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DEVOIR MAISON 5 (SUITES ET SERIES DE FONCTIONS)

Corrigé

PROBLEME 1 : SERIES TRIGONOMETRIQUES (D’apres CCP MP 2017)

PARTIE 1 : EXEMPLES
1. Soit neN. Soit zeR. On a :

1 1
—+ —.
2 3n
——

ne dépend pas de =

2%Cn(x)+?)inSn(ar:) + 31n in(nz)| <

1
= ‘Q—n cos(nx) + o sin(nx)| <

2n

11 1 1 1 I
Alinsi, g t3m est un majorant de ’ensemble {‘Q—nCn(x) + 3—nSn(x) ,T € R} et ‘Q—nCn + 3—nSn
est le plus petit majorant de cet ensemble. ~

1 T ® 1 1
On en déduit que pour tout n € N, 0 < ﬁC’n + 3_”Sn < on + 3
1 1
Or, les séries géométriques Z — et Z 5 convergent car -1 < % <let-1< % < 1 donc par
1 1
linéarité, la série numérique Z —+ 3 converge.
. g L. 1 1 R

Par comparaison, on en déduit que la série Z 2—nC’n + 3_"S" converge.

Ainsi :

la série trigonométrique > (Q%C’n + 3%Sn) converge normalement sur R.

2. Soit pe N avec p > 2.

ix . . el n
On a |[—| = - <1 donc la série géométrique )’ (— converge et on a :
p

p p
+o<>(ez';c)n_ 1 ~ D
n=0\ D 1_% p_ei:p'

On a donc en multipliant numérateur et dénominateur par I'expression conjuguée du dénomi-
nateur :

X einz _ p(p —cos(x) +isin(x))
w0 P (p—cos(@))? +sin®(z)

cos(nx sin(nz
En prenant les parties réelle et imaginaire, on en déduit que les séries Z # Z %

p" p
convergent et on a :

Jrz":" cos(nx) _ p*—pcos(x) ot Z sm(nm) psin(x)
0 opn p2—2pcos(z) +1 ~ p2 - 2pcos(x) + 1

Il reste a combiner les résultats pour p=2et p=3:

) 4 -2cos(x) 3sin(x)

> (o costna) + 5 sin(ne)
— cos(nz) + — sin(nx .
=H\2n 3n 5—4cos(z) 10-6cos(z)




3. Soit n € N*.

1
On a pour tout z € R,

- T
< —= avec égalité lorsque z = —.

S n 2n

1 sin(nw 1
On en déduit — est le maximum de la fonction = — sin(nz) sur R d’ou |[—=5,|% =

vn Vn vn

Comme la série Z — diverge (série de Riemann d’exposant 3 > 1), on en déduit que :
nx1 V1

sin(nx)

NG

1
NG

o . 1
la série trigonométrique Z ——5,, ne converge pas normalement sur R.
n>1

4. Soit z€R. On a :

exp(e™®) = exp(cosx +isinz) = exp(cosz) exp(isinz) = exp(cos x) (cos(sinz) +isin(sinx))

= exp(cos x) cos(sin ) +i exp(cos ) sin(sin z) .

eR eR

On en déduit que Re(exp(e'®)) = ¢(z).

. L. Z"
Or, on sait de plus que pour tout complexe z, la série Z — converge et a pour somme e*.
n>0
En appliquant ceci avec z = €**, on obtient :

+ 00
eznx

exp(e™) = Z :

z'mv inT
Comme la série Z converge, la série Z Re(e ) converge et on a :
! n!
n20 n>0
, X einz e\ X cos(nx)
(29 — —_—
Re(exp(e'™)) —Re(z ' ) ZRe( ) > I
n=0 n=0
cos(mc)

On a donc pour tout z € R, ¢(x) = Z
n=0 n!
Ainsi :

1
La fonction ¢ est la somme de la série trigonométrique Z C
n>0

PARTIE 2 : PROPRIETES

Une condition suffisante

5. On suppose que les séries Y a, et > b, convergent absolument.
On a pour tout n € N et tout x e R :

la, cos(nz) + by, sin(nz)| < |a, cos(nz)| + |b, sin(nz)| < |an|+ |bal.
———
ne dépend pas de =

On en déduit que pour tout n € N, 0 < |a,Cy, + 0,5, % < |an|+ |bnl.

