
Chapitre 14

Arithmétique dans Z

Dans tout ce chapitre, les lettres minuscules désignent des entiers relatifs.

1 Divisibilité dans Z

1.1 Divisibilité

Définition 1.1 (Divisibilité)

Soient a, b ∈ Z. L’entier a divise b s’il existe k ∈ Z tel que b = ka. On note alors a|b, et a est alors
un diviseur de b et b un multiple de a.

Exemples.

1. 2|4, 0|0,..

2. 1 et −1 divisent tous les entiers, mais ne sont divisiblent que par eux-mêmes.

3. 0 est multiple de tous les entiers, mais ne divise que lui-même.

Définition 1.2
Soit a ∈ Z. On note D(a) l’ensemble des diviseurs dans N de a et aZ = {na, n ∈ Z} l’ensemble de
ses multiples.

Exemple.
On a D(6) = {1, 2, 3, 6} et 6Z = {. . . ,−18,−12,−6, 0, 6, 12, 18, . . .}.

Proposition 1.3

Soient a, b ∈ Z. Alors
a|b ⇐⇒ −a|b ⇐⇒ a|− b ⇐⇒ −a|− b.

Remarque.
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On peut donc se contenter d’étudier la divisibilité dans N plutôt que dans Z.

Proposition 1.4

Soient a, b ∈ Z. Alors

a|b et b|a

�
⇐⇒ |a| = |b|.

Proposition 1.5

La relation "divise" est une relation d’ordre partiel sur N, i.e. si a, b, c ∈ N, on a :

1. a|a.

2. a|b et b|a =⇒ a = b.

3. a|b et b|c =⇒ a|c.

Remarques.

1. La divisibilité dans Z n’est pas une relation d’ordre, puisque x|y et y|x n’implique pas x = y,
mais seulement |x| = |y|.

2. Soient a, b ∈ N. Alors a est plus petit que b pour la relation "divise" si a|b. On peut remarquer
que 0 est alors le plus grand élément de N (tout entier divise 0), et 1 le plus petit (1 divise tous les
entiers).

Proposition 1.6

Soient a, b, c ∈ Z. Alors :

1. c|a et c|b =⇒ ∀ u, v ∈ Z, c|au+ bv.

2. Si c 6= 0, alors ac|bc ⇐⇒ a|b.

Remarque.
Comparez aussi avec le paragraphe sur les congruences ci-dessous.

1.2 Congruences dans Z

Définition 1.7 (Congruences)

Soient a, b,α ∈ Z. Les entiers a et b sont congrus modulo α s’il existe k ∈ Z tel que a− b = kα. On
note alors a ≡ b mod α.

Proposition 1.8

Soient a, b, d ∈ Z. Alors d divise a− b si et seulement si a ≡ b mod d.

Proposition 1.9

Soient a, b, a′, b′, n,α ∈ Z tels que a ≡ b mod α et a′ ≡ b′ mod α. Alors
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1. a+ a′ ≡ b+ b′ mod α.

2. na ≡ nb mod α.

3. aa′ ≡ bb′ mod α.

Remarques.

1. On remarque que cette proposition est une réécriture avec des congruences de la proposition 1.6.
2. On notera que le point 3 de cette proposition n’est pas vraie pour les congruences avec les réels.
Mais en général, les congruences entre réels et entre entiers ne sont pas utilisés de la même façon.

3. On ne peut pas diviser les congruences par un entier ! Par exemple, 6 ≡ 0 mod 6, mais 3 6≡ 0
mod 6.

1.3 Division euclidienne

Théorème 1.10 (Division euclidienne)

Soient a, b ∈ Z× N∗. il existe un unique couple (q, r) ∈ Z× N tel que

a = bq + r et 0 � r < b.

L’entier q est le quotient et r est le reste de la division euclidienne de a par b.

Exemple.
On a 60 = 42× 1 + 18 : le quotient est 1, le reste 18.

Proposition 1.11

Soient a ∈ Z et b ∈ N∗. Alors b|a si et seulement si le reste de la division euclidienne de a par b est
nul.

2 PGCD

2.1 Définition et caractérisation

Définition 2.1 (PGCD)

Soient a, b ∈ N tels que a 6= 0 ou b 6= 0. Le pgcd de a et b, noté a ∧ b, est le plus grand diviseur
commun dans N à a et b.

Exemple.
Le pgcd de 4 et 6 est 2, celui de 60 et 42 est 6.

Remarques.

