Chapitre 14

Arithmétique dans Z

Dans tout ce chapitre, les lettres minuscules désignent des entiers relatifs.
1 Divisibilité dans Z

1.1 Divisibilité

Définition 1.1 (Divisibilité)

Soient a,b € Z. L’entier a divise b §'il existe k € Z tel que b = ka. On note alors a|b, et a est alors
un diviseur de b et b un multiple de a.

Exemples.

1. 2[4, 0|0,..
2. 1 et —1 divisent tous les entiers, mais ne sont divisiblent que par eux-mémes.

3. 0 est multiple de tous les entiers, mais ne divise que lui-méme.

| Définition 1.2 |
Soit a € Z. On note D(a) 'ensemble des diviseurs dans N de a et aZ = {na, n € Z} 'ensemble de
ses multiples.

Exemple.
On a D(6) ={1,2,3,6} et 6Z=1{...,—18,—12,—6,0,6,12,18,...}.

Proposition 1.3|
Soient a,b € Z. Alors

alp <= —alb <= a|—b < —a|—0.

Remarque.

165



H. Thys, MP2I du lycée Victor Hugo de Besangon

On peut donc se contenter d’étudier la divisibilité dans N plutot que dans Z.

’Proposition 1.4|
Soient a,b € Z. Alors (alb et bla) <= |a| = [b].

’Proposition 1.5 |

La relation "divise" est une relation d’ordre partiel sur N, i.e. si a,b,c € N, on a :

1. ala.
2. albetbla = a=0.

3. albet bjc = alc.

Remarques.

1. La divisibilité dans Z n’est pas une relation d’ordre, puisque x|y et y|z n’implique pas © = vy,
mais seulement || = |y|.

2. Soient a,b € N. Alors a est plus petit que b pour la relation "divise" si a|b. On peut remarquer
que 0 est alors le plus grand élément de N (tout entier divise 0), et 1 le plus petit (1 divise tous les
entiers).

Proposition 1.6 ‘

Soient a, b, c € Z. Alors :

1. claetclb=VuveZ, cau+bv.

2. Sic#0, alors aclbc <= alb.

Remarque.
Comparez aussi avec le paragraphe sur les congruences ci-dessous.

1.2 Congruences dans Z

Définition 1.7 (Congruences)

Soient a,b,a € Z. Les entiers a et b sont congrus modulo « s’il existe k € Z tel que a — b = ka. On
note alors a = b mod a.

|Propositi0n 1.8 |

Soient a,b,d € Z. Alors d divise a — b si et seulement si a = b mod d.

|Pr0position 1.9 |

Soient a,b,a’,b',n,a € Z tels que a =b mod « et @’ =¥ mod a. Alors
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1. a+d=b+V mod a.
2. na=nb mod «.

3. ad =bV mod a.

Remarques.

1. On remarque que cette proposition est une réécriture avec des congruences de la proposition 1.6.
2. On notera que le point 3 de cette proposition n’est pas vraie pour les congruences avec les réels.
Mais en général, les congruences entre réels et entre entiers ne sont pas utilisés de la méme facon.
3. On ne peut pas diviser les congruences par un entier! Par exemple, 6 = 0 mod 6, mais 3 # 0

mod 6.

1.3 Division euclidienne

Théoréme 1.10 (Division euclidienne)

Soient a,b € Z x N*. il existe un unique couple (¢,r) € Z x N tel que
a=bg+r et 0<r<hb.
L’entier g est le quotient et r est le reste de la division euclidienne de a par b.

Exemple.
On a 60 =42 x 1+ 18 : le quotient est 1, le reste 18.

Proposition 1.11

Soient a € Z et b € N*. Alors b|a si et seulement si le reste de la division euclidienne de a par b est
nul.

2 PGCD

2.1 Définition et caractérisation

Définition 2.1 (PGCD)

Soient a,b € N tels que a # 0 ou b # 0. Le pged de a et b, noté a A b, est le plus grand diviseur
commun dans N a a et b.

Exemple.
Le pged de 4 et 6 est 2, celui de 60 et 42 est 6.

Remarques.