Or, les séries Y |a,| et Y |b,| convergent donc par linéarité, la série numeérique Y. (|a,|+ [b,])
converge.

Par comparaison, on en déduit que la série Y, [a,C,, + b, 5, |%, converge.

Ainsi :

si les séries ¥ a, et 3. b, convergent absolument alors la série trigonométrique Y. (a,C,, + b,S,)
converge normalement sur R.




Une condition nécessaire
6. Si (a,b) =(0,0) alors pour tout z € R, on a |acosz + bsinx| =0 = Va? + b2.
On suppose désormais (a,b) # (0,0).
2 2
Comme ( a§+b2) + ( a§+b2) =1, il existe ¢ € [0, 27[ tel que cosp = T et sing = \/ﬁ

On a alors pour tout x € R :

lacosz +bsinx| = Va2 + b? cospcosz + sinpsinz| = Va2 + b2|cos(p — )| < Va2 + b?

avec égalité lorsque x = ¢.
Ainsi :

le maximum de la fonction = ~ |acosz + bsinz| sur R est Va2 + b2.

7. On suppose que la série Y. ||a,C,, + b, S, ||% converge.
D’aprés la question précédente, en remarquant que pour n € N* fixé, lorsque x parcourt R
alors nx parcourt R, on a :

Vn e N*, |a,Cp +b,S,|% = M%Xkln cos(nz) + by sin(nz)| = /a2 + b2.
xTre

Or, on a pour tout n € N*, 0 < |a,| < /a2 +b2.

Comme la série Y /a2 + b2 converge, on en déduit par comparaison que la série Y. |a,| converge
c’est-a-dire que la série )’ a, converge absolument.

En raisonnant de méme avec b,,, on déduit que :

si la série Y (a,C, +b,S,) converge normalement sur R alors les séries
Y ay, et Y b, sont absolument convergentes.

Autres propriétés

8. Pour tout n € N, la fonction a,,C), +b,.5,, est continue sur R.
La série de fonctions ¥ (a,C,, +b,S,) converge normalement et donc uniformément sur R.
On en déduit, par le théoréme de continuité des sommes de séries de fonctions, que la fonction
f est bien définie et continue sur R.
De plus, on a pour tout x € R :

fx+2m) = Ji)(ak cos(nx + 2nm) + by sin(nx + 2nm)) = Ji:](@n cos(nz) + b, sin(nx)) = f(x)

par 2m-périodicité des fonctions cosinus et sinus. Ainsi :

9. Soit n € N*. On obtient en linéarisant (on peut pour cela passer par les formules d’Euler) :

™ T ] 1 T ™
2 = — = | —gqj + — =
[ COS (nx) dx = [ﬂ_ 2(cos(2nx) + 1) dx [4n sm(2nx) 2:|_7r .

s

Soit (n,k) € N2. Comme la fonction z ~ sin(kz) cos(nz) est impaire, on a :

fﬂsin(kx) cos(nz) dx = 0.

fﬂCOSQ(nx) dx =T et fﬂsin(kx) cos(nz) dr=0




10.

11.

12.

13.

Soit neN. On a :

[: f(z)cos(nz) dx = [W +f(ak cos(kx) + by sin(kz)) cos(nz) dx.

T k=0

Pour tout k € N, on pose uy, : x — (ay cos(kz) + by sin(kz)) cos(nzx).
On a pour tout n e N :

Vo e R, |up(2)| < |ag cos(kx) + by sin(kz)| < |apCh + bpSi|| % .

ne dépend pas de x

On en déduit que pour tout k € N, 0 < [ug|® < |apCh + bpSk||R .

Comme la série Y |arCy +bpSk|%, converge, on en déduit par comparaison que la série Y. |uy |5,
converge.

