
Chapitre 15

Calcul matriciel sans applications linéaires

Dans ce chapitre, nous allons apprendre à manipuler les matrices. La théorie des matrices en
relation avec l’algèbre linéaire sera faîte plus tard.

On utilisera le symbole de Kronecker défini par

∀ i, j ∈ R, δij =

�
1 si i = j,
0 sinon.

1 Définitions

Dans ce paragraphe, K est un corps (généralement R ou C), et n, p, q ∈ N∗.

1.1 Définitions

Définition 1.1 (Matrice)

1. Une matrice A à coefficients dans K à n lignes et p colonnes est une fonction

{1, . . . , n} × {1, . . . , p} −→ K.

Pour i ∈ {1, . . . , n} et j ∈ {1, . . . , p}, on note aij = A(i, j), aussi appelé élément à la ième ligne et
jème colonne, et on note

A = (aij)1�i�n
1�j�p

=




a11 a12 · · · a1p
a21 a22 · · · a2p
... · · · aij

an1 an2 · · · anp


 .

n× p est la taille de la matrice.

2. On note Mn,p(K) l’ensemble des matrices à n lignes et p colonnes à coefficients dans K.

Exemple.

A =

�
3 2 4
−6 −7 π

�
est une matrice 2 lignes et 3 colonnes à coefficients dans R : c’est un élément de

M2,3(R). Et par exemple a13 = 4.
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Définition 1.2 (Matrices carrées)

1. Une matrice carrée d’ordre n est une matrice à n lignes et n colonnes.

2. On note Mn(K) = Mn,n(K) l’ensemble des matrices carrées d’ordre n.

3. Soit A = (aij)1�i,j�n ∈ Mn(K). Les éléments (a11, . . . , ann) forment la diagonale de A.

Exemple.


4 3 −1
2 2 7/4
−5 −2 3



 est une matrice carrée de taille 3. C’est un élément de M3(R). Sa diagonale est

(4, 2, 3).

Définition 1.3 (Matrice diagonale)

Une matrice diagonale d’ordre n ∈ N∗ est une matrice carrée dont les coefficients en dehors de la
diagonale sont tous nuls.

Exemple.

4 0 0
0 2 0
0 0 3


 est une matrice diagonale de taille 3.

Définition 1.4 (Matrice nulle, matrice unité)

1. La matrice unité d’ordre n In ∈ Mn(K) est la matrice diagonale dont les éléments de la diagonale
valent tous 1.

2. La matrice nulle à n lignes et p colonnes est la matrice dont tous les coefficients sont nuls.

Remarques.

1. Il y a bien sûr une infinité de matrices identités et de matrices nulles.
2. Une matrice unité est carré. Mais une matrice nulle pas nécessairement.

Exemples.

1.




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 est la matrice unité de taille 4.



1 0 0
0 1 0
0 0 1


 est celle de taille 3.

2.




0 0 0 0
0 0 0 0
0 0 0 0



 est la matrice nulle de taille 3× 4.

Définition 1.5 (Matrices triangulaires)

Soit A = (aij)1�i,j�n ∈ Mn(K).
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1. Elle est triangulaire supérieure si aij = 0 pour i > j.

2. Elle est triangulaire inférieure si aij = 0 pour j > i.

Remarques.

1. Une matrice diagonale est à la fois triangulaire supérieure et inférieure.
2. Une matrice triangulaire est carré.

Exemple.


2 4 0
0 −5 3
0 0 6


 est triangulaire supérieure, et




3 0 0 0
−6 7 0 0
5 0 3 0
−8 2/3 4 2


 est triangulaire inférieure.

Définition 1.6 (Matrices lignes, matrices colonnes)

1. Une matrice ligne est une matrice à 1 ligne et p colonnes.

2. Une matrice colonne est une matrice à n lignes et 1 colonne.

Exemple.


4 5 −6 3

�
est une matrice ligne, et




4
3
−5


 est une matrice colonne.

Remarque.
Attention :


4 5 −6 3

�
6= (4, 5,−6, 3).