1. Par définition, un pgcd est toujours strictement positif.
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2. Par définition, le pgcd de a et b divise a et b.
3. On a a ∧ 0 = a.

Proposition 2.2

Soient a, b ∈ N avec a 6= 0. Alors a|b ⇐⇒ a ∧ b = a.

Proposition 2.3

Soient a, b, q, r ∈ N tels que a = bq + r. Alors

1. Les diviseurs communs à a et b sont les diviseurs communs à b et r, i.e. D(a)∩D(b) = D(r)∩D(b).

2. Si a 6= 0 ou b 6= 0, on a a ∧ b = r ∧ b.

Cas particulier important : q est le quotient et r le reste de la division de a par b 6= 0.

Remarque.
On retiendra que "le pgcd ne change pas lorsqu’on retranche à un des entiers un multiple de l’autre".

Exemple.
Par exemple, si a = 60 et b = 42. On a 60 = 42×1+18, donc 60∧42 = 42∧18. Mais 42 = 18×2+6,
donc 42 ∧ 18 = 18 ∧ 6. Mais 6|18, donc 18 ∧ 6 = 6, et 60 ∧ 42 = 6.

Théorème 2.4 (Caractérisation du PGCD)

Soient a, b, d ∈ N avec a 6= 0 ou b 6= 0, et d 6= 0. Les affirmations suivantes sont équivalentes :

1. d = a ∧ b.

2. Un entier divise a et b si et seulement s’il divise d.

Remarques.

1. Le point 2 peut s’écrire D(d) = D(a) ∩D(b).
2. Le pgcd est donc aussi le plus grand diviseur commun à a et b pour la relation d’ordre "divise".
3. Cette caractérisation permet de définir 0 ∧ 0 : on a D(0) = D(0) ∩ D(0) donc 0 ∧ 0 = 0. Cela
permet d’éviter de toujours devoir supposer qu’un des entiers est non nul.

Méthode 2.5
Pour déterminer le pgcd de deux entiers a et b, il suffit de déterminer un entier positif d qui divise a
et b et tel que, si n|a et n|b, alors n|d.

2.2 Algorithme d’Euclide

Théorème 2.6 (Algorithme d’Euclide)

Soient a, b ∈ N∗. On construit par récurrence (tant que c’est possible) une suite d’entiers naturels
par :
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1. r−1 = a et r0 = b.
2. Pour n � 0, si rn 6= 0, on définit rn+1 comme le reste de la division euclidienne de rn−1 par

rn, sinon rn+1 n’est pas défini.

Alors :

1. Il existe un entier p � 0 tel que pour tout n � p, rn est bien défini et non nul, et rp+1 = 0
(i.e. rp divise rp−1).

2. rp est le pgcd de a et b, i.e. le dernier reste non nul est le pgcd de a et de b.

Exemple.
Posons a = 147 et b = 45. Les divisions euclidiennes successives sont

a = 3b+ 12 (r1 = 12)

b = 3r1 + 9 (r2 = 9)

r1 = r2 + 3 (r3 = 3)

r2 = 3r3 + 0 (r4 = 0),

donc a ∧ b = r3 = 3 car r4 = 0.

2.3 Extension aux entiers relatifs et relation de Bézout

Définition 2.7
Soient a, b ∈ Z. On définit leur pgcd par a ∧ b = |a| ∧ |b|.

Proposition 2.8 (Relation de Bézout)

Soient a, b ∈ Z. Il existe u, v ∈ Z tels que a ∧ b = au+ bv.

Méthode 2.9
Voici deux façons de déterminer des coefficients de Bézout. Avec les notations de la proposition 2.6,
on note qn le quotient de la division euclidienne de rn−2 par rn−1 (1 � n � p), et on a

rn−2 = qnrn−1 + rn.

1. On utilise l’algorithme donné dans la démonstration. On part de la relation a ∧ b = rp = rp−2 −
qprp−1. On remplace alors rp−1 par rp−1 = rp−3 − qp−1rp−2, donc

a ∧ b = rp−2 − qp(rp−3 − qp−1rp−2) = (1 + qpqp−1)rp−2 − qprp−3.

Puis on remplace rp−2 par rp−2 = rp−4 − qp−2rp−3, et ainsi de suite. Notez qu’on ne remplace qu’un
reste à la fois. Lorsqu’il ne reste que r−1 et r0, on a une relation de Bézout.

2. Voici un algorithme plus efficace pour une programmation. On détermine par récurrence des
entiers un, vn ∈ Z pour −1 � n � p tels que

una+ vnb = rn.