Ainsi, la série de fonctions ) u converge normalement et donc uniformément sur R donc sur
le segment [-7, 7] et pour tout k € N, la fonction uy est continue sur [-m,7].

On peut donc intervertir les symboles intégrale et somme :

+o00

[: f(z)cos(nz) dz =) (ak [: cos(kzx) cos(nx) dx + by [: sin(kx) cos(nx)) dx)

k=0

Dans la somme, tous les termes sont nuls sauf celui d’indice k = n qui vaut a,7 si n # 0
(question précédente et résultat admis) et 2mag si n = 0.
Ainsi :

VneN* a,(f)=a, et ag(f) = 2a,.

On utilise la question précédente avec ag = ao(f)/2, by = 0 et pour n > 1, a, = a,(f) et
b, = Bn(f). La somme est ici égale & g et on obtient donc :

VneN, a,(f)=an(g) et B.(f)=05.(9)

D’aprés la question 8., on a g € 6, et f € 65, donc on a g — f € €.
De plus, par linéarité de I'intégrale, on a pour tout n e N :

an(g = f) = an(g) —an(f) =0 et Bu(g - f) = Bu(g) = Bu(f) = 0.

Par le résultat admis, on en déduit que g — f est la fonction nulle.
Ainsi :

pour tout réel z, g(z) = f(x).

Si f est une fonction paire alors la fonction x ~ f(x)sin(nz) est impaire et la fonction
x — f(x)cos(nz) est paire.
On en déduit que pour tout n € N :

Bu(f)=0et a,(f) = %/: f(x) cos(nx) du.

14. Ci-dessous le graphe de f sur [-3m,37] :
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Comme la fonction f est paire, on a :

pour tout n e N, 3,(f) =0.

On a pour tout n € N* :
2 s
an(f) == f 22 cos(nz) dz
w Jo

cos(nx)

5 sont de classe

Une double intégration par parties donne (les fonctions z — 22 et x
¢? sur [0,7]) :
T 2 & T 2 s
f 22 cos(nx) dw = [M] -— / zsin(nz) dx
0 n 0

o n
| —
=0

= _% ([_%(nx)]: + % —/07r cos(nzx) d:zc)

_ 2mcos(n) L1 [M]W '

n

n? n n
—
Ainsi :
pour tout n € N, a,(f) = 4cos(2n7T) _ 4(—3)’1'
n n
On a aussi :

2 rr 2
ag(f) = ;'/0 22 dx = §7r2.

Comme les séries Y. (o, (f)) et X (5,(f)) convergent absolument (série de Riemann d’exposant
2 > 1 et série nulle), d’aprés la question 5., la série trigonométrique Y. (., (f)Cy + Bn(f)Sn)
converge normalement sur R et donc d’apreés le résumé apres la question 12.; on a :

VreR, f(x)—— Z

cos(mc)

2 n
15. Pour £ =0, on a f(0) = 0?2 =0 donc par la question précédente, % +4 Z ~ ) =0 d’on
n=1

2

= s
Z: 12




16.

17.

Pour z =7, on a f(7) = w2 donc par la question precedente —+4 Z ~ (D (-1)" = 72 donc :
n=1 7’L

On découpe cette somme en isolant les termes d’indice pair et ceux d’indice impair (ce qui est
possible car ces deux séries sont convergentes), on obtient :

too q +00 1 +00 1t 1 +00
,;Ez,;(zny ;}(27“1)2: Z 7;) 2n+1)2

On en déduit :

iy 1 2 172 g2

T
L e 6 168

Dans I'exemple de la question 14, on a obtenu une série trigonométrique normalement conver-
gente sur R.

Cependant, sa somme f n’est pas dérivable sur R. En effet, f est dérivable a droite et gauche
en m avec pour nombres dérivés 27 (a gauche) et —27 (& droite).

La somme d’une série trigonométrique qui converge normalement sur R n’est pas
nécessairement une fonction dérivable sur R.

On suppose que les séries Y. na, et Y. nb, sont absolument convergentes.
- Pour tout n € N, la fonction a,,C, +b,S,, est de classe €' sur R et on a pour tout z € R :

(anCh +b,5,) (z) = —na, sin(nx) + nb, cos(nz).