1.2 Transposée, matrices symétriques et antisymétriques

Définition 1.7 (Transposée)

La transposée d’une matrice A ∈ Mn,p(K) est la matrice AT ∈ Mp,n(K) définie par AT = (bij)1�i�p
1�j�n

,

où pour tout i ∈ {1, . . . , p}, j ∈ {1, . . . , n}, bij = aji, i.e. les lignes de AT sont les colonnes de A, et
les colonnes de AT sont les lignes de A.

Remarque.
On a donc

AT =




a11 a21 · · · an1
a12 a22 · · · an2
... · · · aji

a1p a2p · · · anp


 .

Exemple.
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Soit A =




4 3 −1 3
2 2 7/4 9
−5 −2 3 0



 ∈ M3,4(R), et AT =




4 2 −5
3 2 −2
−1 7/4 3
3 9 0


 ∈ M4,3(R).

Proposition 1.8

Soit A ∈ Mn,p(K). Alors

AT

�T
= A.

Définition 1.9 (Matrices symétriques et antisymétriques)

Une matrice A ∈ Mn(K) est symétrique si AT = A, et antisymétrique si AT = −A.

Remarque.
On note Sn(K) (resp. An(K)) l’ensemble des matrices symétriques (resp. antisymétrique) de taille
n, à coefficients dans K.

Exemple.


3 4 5
4 −6 2/3
5 2/3 8



 est symétrique, et




0 −4 5
4 0 −2/3
−5 2/3 0



 est antisymétrique.

Remarques.

1. Autrement dit, une matrice est symétrique si les lignes sontles mêmes que les colonnes, et anti-
symétriques si les lignes sont les opposées des colonnes.

2. Attention : les matrices symétriques et antisymétriques sont carrées.

Proposition 1.10

Soit A = (aij)1�i,j�n ∈ Mn(K).

1. A est symétrique si et seulement si, pour tous (i, j) ∈ [[1, n]]2, aij = aji.

2. A est antisymétrique si et seulement si, pour tous (i, j) ∈ [[1, n]]2, aij = −aji.

Proposition 1.11

Soit A une matrice antisymétrique. Alors tous les éléments de sa diagonale sont nuls.

1.3 Addition des matrices

Définition 1.12 (Addition)

On munit Mn,p(K) d’une addition définie, pour A = (aij)1�i�n
1�j�p

, B = (bij)1�i�n
1�j�p

par

A+B = (aij + bij)1�i�n
1�j�p

.

Remarque.
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Ce sont donc des opérations coefficient par coefficient, similaires à celles dans Rnp.

Exemple.


4 3 −1 3
2 2 7/4 9
−5 −2 3 0



+




5 −33 2 6
−1 1 1 −4
5 12 13 0



 =




9 −30 1 9
1 3 11/4 5
0 10 16 0





Proposition 1.13

L’addition définie dans la définition 1.12 munit Mn,p(K) d’une structure de groupe commutatif.

Proposition 1.14 (Transposée d’une somme)

Soient A,B ∈ Mn,p(K) et λ ∈ K. Alors (A+B)T = AT + BT .

Remarque.
Autrement dit, l’application Mn,p(K) −→ Mp,n(K) qui à A associe AT est un morphisme de groupes.

1.4 Produit matriciel et structure d’anneau

Définition 1.15 (Produit de matrices)

Soient A = (aij)1�i�n
1�j�p

∈ Mn,p(K) et B = (bij)1�i�p
1�j�q

∈ Mp,q(K). Le produit AB est la matrice de

Mn,q(K) dont le coefficient (i, j) (i ∈ [[1, n]], j ∈ [[1, q]]) est

pX

k=1

aikbkj ,

Remarques.

1. Le produit AB n’existe que si le nombre de colonnes de A est égal au nombre de lignes de B.
2. Un cas particulier intéressant est celui des matrices carrées (n = p = q), qui fournit un produit

Mn(K)×Mn(K) −→ Mn(K).

3. Il faut voir le produit de la façon suivante : le coefficient à la ligne i, colonne j est obtenue en
faisant le "produit scalaire" de la ligne i de A avec la colonne j de B.

Exemple.