Pour n = p, on a rp = a ∧ b, ce qui donne des coefficients de Bézout.
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On pose u−1 = 1 et v−1 = 0 (car r−1 = a) et u0 = 0, v0 = 1 (car r0 = b). Si pour 0 � n < p
un−1, vn−1, un, vn sont construits, on a

rn+1 = rn−1 − qn+1rn = (un−1 − qn+1un)a+ (vn−1 − qn+1un)b,

et on pose

un+1 = un−1 − qn+1un et vn+1 = vn−1 − qn+1un.

Cet algorithme a l’avantage de prendre moins de place mémoire.

Pour les deux algorithmes, il est intéressant d’obtenir les coefficients de Bézout formellement en
fonction des différents qn, rn (ou un et vn le cas échéant), et de faire les calculs explicites une fois
pour toute à la fin. En effet, les coefficients sont, en fonction de qn, rn, (ou un et vn), toujours les
mêmes, donc on "s’habitue" au calcul. De plus, certains produits se répètent, ce que l’on ne remarque
pas en effectuant les calculs au fur et à mesure. Enfin, quand on remplace au fur et à mesure, on ne
reconnaît plus les rn à remplacer, et on est vite perdu !

Exemple.
Posons a = 147 et b = 45. Les divisions euclidiennes successives sont

a = 3b+ 12 (q1 = 3, r1 = 12)

b = 3r1 + 9 (q2 = 3, r2 = 9)

r1 = r2 + 3 (q3 = 1, r3 = 3)

r2 = 3r3 + 0 (q4 = 3, r4 = 0),

donc

a ∧ b = 3 = r1 − r2 = r1 − (b− 3r1) = 4r1 − b = 4(a− 3b)− b = 4a− 13b.

Faîtes l’autre méthode.

3 Entiers premiers entre eux et théorème de Bézout

3.1 Entiers premiers entre eux

Définition 3.1
Deux entiers a et b sont premiers entre eux si a ∧ b = 1.

Exemple.
Les entiers 385 et 21 sont premiers entre eux.

Proposition 3.2

Soient a, b ∈ Z. Il existe a1, b1 ∈ Z premiers entre eux tels que

a = (a ∧ b)a1, b = (a ∧ b)b1.
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3.2 Théorème de Bézout

Théorème 3.3 (Théorème de Bézout)

Deux entiers a et b sont premiers entre eux si et seulement s’il existe deux entiers u et v tels que

au+ bv = 1.

Remarque.
Attention, s’il existe u et v tel que

au+ bv = d,

on n’a pas nécessairement d = ±a ∧ b, puisque par exemple si

au′ + bv′ = a ∧ b alors a(cu′) + b(cv′) = c(a ∧ b)

pour tout entier c. Par exemple, 4× 3 + (−2)× 5 = 2, mais 2 n’est pas le pgcd de 3 et 5.

4 PPCM

Définition 4.1 (PPCM)

Soient a, b ∈ N∗. Le ppcm de a et b, noté a ∨ b, est le plus petit multiple stictement positif commun
à a et b.

Exemple.
On a 147 ∨ 45 = 2205.

Remarques.

1. Si a = 0 ou b = 0, il n’y a pas de plus petit multiple > 0, puisque le seul multiple commun est 0.
On peut le définir comme ppcm.

2. Si a < 0 ou b < 0, on définit a ∨ b = |a| ∨ |b|.

Théorème 4.2 (Caractérisation du ppcm)

Soient a, b,m ∈ N∗. Les affirmations suivantes sont équivalentes.

1. m = a ∨ b.

2. Un entier est un multiple commun à a et b si et seulement si c’est un multiple de m.

Remarques.

1. Le thorème reste vrai même si a = 0 ou b = 0.
2. Le point 2 peut s’écrire aZ ∩ bZ = mZ.
3. Le ppcm est donc également le plus petit multiple commun pour la relation d’ordre "divise".
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Méthode 4.3
Pour déterminer le ppcm de a et b, on exhibe un multiple m commun à a et b tel que, pour tout
n ∈ N,


a|n et b|n

�
=⇒ m|n.

5 Lemme de Gauss

5.1 Lemme de Gauss

Théorème 5.1 (Lemme de Gauss)

Soient a, b, c ∈ Z. Si a divise bc et si a et b sont premiers entre eux, alors a divise c.