1. Par définition, un pged est toujours strictement positif.
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2. Par définition, le pged de a et b divise a et b.
3. OnaaAN0=a.

‘ Proposition 2.2 ‘

Soient a,b € N avec a # 0. Alors a|b <= a A b= a.

’Proposition 2.3 ‘

Soient a,b,q,r € N tels que a = bg + r. Alors

1. Les diviseurs communs a a et b sont les diviseurs communs a b et r, i.e. D(a)ND(b) = D(r)ND(b).

2. Sia#0oub#0,onaaANb=1rAb.

Cas particulier important : ¢ est le quotient et r le reste de la division de a par b # 0.

Remarque.
On retiendra que "le pged ne change pas lorsqu’on retranche a un des entiers un multiple de 'autre".

Exemple.
Par exemple, si a = 60 et b = 42. On a 60 = 42 x 1+ 18, donc 60 A42 = 42 A 18. Mais 42 = 18 x 2+ 6,
donc 42 A 18 = 18 A 6. Mais 6/18, donc 18 A6 = 6, et 60 A 42 = 6.

Théoréme 2.4 (Caractérisation du PGCD)

Soient a,b,d € N avec a # 0 ou b # 0, et d # 0. Les affirmations suivantes sont équivalentes :

1. d=aANb.

2. Un entier divise a et b si et seulement s’il divise d.

Remarques.

1. Le point 2 peut s’écrire D(d) = D(a) N D(b).

2. Le pged est donc aussi le plus grand diviseur commun & a et b pour la relation d’ordre "divise".

3. Cette caractérisation permet de définir 0 A0 : on a D(0) = D(0) N D(0) donc 0 A0 = 0. Cela
permet d’éviter de toujours devoir supposer qu'un des entiers est non nul.

| Méthode 2.5]

Pour déterminer le pged de deux entiers a et b, il suffit de déterminer un entier positif d qui divise a
et b et tel que, si nla et n|b, alors n|d.

2.2 Algorithme d’Euclide

Théoréme 2.6 (Algorithme d’Euclide)

Soient a,b € N*. On construit par récurrence (tant que c’est possible) une suite d’entiers naturels
par :
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1. r_y =aetryg=0.

2. Pour n > 0, si r, # 0, on définit r,,; comme le reste de la division euclidienne de 7,_; par
T, Sinon 7,41 n’est pas défini.

1. Il existe un entier p > 0 tel que pour tout n < p, r, est bien défini et non nul, et r,4.; =0
(i.e. rp divise 7,_1).

2. rp est le pged de a et b, i.e. le dernier reste non nul est le pged de a et de b.

Exemple.
Posons a = 147 et b = 45. Les divisions euclidiennes successives sont

a=3b+12 (r =12)
b=3r14+9 (r2=9)
rn=re+3 (r3=3)

ro=3r3+0 (ry=0),

doncaAb=1r3=3carry =0.

2.3 Extension aux entiers relatifs et relation de Bézout

| Définition 2.7 |
Soient a,b € Z. On définit leur pged par a A b= |a| A |b].

Proposition 2.8 (Relation de Bézout)

Soient a,b € Z. 1l existe u,v € Z tels que a A b = au + bv.

| Méthode 2.9]

Voici deux fagons de déterminer des coefficients de Bézout. Avec les notations de la proposition 2.6,
on note ¢, le quotient de la division euclidienne de r, 5 par r,_1 (1 <n <p), et on a

Tn-2 = QnTn-1+ Tn-

1. On utilise I'algorithme donné dans la démonstration. On part de la relation a Ab =1, = r,_o —
¢pTp—1. On remplace alors r,_y par r,_1 = rp_3 — gp—17p—2, donc

aNb=rp 2= qp(rp-3 = Gp-17p-2) = (1 + Gplp—1)7p—2 — GpTp-3-

Puis on remplace r,_o par r,_o = rp_4 — q,—27p—3, et ainsi de suite. Notez qu’on ne remplace qu'un
reste a la fois. Lorsqu’il ne reste que r_; et rg, on a une relation de Bézout.