�
2 3 −5 1
0 2 1 3

�
×




2 −2 1
0 1 0
−1 −2 1
3 1 3


 =

�
12 10 0
8 3 10

�
, car par exemple, le coefficient (1, 2) est

2× (−2) + 3× 1 + (−5)× (−2) + 1× 1 = 10,

et le coefficient (2, 3) est
0× 1 + 2× 0 + 1× 1 + 3× 3 = 10.

181



H. Thys, MP2I du lycée Victor Hugo de Besançon

Proposition 1.16

Soit A ∈ Mn,p(K). Alors AIp = InA = A.

Remarque.
Il faut faire le calcul aussi visuellement. Écrivez la matrice A formellement, en faisant apparaître ses
lignes, puis à côté la matrice Ip à sa droite. Faîtes le produit, et regardez pourquoi on obtient A.

Proposition 1.17 (Distributivité)

Soient n, p, q, r ∈ N∗, et A ∈ Mn,p(K), B,C ∈ Mp,q(K), D ∈ Mq,r(K). Alors

A(B + C) = AB + AC et (B + C)D = BD + CD.

Proposition 1.18 (Associativité)

Soient n, p, q, r ∈ N∗, et A ∈ Mn,p(K), B ∈ Mp,q(K), D ∈ Mq,r(K). Alors

(AB)D = A(BD).

Proposition 1.19 (Structure d’anneau)

L’ensemble (Mn(K),+,×) est un anneau (non commutatif si n � 2), dont l’élément neutre pour la
multiplication est la matrice unité In.

Remarque.
On a bien sûr AiAj = AjAi = Ai+j .

Proposition 1.20

Soient n, p ∈ N et A,B ∈ Mp(K) telles que AB = BA. Alors

(A+ B)n =
nX

k=0

�
n

k

�
AkBn−k,

où par convention M0 = Ip pour toute matrice M ∈ Mp(K).

Méthode 1.21
On peut en particulier utiliser cette proposition avec B = Ip ou B = −Ip, et si A est inversible, avec
B = A−1 et B = −A−1.

Remarque.
Attention, la formule est fausse si les matrices A et B ne commutent pas. Par exemple, en général,

(A+ B)2 = A2 + AB + BA+ B2 6= A2 + 2AB + B2.

Vous pouvez essayer avec A =

�
2 1
1 −3

�
et B =

�
−1 1
0 4

�
.
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Proposition 1.22 (Transposé d’un produit)

Soient A ∈ Mn,p(K) et B ∈ Mp,r. Alors (AB)T = BTAT .

Proposition 1.23 (Produit de matrices diagonales et triangulaires)

Soient A = (aij)1�i,j�n, B = (bij)1�i,j�n ∈ Mn(K).

1. Si A et B sont diagonales, alors AB est diagonale, et sa diagonale est (a11b11, . . . , annbnn).

2. Si A et B sont triangulaires supérieures (resp. inférieures), alors AB est triangulaire supérieure
(resp. inférieure), et sa diagonale est (a11b11, . . . , annbnn).

Corollaire 1.24
Soit A = (aij)1�i,j�n ∈ Mn(K), et p ∈ N.

1. Si A est diagonale, alors Ap est diagonale, et sa diagonale est (ap11, . . . , a
p
nn).

2. Si A est triangulaire supérieure (resp. inférieure), alors Ap est triangulaire supérieure (resp. infé-
rieure), et sa diagonale est (ap11, . . . , a

p
nn).

1.5 Trace

Définition 1.25 (Trace)

Soit A = (aij)1�i,j�n ∈ Mn(K). La trace de A est la somme des éléments de la diagonale de A, i.e.

tr(A) =

nX

i=1

aii.

Remarque.
La trace n’existe que pour une matrice carrée.

Proposition 1.26

Soient A,B ∈ Mn(K), et λ, µ ∈ K. Alors tr(λA + µB) = λ tr(A) + µ tr(B).

Proposition 1.27

Soient A ∈ Mn,p(K) et B ∈ Mp,n(K). Alors tr(AB) = tr(BA).