Corollaire 5.2
Soient a et b deux entiers premiers entre eux. Alors

a ∨ b = |ab|.

Proposition 5.3

Soient a, b ∈ Z. Alors |ab| = (a ∧ b)(a ∨ b).

Exemple.
Si a = 147 et b = 45, alors a ∧ b = 3 et a ∨ b = 2205, et (a ∧ b)(a ∨ b) = 6615 = ab.

Théorème 5.4 (Forme irréductible d’un rationnel)

Tout nombre rationnel non nul s’écrit de manière unique p
q
, avec p, q ∈ Z, q > 0 et p ∧ q = 1.

5.2 Entiers premiers avec un produit

Proposition 5.5

1. Un entier est premier avec un produit si et seulement s’il est premier avec chacun de ses facteurs.

2. Si des entiers deux à deux premiers entre eux divisent un entier p, alors leur produit divise p.

6 PGCD d’un nombre fini d’entiers

Les démonstrations de ce paragraphe ne sont pas exigibles. Je ne les mets pas. Il s’agit en fait
simplement de se poser la question "à quelle condition divise-t-on plusieurs entiers ?".

6.1 Cas de trois entiers

Proposition 6.1

Soient a, b, c ∈ N∗. Alors

D(a) ∩D(b) ∩D(c) = D(a ∧ b) ∩D(c) = D(a) ∩D(b ∧ c) = D(a ∧ c) ∩D(b).
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Définition 6.2 (PGCD de trois entiers)

Soient a, b, c ∈ N∗. Le pgcd de a, b et c est le plus grand diviseur commun à a, b et c. On le note
a ∧ b ∧ c.

Proposition 6.3

Soient a, b, c ∈ N∗. Alors
a ∧ b ∧ c = a ∧ (b ∧ c) = (a ∧ b) ∧ c.

Exemple.
Si a = 12 = 22 × 3, b = 30 = 2 × 3 × 5, c = 105 = 3 × 5 × 7, on a a ∧ b = 6, et 6 ∧ c = 3, donc
a ∧ b ∧ c = 3.

Proposition 6.4

Soient a, b, c ∈ N∗. Un entier n ∈ N divise a, b et c si et seulement s’il divise a ∧ b ∧ c.

6.2 Généralisation

Voici les résultats pour un nombre quelconque d’entiers.

Définition 6.5 (PGCD de n entiers)

Soient n ∈ N∗ et (a1, . . . , an) ∈ (N∗)n. Le pgcd des ak est le plus grand diviseur commun aux ak. On
le note a1 ∧ · · · ∧ an.

Proposition 6.6

Soient n ∈ N, n � 2, et (a1, . . . , an) ∈ (N∗)n. Alors

a1 ∧ · · · ∧ an = (a1 ∧ · · · ∧ an−1) ∧ an = a1 ∧ (a2 ∧ · · · ∧ an).

Remarques.

1. Comme pour deux entiers, on peut généraliser aux entiers relatifs.
2. De même, le pgcd de n entier est caractérisé comme étant le seul entier dont l’ensemble des
diviseurs est l’ensemble des diviseurs communs aux n entiers.

Proposition 6.7 (Relation de Bézout)

Soient n ∈ N, n � 2, et (a1, . . . , an) ∈ Zn. Il existe (u1, . . . , un) ∈ Zn tel que

u1a1 + · · ·+ unan = a1 ∧ · · · ∧ an.

Définition 6.8 (Entiers premiers entre eux dans leur ensemble)

Soient n ∈ N∗ et (a1, . . . , an) ∈ (N∗)n. Les entiers ak sont premiers entre eux dans leur ensemble si
a1 ∧ · · · ∧ an = 1.

Définition 6.9 (Entiers premiers entre eux deux à deux)

Soient n ∈ N∗ et (a1, . . . , an) ∈ (N∗)n. Les entiers ak sont premiers entre eux deux à deux si

∀ (i, j) ∈ [[1, n]], i 6= j =⇒ ai ∧ aj = 1.
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Remarque.
Attention à ne pas confondre ces deux notions. Par exemple, 6,10 et 15 sont premiers entre eux dans
leur ensemble, mais pas deux à deux (et pris deux à deux, ils ne sont pas premiers entre eux !).

Proposition 6.10

Soient n ∈ N∗ et (a1, . . . , an) ∈ (N∗)n premiers entre eux deux à deux. Alors ils sont premiers entre
eux dans leur ensemble.

7 Nombres premiers

Dans ce paragraphe, tous les entiers sont des entiers naturels sauf mention explicite du contraire.