2. Voici un algorithme plus efficace pour une programmation. On détermine par récurrence des
entiers u,, v, € Z pour —1 < n < p tels que

UpQ + Vb =1,

Pour n =p, on ar, =aAb, ce qui donne des coefficients de Bézout.
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On pose u_; = 1let vy =0 (car r_; = a) et u9 =0, vg =1 (car ro = b). Si pour 0 < n < p
Un_1, Un—1, Un, Uy sont construits, on a

Tn+1l = Thn—1 — Qn+1Tn = (un—l - Qn-l—lun)a + (Un—l - Qn—l—lun)ba

et on pose

Upt1 = Up—1 — Qni1Un €6 Upi1 = Up1 — Qny1lUn.
Cet algorithme a l'avantage de prendre moins de place mémoire.

Pour les deux algorithmes, il est intéressant d’obtenir les coefficients de Bézout formellement en
fonction des différents g, r, (ou w, et v, le cas échéant), et de faire les calculs explicites une fois
pour toute a la fin. En effet, les coefficients sont, en fonction de g,, r,, (ou u, et v,), toujours les
mémes, donc on "s’habitue" au calcul. De plus, certains produits se répétent, ce que ’on ne remarque
pas en effectuant les calculs au fur et & mesure. Enfin, quand on remplace au fur et & mesure, on ne
reconnait plus les r,, & remplacer, et on est vite perdu!

Exemple.
Posons a = 147 et b = 45. Les divisions euclidiennes successives sont

a=3b+12 (¢ =3, r1 =12)
b=3r+9 (2=3,1r2=9)
r=r2+3 (g3=1,13=23)

ro=3r3+0 (qu=3, r4=0),

donc
aNb=3=ri—ro=r;—(b—3r;) =4r; —b=4(a — 3b) — b =4a — 13b.

Faites 'autre méthode.

3 Entiers premiers entre eux et théoréme de Bézout

3.1 Entiers premiers entre eux

| Définition 3.1 |

Deux entiers a et b sont premiers entre eux si a Ab=1.

Exemple.
Les entiers 385 et 21 sont premiers entre eux.

Proposition 3.2

Soient a,b € Z. 1l existe a1,b; € Z premiers entre eux tels que

a=(aANb)ay, b= (aNb)b.
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3.2 Théoréme de Bézout

Théoréme 3.3 (Théoréme de Bézout)

Deux entiers a et b sont premiers entre eux si et seulement s’il existe deux entiers u et v tels que

au+bv =1.

Remarque.
Attention, s’il existe u et v tel que
au+ bv = d,

on n’a pas nécessairement d = +a A b, puisque par exemple si
av' +bv' =aAb alors a(cu’) 4+ b(cv') = c(a Ab)

pour tout entier ¢. Par exemple, 4 x 3 + (—2) x 5 = 2, mais 2 n’est pas le pged de 3 et 5.

4 PPCM

Définition 4.1 (PPCM)

Soient a,b € N*. Le ppcm de a et b, noté a V b, est le plus petit multiple stictement positif commun
aaetb.

Exemple.
On a 147V 45 = 2205.

Remarques.

1. Sia=0o0ub=0,iln’y a pas de plus petit multiple > 0, puisque le seul multiple commun est 0.
On peut le définir comme ppcm.
2. Sia<0oub<0,on définit aVb=lal Vbl

Théoréme 4.2 (Caractérisation du ppcm)

Soient a, b, m € N*. Les affirmations suivantes sont équivalentes.

1. m=aVhb.

2. Un entier est un multiple commun a a et b si et seulement si ¢’est un multiple de m.

Remarques.

1. Le thoréme reste vrai méme si a = 0 ou b = 0.
2. Le point 2 peut s’écrire aZ N bZ = mZ.
3. Le ppcm est donc également le plus petit multiple commun pour la relation d’ordre "divise".
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| Méthode 4.3|

Pour déterminer le ppcm de a et b, on exhibe un multiple m commun a a et b tel que, pour tout
n €N, (aln et bln) = m|n.