Remarque.
Attention : tr(AB) 6= tr(A) tr(B).
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2 Matrices inversibles

2.1 Définition et propriétés

Définition 2.1
Une matrice A ∈ Mn(K) est inversible s’il existe une matrice B ∈ Mn(K) tel que AB = BA = In.

Remarques.

1. Autrement dit, A est inversible si elle est un élément inversible dans l’anneau Mn(K). La matrice
B est alors son inverse et on note B = A−1.

2. On note GLn(K) l’ensemble des matrices carrées d’ordre n inversibles (GL signifie "groupe li-
néaire").

Méthode 2.2 (Simplification par une matrice inversible)

Soient n, p ∈ N∗, A ∈ GLn(K), B,C ∈ Mn,p(K), et D ∈ GLp(K).

1. Si AB = C, alors B = A−1C, et si BD = C, alors B = CD−1.

2. Si AB = 0, alors B = 0, et si BD = 0, alors B = 0.

3. Si AB = AC, alors B = C, et si BD = CD, alors B = C.

Remarques.

1. Ce sont en fait des équivalences.
2. On a simplement redémontré qu’un élément inversible (ici A) dans un anneau (ici Mn(K)) est
un élément régulier, donc on peut simplifier par un tel élément.

3. Attention : c’est faux si A n’est pas inversible. Par exemple, avec A =

�
1 0
0 0

�
et B =

�
0 0
0 1

�
,

on a AB = 0, mais A 6= 0 et B 6= 0.

Proposition 2.3

Soient a, b, c, d ∈ K. Alors
�
a b
c d

�
est inversible si et seulement si ad− bc 6= 0, et si c’est le cas, son

inverse est la matrice
1

ad− bc

�
d −b
−c a

�
.

Exemples.

1. L’inverse de la matrice In est In car InIn = In.

2. L’inverse de la matrice
�
1 2
2 3

�
est la matrice

�
−3 2
2 −1

�
. On le vérifie en faisant les deux produits.
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3. La matrice A =

�
4 2
6 3

�
n’est pas inversible.

Remarque.
On verra plus tard comment déterminer si une matrice de taille � 3 est inversible, et comment
déterminer son inverse.

Proposition 2.4

Soit A ∈ GLn(K).

1. On a A−1 ∈ GLn(K) et

A−1

�−1
= A.

2. On a AT ∈ GLn(K) et

AT

�−1
= (A−1)

T .

Proposition 2.5

L’ensemble GLn(K) est un groupe pour la multiplication des matrices.

Définition 2.6
Soit A ∈ GLn(K) et i ∈ N. On définit A−i par : A−i = (Ai)−1.

Proposition 2.7

Soient A,B ∈ Mn(K) telles que AB = In. Alors A et B sont inversibles et A−1 = B.

Définition 2.8
Deux matrices A,B ∈ Mn(K) sont semblables s’il existe P ∈ GLn(K) tel que B = P−1AP .

Remarque.
C’est une relation d’équivalence sur l’ensemble des matrices carrées.

Proposition 2.9

Deux matrices semblables ont même trace.

2.2 Inversion d’une matrice par résolution d’un système linéaire

Définition 2.10
1. Un système linéaire à n équations et p inconnues est un système du type





a11x1 + a12x2 + · · ·+ a1pxp = b1
a21x1 + a22x2 + · · ·+ a2pxp = b2
...
ai1x1 + ai2x2 + · · ·+ aipxp = bi
...
an1x1 + an2x2 + · · ·+ anpxp = bn
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où
A = (aij)1�i�n

1�j�p
∈ Mn,p(K), b1, . . . , bn ∈ K

et les inconnues sont x1, . . . , xp ∈ K. Un tel système est équivalent à l’équation AX = B, où B est

une matrice colonne B =



b1
...
bn


 ∈ Mn,1(K), et l’inconnue est X =



x1
...
xp


 ∈ Mp,1(K). La matrice A

est la matrice du système, et B est le second membre.

2. Le système est compatible s’il admet au moins une solution.

3. Si B = 0, le système est homogène.

4. Le système homogène associé au système est le système obtenu en remplaçant B par la colonne
nulle.

Proposition 2.11

Avec les notations précédentes, la matrice AX est une matrice colonne, combinaison linéaire des
colonnes de A.