- Les séries ¥ a, et ¥ b, convergent absolument car |a,| = o(nla,|) et |b,| = o(n|b,|).
—— ——
>0 >0

On en déduit (question 5.) que la série trigonométrique Y (a,C,, + b,S,,) converge norma-
lement et donc simplement sur R.
- Les séries Y (-na,) et ¥ nb, convergent absolument donc (question 5.) la série trigonomé-
trique ¥ (a,C, + b,5,)" converge normalement et donc uniformément sur R.
On en déduit, par le théoréme de classe €' des sommes de séries de fonctions, que la fonction
somme de la série trigonométrique Y. (a,C, + b,5,,) est une fonction de classe ¢! sur R et on
peut la dériver terme a terme.

La convergence absolue des séries Y. na, et > nb, est donc une condition suffisante.

On a vu a la question 2. que :

ViR, Z sm(n:v) 3sin(x)
- ~ 10— 6cos(z)’

1
Pour tout n € N, on pose a, =0 et b, = —

Comme les séries Y. na, et Y nb, convergent absolument (par le critére de d’Alembert pour

+1 3" 1 1 1
> nb, car pour tout n € N*, s 0et lim 2222 2 gim —(1+—) = -<1), d’apres la
3n notoo 3N+l n n—+oo 3 n 3

question précédente, on peut dériver terme a terme. On obtient alors en dérivant 1’égalité
ci-dessus :

VieR. Z 2 ncos(nx) _3 5cos(z) -3
= 3 2 (5-3cos(x))?




PROBLEME 2 : PRODUITS INFINIS (D’aprés Centrale PC 2024)
Q1. Procédons par récurrence sur n € N*.
L’initialisation pour n = 1 est claire car les deux membres de I'inégalité donnent |z4|.

Soit n € N*. Supposons 'inégalité vérifiée au rang n et montrons-la au rang n + 1.
Soit x1,..., 2,1 n+ 1 réels. On a :

(ﬁ(lJrfEk))—l‘: (H(1+xk) —1+:z:n+1H 1+x3)

)
(MTaa)-1
)

IN

+

Tt H(l + )

k=1

(inégalité triangulaire)

IN

H(l +lxe]) | = 1+ |z H(l +|z]) (hypothése de récurrence et IT)
<o (10100 -
k=1
n+1
<(T1a+ta)-
k=1

On en déduit que pour tout n € N* :

pour tout (xy,...,x,) € R",

(g(1+xk))-1 <(£{1(1+|xk|))-

Q2. Pour tout z € R, 1+x < e® (ce résultat s’obtient par une simple étude de la fonction z — e*—x -1
ou par convexité de exp - courbe située au-dessus de la tangente en 0 -).
Soit (z1,...,x,) € [-1,+00[". On a donc pour tout k € [1,n] :

0<1+$k<6$k.

En multipliant ces inégalités (a termes positifs), on obtient :

[T(1+z) <[[e™ = exp(z xk)
k=1 k=1 k=1

Ainsi :

pour tout (x1,...,2,) €[-1,+oo[” H(1+$k) eXp(Zxk)

Q3. Soit t € C. On a par inégalité triangulaire puis croissance (pour tout k> 2, 0 < (k—-2)! < k! et
toutes les séries en jeu convergent) :

t =t It |t|k U 2 2 |t
== o= 3 )= |-l < S e 55 e 55 e

Ainsi :

pour tout t € C, [(1+1t) —et| < |t[?elt.

Q4. On a par inégalité triangulaire :

" - 17 =

n-1
(CL _ b) Z akbnfl—k
k=0

<la-b Z lal® 16"t F < nM™Ha - ).

la® = b"| < nM"™ a - b|.