5 Lemme de Gauss

5.1 Lemme de Gauss

Théoréme 5.1 (Lemme de Gauss)

Soient a, b, c € Z. Si a divise bc et si a et b sont premiers entre eux, alors a divise c.

’ Corollaire 5.2 ‘

Soient a et b deux entiers premiers entre eux. Alors

aVb=lab|.

Proposition 5.3
Soient a,b € Z. Alors |ab| = (a Ab)(a V b).

Exemple.
Sia=147 et b =45, alors a Ab=3 et a Vb= 2205, et (a Ab)(aVb) =6615= ab.

Théoréme 5.4 (Forme irréductible d’un rationnel)

Tout nombre rationnel non nul s’écrit de maniére unique %, avec p,q € Z,q>0etpAqg=1.

5.2 Entiers premiers avec un produit

‘ Proposition 5.5

1. Un entier est premier avec un produit si et seulement s’il est premier avec chacun de ses facteurs.

2. Si des entiers deux & deux premiers entre eux divisent un entier p, alors leur produit divise p.

6 PGCD d’un nombre fini d’entiers

Les démonstrations de ce paragraphe ne sont pas exigibles. Je ne les mets pas. Il s’agit en fait
simplement de se poser la question "a quelle condition divise-t-on plusieurs entiers ?".

6.1 Cas de trois entiers

|Propositi0n 6.1|
Soient a, b, c € N*. Alors

D(a) ND(b) ND(c) =D(aANb)ND(c) =D(a) ND(bAc)=D(aNc)ND(b).
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Définition 6.2 (PGCD de trois entiers)

Soient a,b,c € N*. Le pged de a, b et ¢ est le plus grand diviseur commun & a, b et ¢. On le note
aNbAec.

Proposition 6.3‘
Soient a, b, c € N*. Alors

aNbAc=aAN(bAc)=(aND)Aec.

Exemple.
Sia=12=22x3,0=30=2x%x3x5,c=105=3x5x7, onaaAb=6,et6Ac=3, donc
aNbNc=3.

‘ Proposition 6.4 ‘

Soient a,b,c € N*. Un entier n € N divise a, b et ¢ si et seulement s’il divise a A b A c.

6.2 Généralisation

Voici les résultats pour un nombre quelconque d’entiers.

Définition 6.5 (PGCD de n entiers)

Soient n € N* et (ay,...,a,) € (N*)". Le pged des ay est le plus grand diviseur commun aux ay. On
le note a; A --- A a,.

Proposition 6.6‘
Soient n € N, n > 2, et (ay,...,a,) € (N*)". Alors

ag N Nap = (@ AN Nap_1) Nay =a; A(ag A+ Nay).

Remarques.

1.  Comme pour deux entiers, on peut généraliser aux entiers relatifs.
2. De méme, le pged de n entier est caractérisé comme étant le seul entier dont ’ensemble des
diviseurs est I’ensemble des diviseurs communs aux n entiers.

Proposition 6.7 (Relation de Bézout)

Soient n € N, n > 2, et (ay,...,a,) € Z". 1l existe (uy,...,u,) € Z" tel que

ura] + - F Uap = a1 N N ay,.

Définition 6.8 (Entiers premiers entre eux dans leur ensemble)

Soient n € N* et (ay,...,a,) € (N*)". Les entiers aj sont premiers entre eux dans leur ensemble si
agN---Na, =1.

Définition 6.9 (Entiers premiers entre eux deux & deux)

Soient n € N* et (ay,...,a,) € (N*)". Les entiers a; sont premiers entre eux deux a deux si

V(i,75)el,n], i#j=a;Na; =1.
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Remarque.
Attention a ne pas confondre ces deux notions. Par exemple, 6,10 et 15 sont premiers entre eux dans
leur ensemble, mais pas deux a deux (et pris deux a deux, ils ne sont pas premiers entre eux!).

Proposition 6.10 ‘

Soient n € N* et (aq,...,a,) € (N*)" premiers entre eux deux a deux. Alors ils sont premiers entre
eux dans leur ensemble.

7 Nombres premiers

Dans ce paragraphe, tous les entiers sont des entiers naturels sauf mention explicite du contraire.

