Dans KN ?
2. Les opérations que 1'on vient de définir sont les "lois usuelles" sur K. Ce sont les additions et
multiplications "terme a terme".

Proposition 5.8

L’ensemble K™ muni des lois usuelles est un anneau commutatif. L’élément neutre pour I’addition
est la suite constante égale a 0, et I’élément neutre pour la multiplication est la suite constante égale
al.

6 Morphismes

6.1 Morphismes de groupes

Définition 6.1 (Morphismes de groupes)

Soient (G, *) et (G', *") deux groupes.

1. Un morphisme de groupes de G vers G’ est une fonction f : G — G’ telle que pour tous x,y € G,

flaxy) = f(z)« f(y).
2. Un isomorphisme de groupes est un morphisme de groupes bijectif.

3. Un automorphisme de groupes est un isomorphisme de groupes d'un groupe dans lui-méme.

Exemples.

1. Le logarithme néperien est un morphisme de groupes de (R*, x) vers (R, +), et 'exponentielle
est un morphisme de groupes de (R, +) vers (R*, x).

2. La fonction R — U qui & 6 € R associe € est un morhisme de groupes de (R, +) vers (U, x).
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3. L’application de R® vers R qui & une fonction f associe f(0) est un morphisme de groupes de
(R®, +) vers (R, +).

4. Plus généralement, si X est un ensemble non vide et a € X, la fonction de R¥ vers R qui & une
fonction f associe f(a) est un morphisme de groupes de (R¥,+) vers (R, +).

5. La fonction qui & une fonction dérivable sur un intervalle I associe sa dérivée est un morphisme
de groupes de (D(I),+) vers (Rf, +).

Proposition 6.2 |

Soient (G,x*) et (G',*") deux groupes, et f un morphisme de groupes de G vers G'.

1. Sie est 'élément neutre de G, et €’ celui de G', alors f(e) = ¢'.
-1
2. Soit x € G et 7! son symétrique. Alors f(z™1) = (f(x)) :

Exemple.
On retrouve que In(1) =0, * =1, In(1/z) = —z et e = 1/e".

Proposition 6.3 (Composition)

La composition de deux morphismes de groupes est un morphisme de groupes.

‘ Proposition 6.4 ‘

La bijection réciproque d’un isomorphisme de groupes est un isomorphisme de groupes.

‘ Proposition 6.5 ‘

Soient (G, *) et (G’, %) deux groupes et f un morphisme de groupes de G vers G'.

1. L’image par f d'un sous-groupe de G est un sous-groupe de G’.

2. L’image réciproque par f d’un sous-groupe de G’ est un sous-groupe de G.

6.2 Noyau et image

Définition 6.6 (Noyau et image)

Soient (G, *) et (G',*') deux groupes et f un morphisme de groupes de G vers G', et €' 'élément
neutre de G'.

1. Le noyau de f, noté Ker(f), est Ker(f) = f~1e) ={z € G| f(z) =¢€'}.

2. L’image de f, notée Im(f), est Im(f) = f(G) = {f(x) | v € G}.

Proposition 6.7|

Soient (G, *) et (G’, %) deux groupes et f un morphisme de groupes de G vers G'.

1. Le noyau de f est un sous-groupe de G.

2. Limage de f est un sous-groupe de G’.
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Proposition 6.8 |

Soient (G,x*) et (G',*") deux groupes et f un morphisme de groupes de G vers G', et e ’élément
neutre de G. Alors
f injective <= Ker(f) = {e}.

Remarque.
f est surjective si et seulement si Im(f) = G’, mais c’est indépendant de la notion de morphisme.

6.3 Morphismes d’anneaux et de corps

Définition 6.9 (Morphismes d’anneaux)

Soient (A, 4+, X) et (B, 4+, x) deux anneaux.

1. Un morphisme d’anneauz de (A, +, X)) vers (B, +, x) est un morphisme de groupes f de (A, +)
vers (B, +) tel que, pour tous z,y € A,

fley) = f(x)f(y),  f(1)=1

2. Un isomorphisme d’anneaux est un morphisme d’anneaux bijectif.

Exemples.

1. L’application de R® vers R qui & une fonction f associe f(0) est un morphisme d’anneaux de
(R, +, x) vers (R, +, x).

2. Plus généralement, si X est un ensemble non vide et a € X, la fonction de RX vers R qui & une
fonction f associe f(a) est un morphisme de groupes de (R, +, x) vers (R, +, x) (ici, bien entendu,
les "4" et "x" désignent les opérations usuelles sur nos ensembles).

3. L’application qui a une fonction associe sa dérivée n’est pas un morphisme d’anneaux puisque
!/ ! !
(f9) # f'g'
4. IL’application qui & une suite convergente associe sa limite est un morphisme d’anneaux de I’anneau
des suites convergentes vers R (anneaux munis des lois usuelles).

|Pr0positi0n 6.10 |

Soit f un isomorphisme d’anneaux d’un anneau (A, +, x)) vers un anneau (B, +, x). Alors f~! est
un morphisme d’anneaux.

| Définition 6.11 |

Un morphisme de corps d'un corps (K, +, x) vers un corps (K’ +, X) est un morphisme d’anneaux
de l'anneau (K, +, x) vers anneau (K', +, x).
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