7



Q5. Soit n € N*, on pose M = ma'x{

D’aprés les questions précédentes :

z
1+—‘
n

z

z\" z\" n
|(1+—) —ef :|(1+—) —(eﬁ) <M+ Z —en|<nM™HE| en
n n n n
B 2 Ll = IR A 2l :
De plus, on a ‘1"'5‘ <l+2<en et len|= Zk— <en (obtenu par inégalité triangulaire) donc
ko nEK!
12l
M<en.
Par conséquent :
n 2 2 2
z _ E R P O VTR E R P4
‘(1+—) —e*| <nM™| 2 €n<|| noen u"Z'.
n n n
Ainsi :
z\" kiR
pour tout n e N*, [{1+ =] —e?| < —el
n n
Q6. On a :
2
VneN* 0<|u, - € |<| ] el et lim u6|Z|—O
n n—-+oo n,

donc par le théoréme des gendarmes :

lim |u, -€*|=0 clest-a-dire lim u, = ¢€*.

n—+0o0o n—»+oo

Q7. Pour N>2 ona:

e-DIIe=D |

f'V[(1—i) IJ_V[((n 1)(n+1))_n2 _AIN+1 11
ol n2) i n2 N N N 2 2 2N’
[In II»

n=2 n=2
Ainsi : N
1 , 1 1 1
JL%Q(“?)Z&H&(T%)&

On a donc établi que :

1 il 1 1
le produit infini H (1 - —2) converge et H (1 - —) =5
n

2
n>2 n=2 n

Et pour N > 2 en séparant le produit pour n = 2k (alors n + (=1)"*! = 2k - 1) et n = 2k — 1 (alors
+ (=1)*! = 2k), on obtient :

7];[2(1+(—1Tz”+ ): (2]1\[)!1:[2(n+( 1)) = (2N)'H(2k 1 H(2k)— (2N) (2N - 1)l = %N:Zo%'

De plus, on a :

Zﬁl(ldi—%):ﬁ(l—F%)x(l—k%):%(1+2N1+1)N%+oo%

n=2 n=2

Par propriété des suites extraites d’'indices pairs et impairs, on en déduit que :

IJ—VI (1 . (_UM)N:;%'

n=2 n

8



Ainsi :

_1 n+1 +00 _1 n+1 1
le produit infini [ (1 + (=) ) converge et [ | (1 + (-1) ) ——
n n=2

n>2 n 2

Q8. Soit n € N. On a par intégration par parties :

s s

Wi = fg(cos u)"*! cosudu = [(cosu)"*! sin u]og - fa(n +1)(=sinwu)(cosu)" sinudu
0 0

=0

™

= f02(n +1)(cosu)"sin® udu = (n +1) fog(n +1)(cosu)™(1 - cos?u)du = (n+ )W, — (n+ 1)W,2

1
d'ott | Wi = W,
n+2
) 227 (nl)?
Montrons alors par récurrence que pour tout n € N, Wy, .1 = ————.
(2n + 1)!
Pour =0, on a Wi = f cosudu = [sinuld = 1= 2
our n=0, on a Wi = [? cosudu = [sinu]Z = ==
22n ! 2
Soit n € N. On suppose que Wy, .1 = ﬂ
(2n+1)!
On a alors par I'égalité précédente et ’hypothése de récurrence :
Wo o 2n+2W 2(n+1)227(n!)?2 2(n+1)2(n+1) 227(n!)?  22*2((n+1)!)?
T on+3 M T 2n+3 (2n+ 1) 2n+2 2n+3 (2n+ 1) (2n+3)!
On en déduit que :
22n(pl)?
pour tout n e N, Wy, .1 = ﬁ

Q9. On utilise la formule de Stirling :

nl ~ 27?71(%)” et (Qn)!n~ \/W(QF”)%

n—+00 —>+00

Ainsi :

Wo o _ 220 (n!)? 220 21n(nfe)?" 1\/f
2T 20+ 1) (2n)! nevee (2n) 20/mn(2n/e)2n oo 2V 0

1 /rm
Wonsar  ~ =v/—.
n

—+o00 9 n

Pour tout n e N*, on a :

[T(2k)(2k)

—qn(p)2ksl 2 ~
Y Guin Ot DWan 2

1 n e
) ) ,1_[1 (k- 1)(2k + 1)