7.1 Définition

Définition 7.1 (Nombres premiers)

Un entier naturel p est premier s’il admet exactement deux diviseurs, 1 et lui-même. Autrement dit,
pour p > 1, si p = ab, alors a = 1 ou b = 1.

Remarque.
1 n’est pas un nombre premier.

Proposition 7.2

Un nombre premier est premier avec tout entier qu’il ne divise pas.

Corollaire 7.3
Un nombre premier divise un produit si et seulement s’il divise un des facteurs.

Exemple.
On a 43 ≡ 4 mod 3 : 43 = 64 = 3× 20 + 4.

7.2 Décomposition en produit de nombres premiers

Théorème 7.4 (Existence d’un diviseur premier)

Tout entier plus grand que 2 admet un diviseur premier.

Proposition 7.5

L’ensemble des nombres premiers est infini.
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Théorème 7.6
Tout entier naturel > 1 se décompose de manière unique en produit de nombres premiers, i.e. pour
tout a > 1, il existe n ∈ N∗, des nombres premiers p1, . . . , pn distincts deux à deux, et des entiers
> 0 r1, . . . , rn tels que

a =
nY

k=1

prkk ,

et si

a =

mY

k=1

qskk ,

avec q1, . . . , qm des nombres premiers deux à deux distincts, alors n = m et quitte à réordonner on a

pk = qk, rk = sk pour tous k = 1, . . . , n.

On dit qu’il y a unicité de l’écriture à l’ordre des facteurs près.

Remarque.
Il est parfois nécessaire de considérer des puissances nulles, i.e. des rk = 0, cf. plus bas les valuations

p-adiques. Lorsque a =
nY

k=1

prkk est la décomposition en facteurs premiers (donc les rk > 0), on peut

aussi dire que a =

mY

k=1

prkk avec un m > n, et rk = 0 si k > n. Par exemple, on a 980 = 22 × 5× 72 =

22 × 30 × 5× 72 × 110.

7.3 Valuation p-adique

Dans ce paragraphe, on note P l’ensemble des nombres premiers.

Définition 7.7
Soit n ∈ N∗ et p ∈ P. La valuation p-adique de n est le plus grand entier k tel que pk divise n. On
la note vp(n).

Exemple.
Valuations p-adique de 4840 = 23× 5× 112 : v2(4840) = 3, v5(4840) = 1 et v11(4840) = 2. Les autres
valuations p-adiques sont nulles.

Proposition 7.8

Soient p ∈ P, n ∈ N∗ et k ∈ N. Alors

vp(n) = k ⇐⇒ ∃ q ∈ N∗, p ∧ q = 1 et n = pkq.

Proposition 7.9

Soient n, s ∈ N∗ tel que a =

sY

k=1

prkk , où les pk sont des nombres premiers deux à deux distincts, et

rk ∈ N∗. Alors
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1. ∀ k ∈ [[1, s]], vpk(n) = rk.

2. ∀ p ∈ P \ {p1, . . . , ps}, vp(n) = 0.

Corollaire 7.10 (Décomposition en facteurs premiers)

Soit a ∈ N. Alors a =
Y

p∈P
pvp(a).

Proposition 7.11 (Valuation p-adique d’un produit)

Soient p ∈ P, et a, b ∈ N∗. Alors vp(ab) = vp(a) + vp(b).

Exemple.
Si a = 22 × 3× 73 et b = 34 × 52 × 11, on peut écrire

a = 22 × 3× 50 × 73 × 110 b = 20 × 34 × 52 × 70 × 11,

et ab = 22 × 35 × 52 × 73 × 11.

Proposition 7.12

Soient a, b ∈ N∗. Alors

1. a|b ⇐⇒ ∀ p ∈ P, vp(a) � vp(b).

2. Pour tout p ∈ P, on a vp(a ∧ b) = min(vp(a), vp(b)), vp(a ∨ b) = max(vp(a), vp(b)).

Corollaire 7.13
Soient a et b deux entiers > 1 tels que a =

nY

k=1

prkk et b =
nY

k=1

pskk , où les pk sont des nombres premiers

distincts deux à deux et rk, sk ∈ N. Alors

a ∧ b =

nY

k=1

p
min(rk,sk)
k et a ∨ b =

nY

k=1

p
max(rk,sk)
k .

Exemple.
Le pgcd de 4840 = 23 × 5× 112 et 198 = 2× 32 × 11 est 22.
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