7.1 Deéfinition

Définition 7.1 (Nombres premiers)

Un entier naturel p est premier s’il admet exactement deux diviseurs, 1 et lui-méme. Autrement dit,
pour p > 1, si p=ab, alorsa =1 ou b = 1.

Remarque.
1 n’est pas un nombre premier.

‘ Proposition 7.2 |

Un nombre premier est premier avec tout entier qu’il ne divise pas.

| Corollaire 7.3 |

Un nombre premier divise un produit si et seulement s’il divise un des facteurs.

Exemple.
Ona4®=4 mod3:4%=064=23x20+4.

7.2 Décomposition en produit de nombres premiers

Théoréme 7.4 (Existence d’un diviseur premier)

Tout entier plus grand que 2 admet un diviseur premier.

Proposition 7.5 ‘

L’ensemble des nombres premiers est infini.
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‘ Théoréme 7.6 ‘

Tout entier naturel > 1 se décompose de maniére unique en produit de nombres premiers, i.e. pour
tout a > 1, il existe n € N*, des nombres premiers py, ..., p, distincts deux & deux, et des entiers

>0ry,...,r, tels que
n
a=1n
k=1

et si
m
J— Sk
a = | | qk; 9
k=1
avec qi, . . ., ¢m des nombres premiers deux a deux distincts, alors n = m et quitte a réordonner on a

Pk =Qk, Tk =Sk pour tous k=1,...,n.

On dit qu’il y a unicité de ’écriture a 'ordre des facteurs pres.

Remarque.
Il est parfois nécessaire de considérer des puissances nulles, i.e. des rp = 0, c¢f. plus bas les valuations

n
p-adiques. Lorsque a = H P, est la décomposition en facteurs premiers (donc les r; > 0), on peut

k=1
m

aussi dire que a = Hp};’“ avec un m > n, et 1, = 0 si k > n. Par exemple, on a 980 = 22 x 5 x 72 =

k=1
22 x 39 x5 x 7% x11°

7.3 Valuation p-adique

Dans ce paragraphe, on note P ’ensemble des nombres premiers.

| Définition 7.7 |
Soit n € N* et p € P. La valuation p-adique de n est le plus grand entier k tel que p* divise n. On
la note v,(n).

Exemple.
Valuations p-adique de 4840 = 2% x 5 x 112 : v5(4840) = 3, v5(4840) = 1 et v;1(4840) = 2. Les autres
valuations p-adiques sont nulles.

Proposition 7.8
Soient p € P, n € N* et k € N. Alors

vy(n) =k <= FqeN" pAg=1etn=rphq

Proposition 7.9

s

Soient n,s € N* tel que a = Hp};’“, ou les py sont des nombres premiers deux a deux distincts, et

k=1
ri € N*. Alors
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1. VEkell,s], v,(n) =r.

2. YpeP\A{p1,....ps}, vp(n)=0.

Corollaire 7.10 (Décomposition en facteurs premiers)
Soit @ € N. Alors a = Hp”P(“).

pEP

Proposition 7.11 (Valuation p-adique d’un produit)
Soient p € P, et a,b € N*. Alors v,(ab) = v,(a) + v,(b).

Exemple.
Sia=22x3xT7etb=23*x5%x 11, on peut écrire

a=22x3x5"x P x11° bp=2°%x3"x52x7 x11,

et ab =22 x 3% x 52 x 73 x 11.

Proposition 7.12‘
Soient a,b € N*. Alors

1. alb <= VpeP, vy(a) <uy(b).

2. Pour tout p € P, on a vy(a A b) = min(vy(a), v,(b)), vy(a V b) = max(v,(a), v,(b)).

‘ Corollaire 7.13 | n n

Soient a et b deux entiers > 1 tels que a = H P et b= H Py, ot les py, sont des nombres premiers
k=1 k=1

distincts deux a deux et ry, s, € N. Alors

n n
min(ry,sz) max(r,5t)

anb=|1pr. et aVb=]]|Dp .
k=1 k=1

Exemple.
Le pged de 4840 = 23 x 5 x 112 et 198 = 2 x 32 x 11 est 22.
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