Proposition 2.12

Avec les notations précédentes, le système AX = B est compatible si et seulement si B est une
combinaison linéaire des colonnes de A.

Proposition 2.13

Avec les notations précédentes, les solutions du système AX = B sont les colonnes X0+Y , où X0 est
une solution particulière du système, et où Y parcourt l’ensemble des solutions du système homogène
associé.

Proposition 2.14

Avec les notations précédentes, si n = p, le système admet une unique solution si et seulement si la
matrice A est inversible.

Méthode 2.15
Pour déterminer si une matrice carrée A est inversible, et le cas échéant calculer son inverse, on
résout AX = Y , où X et Y sont des matrices colonnes (avec autant de lignes que A). La matrice
A est inversible si et seulement si ce système admet une unique solution pour tout Y , et alors on
obtient A−1 en écrivant que 




x1 = b11y1 + · · ·+ b1nyn
... =

... + · · ·+ ...
xn = bn1y1 + · · ·+ bnnyn

,

on lit

A−1 =



b11 · · · b1n
... · · · ...
bn1 · · · bnn


 .

Exemples.
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1. Inversez la matrice




1 1 1
1 2 −2
−1 1 3


. On obtient 1

10




8 −2 −4
−1 4 3
3 −2 1


.

2. Inversez la matrice




1 2 −1 3
−1 1 1 −1
1 −1 −1 −1
2 3 −1 −1


. On obtient 1

6




−8 −16 −14 6
2 4 2 0

−10 −17 −19 6
0 −3 −3 0




3. La matrice




1 2 −1 3
−1 1 1 −1
1 −1 −1 −1
2 4 −2 8


 est-elle inversible ? Si oui, déterminez son inverse.

Proposition 2.16 (Inverse des matrices triangulaires)

1. Une matrice triangulaire A ∈ Mn(K) est inversible si et seulement si ses éléments sur la diagonale
sont tous non nuls, et alors A−1 est triangulaire de même forme, dont les éléments sur la diagonale
sont les inverses de ceux de A.

2. Une matrice diagonale A ∈ Mn(K) est inversible si et seulement si ses éléments sur la diagonales
sont tous non nuls, et alors A−1 est diagonale, dont les éléments sur la diagonale sont les inverses de
ceux de A.

3 Matrices et manipulations élémentaires

3.1 Matrices élémentaires

Définition 3.1 (Matrices élémentaires)

Soient n, p ∈ N∗, i ∈ [[1, n]] et j ∈ [[1, p]]. On définit la matrice Enp
ij ∈ Mn,p(K) comme étant la

matrice dont tous les coefficients sont nuls, sauf le coefficient (i, j) qui vaut 1.

Proposition 3.2 (Produit de matrices élémentaires)

Soient n, p, q ∈ N∗, i ∈ [[1, n]], j, k ∈ [[1, p]], ℓ ∈ [[1, q]]. Alors Enp
ij E

pq
kℓ = δjkE

nq
iℓ .

Proposition 3.3 (Produit d’une matrice par une matrice élémentaire)

Soient n, p, q ∈ N∗, i ∈ [[1, n]], j, k ∈ [[1, p]], ℓ ∈ [[1, q]].

1. Soit A ∈ Mp,q(K). Alors Enp
ij A est la matrice dont la ième ligne est la ligne j de A et dont les

autres lignes sont nulles.

2. Soit A ∈ Mn,p(K). Alors AEpq
kℓ est la matrice dont la ℓème colonne est la colonne k de A et dont

les autres colonnes sont nulles.
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3.2 Manipulations élémentaires

Définition 3.4 (Manipulations élémentaires)

Les manipulations élémentaires sur une matrice sont les opérations suivantes :

1. Multiplier une ligne (ou une colonne) par un scalaire non nul.

2. Échanger deux lignes (deux colonnes).