T
5

H(1+;)Convereetﬁ(l+ 1 )—E
An? 1 & m2—1)" 2

nx1 n=1

Q10. Pour tout N > n, d’aprés Q2 (sachant que pour tout pe N, —-P(A,) >-1), on a :

0< ]]’V[ (1- P(A4,)) <exp (JEV: —P(Ap))

p=n p=n



N

La série ). P(A,) étant divergente et a termes positifs, on en déduit que lim Z P(A,) = +oo.
—+00 n=p

Par conséquent :

N
NIEPOO exp (Z;l —P(Ap)) =0.
On conclut avec le théoréme d’encadrement que :

T1(1- P(A,)) converge et ﬁ (1= P(4,)) = 0.

pzn

Q11. La suite (B,), définie par B, = | J A, est décroissante pour l'inclusion donc par continuité
pzn
décroissante, on a :

p(m UA,,) - lim p(UAp).
neN p2n n—+oo p>n
Or pour tout n e N :

fy)-+(o

p2n pxn
qa
et par continuité décroissante appliquée a la suite (C,) g, o0t C; = (] A, décroissante pour I'inclusion,

p=n
on obtient :

q—>+00 jndep. q—+00 _

P(ﬂA_p): lim P(ﬁA_p) = lim ﬁP(A_p):ﬁu-P(Ap))Q:mo.

Ainsi :

Q12. Soit x € S et n e N*.

n

Qni1(2) = Qu(@) = [ TTA + Ifu(@)]) [ (1 +]frir(2)[ - 1)

k=1 ~—
>0

5o (S (o)
k=1

<oxp (Ro(2)) [fun(2)| can Z ()| < f ()] = Ro(2).

Par le théoréme de continuité de la somme d’une série de fonctions, sachant que pour tout n € N*,
|fn| est continue sur S et ¥,,5; |fn] converge uniformément sur S, on en déduit que Ry est continue
sur le segment S donc R est bornée sur S.

Par conséquent, il existe M > 0 tel que pour tout x € S, Ry(x) < M.

On a ainsi pour tout x € .S et n e N* :

Qni1(7) = Qu(z) <@ fo (@) < eM|frn(2)].
Q13. Soit re Set neN*. On a:

|Prosi () = Po(2)] = [1+ fra(x) -1

,ﬁ“ + ful)

< frrr (@) TT(L + [ fe(2)]) (inégalité triangulaire)
k=1

<L+ frn (@) - 1) Qn(2).

10



Ainsi :

|Pn+1(l‘) - Pn(x)| < Qn+1(x) - Qn(x)

Q14. Commencons par la convergence simple. Soit x € S.

Par les questions précédentes, pour tout n € N*, 0 <|P,.1(x) — Py ()| < eM| fri1(2)].

La série 3,51 | fns1(x)| est convergente car la série de fonctions Y., | fn| converge uniformément donc
simplement sur S.

Par comparaison par inégalité, on en déduit que la série Y (Pny1(z) = P,()) est absolument conver-
nz1

gente et donc convergente.
Comme il s’agit d’une série télescopique, on en déduit que la suite (P,()),,, est convergente et on
a donc :

Jim () =TT+ ) = Pla).

Soit n e N* et x € S. En utilisant le télescopage on a :

> (Plos(a) = (@) = lim_Py(z) = P,(x) = P(&) - Po(o).

k=n

On a donc avec les inégalités des questions précédentes :

IPu(x) - P(x)| = f (Pea(2) - Pu(2))| < f Pt (2) - Pu()| < f M| fr () = €M Roy(2) < M| RS

en notant Ru(z) = 3 |fu(2)]

k=n+1
On en déduit que |R,||$ est un majorant de I'ensemble {|P,(x) - P(z)|,z € S}.
Comme | P, — P|3, est le plus petit des majorants de cet ensemble, on en déduit :

[P = P12 < ™| Rall%-

Comme lim |R,|?., =0 car lasérie ¥ |f,| converge uniformément sur S, on en déduit par le théoréme
n—>+00

des gendarmes que :
lim |P, - Pl =0.
n—+00

Ainsi :

la suite (P, )pen+ converge uniformément vers P sur S.