3. Ajouter à une ligne (à une colonne) λ fois une autre (λ ∈ K).

Remarque.
On peut effectuer les manipulations élémentaires sur les matrices en multipliant à gauche ou à
droite par des matrices inversibles. En conséquence, les manipulations élémentaires transforment une
matrice inversible (resp non inversible) en une matrice inversible (resp. non inversible).

Proposition 3.5 (Pivot de Gauss)

Soit A ∈ Mn(K).

1. La matrice A est inversible si et seulement si on peut transformer A en In à l’aide d’une succession
de manipulations élémentaires uniquement sur les lignes (ou uniquement sur les colonnes).

2. Si A est inversible, en appliquant les manipulations élémentaires précédentes à la matrice In, on
obtient l’inverse de A.

Méthode 3.6
Voici comment on procède pour inverser avec le pivot de Gauss. On explique la méthode sur un
exemple. On procède en ne manipulant que sur les lignes.

1. On transforme la première colonne en




1
0
...
0


. Pour cela, on choisit sur la première colonne un

élément qu’on appelle le pivot. On va devoir diviser par ce nombre, donc c’est un élément non nul,
le plus simple possible (1, c’est simple.

√
17−π beaucoup moins). Dans l’exemple qui suit, les pivots

sont encadrés.

2. On échange la première ligne et la ligne du pivot. Cela met le pivot en première ligne.

3. On divise la première ligne par le pivot. Ainsi, on obtient 1 sur la ligne 1, colonne 1.

4. Par des manipulations élémentaires à l’aide de la ligne 1, on transforme la colonne 1 comme voulu,
voir l’exemple.

5. À partir de ce moment-là, on ne touche plus à la première colonne, et on n’échange plus
la première ligne avec une autre.
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6. Ensuite, on transforme la deuxième colonne en




0
1
0
...
0




. Pour cela, on choisit sur la deuxième colonne,

et à partir de la ligne 2, un élément qu’on appelle le pivot. On va devoir diviser par ce nombre,
donc c’est un élément non nul, le plus simple possible.

7. On échange la deuxième ligne et la ligne du pivot. Cela met le pivot en deuxième ligne.

8. Par des manipulations élémentaires à l’aide de la ligne 2, on transforme la colonne 2 comme voulu,
voir l’exemple.

9. À partir de ce moment-là, on ne touche plus ni à la première colonne, ni à la deuxième,
et on n’échange plus, ni la première ligne, ni la deuxième avec une autre.

10. On transforme la troisème colonne etc...
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Inversons la matrice A =



2 1 3
1 −1 0
2 1 1


 par la méthode du pivot de Gauss.

2 1 3

1 −1 0
2 1 1

1 0 0
0 1 0
0 0 1

↓ ↓ L1 ↔ L2

1 −1 0
2 1 3
2 1 1

0 1 0
1 0 0
0 0 1

↓ ↓ L2 ← L2 − 2L1

L3 ← L3 − 2L1

1 −1 0
0 3 3
0 3 1

0 1 0
1 −2 0
0 −2 1

↓ ↓ L2 ← L2/3
1 −1 0

0 1 1
0 3 1

0 1 0
1/3 −2/3 0
0 −2 1

↓ ↓ L1 ← L1 + L2

L3 ← L3 − 3L2

1 0 1
0 1 1

0 0 −2

1/3 1/3 0
1/3 −2/3 0
−1 0 1

↓ ↓ L3 ← L3/(−2)
1 0 1
0 1 1

0 0 1

1/3 1/3 0
1/3 −2/3 0
1/2 0 −1/2

↓ ↓ L1 ← L1 − L3

L2 ← L2 − L3

1 0 0
0 1 0
0 0 1

−1/6 1/3 1/2
−1/6 −2/3 1/2
1/2 0 −1/2

Ceci prouve que A est inversible et que A−1 =



−1/6 1/3 1/2
−1/6 −2/3 1/2
1/2 0 −1/2




Exemple.

Inversez la matrice suivante :




2 1 0 1
−1 2 1 1
3 −1 −2 1
1 4 1 0


 On obtient 1

15




9 −6 −3 0
−7 3 4 5
19 −6 −13 −5
4 9 2 −5



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