Q15. Pour tout n € N*, P, est continue sur S par produit (fini) de fonctions continues (toutes les
fonctions fi sont continues sur S) et la suite de fonctions (P, ),s1 converge uniformément sur .S donc
par le théoréme de continuité de la limite d’une suite de fonctions :

[la fonction P est continue sur S. |

Soit z € S. Soit n € N*. Comme pour tout k € [1,n], 1+ fx(x) >0, on a:
In(P,(z)) = > In(1+ fi(z)).
k=1

De plus, la série Y In(1+ f(x)) est (absolument) convergente car :
k>1

— limfue) =0 done [In(L+ fue))]_~_|f(@)] >0,
— la série Y51 | fx(x)| est convergente (par convergence simple de Y51 | fx| sur S).

11
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Par conséquent, lim In(P,(z)) =) In(1+ fiu(z)) = L(z) € R.
n—+oo et
Par continuité de la fonction exponentielle sur R, on en déduit que :

lim P,(x) = lim @) =L@ 50 done P(x) > 0.

n—+o0o n—+oo

Ainsi :

’1& fonction P ne s’annule pas sur R. ‘

Q16. On pose pour tout n € N* et z e R%, f,(x) = —em2”.
Appliquons la question précédente. Pour cela, il faut vérifier toutes les hypothéses sur la suite (f,,).
Soit S = [a,b] un segment inclus dans R*.
On a:
— Pour tout n e N* et x € [a,b], fo(z) > -1 car e* < 1.
— Pour tout n € N*| f,, est continue sur S.
— Montrons que la série de fonctions Y, | f,| converge uniformément sur S.
On a pour tout n € N*, | f,,|S = e car la fonction |f,| est décroissante sur S.
De plus, la série Y. e™me” = (e=2”)n converge (série géométrique avec |e=e*| = e=¢” < 1).
On en déduit que la série ), f,, converge normalement et donc uniformément sur S.
Par conséquent, d’aprés les deux questions précédentes, f est bien définie et continue sur S et ceci
pour tout segment S inclus dans R*, donc :

‘ f est définie et continue sur R*.

Q17. Soit x et y deux réels tels que 0 < z < y.
Pour tout n € N*, —nz?2 > —ny? donc 1 —e™” > 1 — e > 0, donc en multipliant ces inégalités :

N N
[](1- e > [](1- e™’) dou f(x)> f(y) par passage a la limite N — +o0
n=1 n=1

Donc :

’ f est décroissante sur RY.

Limite en 0. On applique la question Q2 :

N N
>0 vV er, 0¢[] (o) <o (30
n=1

n=1

= —e? ) ) .
Or, pour tout = > 0, Z —e = . - (série géométrique de raison e=* € [0,1[) d’ou par passage
p— 6_

n=1
a la limite quand N — +oo :

a2
V>0 Oéf(m)éexp(%).
_6*33

_z2 a2
Or, lim -~ oo don lim exp(e—z) =0
* 1

>0+ | — e~2® x—0 e

On obtient donc par le théoréme des gendarmes :

lim f(z)=0.

r—0F

Limite en +oo. On applique la question Q1 puis Q2 :

(ﬁ(l - e—kIQ)) -1[ < (ﬁ 1+ |—e‘k12‘) 1< exp (i e—kzg) -1
k=1 k=1 =

Vx>0, VneN*,

12



2
[ore] -
N .. .. 1.2 e .
Par passage a la limite quand n — +o0, en utilisant Z e ke = e on obtient :
p— 67
k=1

—a?
V>0, |f(:1c)—1|<exp(16 2)—1.
_6_93

-

2 22
Or, lim 6—2 =0 donc lim exp 6—2 =1 d’ou par le théoréme des gendarmes :
z—>+00 | — 7T T—+00 1-e¢

lim |f(z)-1]=0 soit lim f(x)=1.

Q18. Soit n € N*. La fonction P, est dérivable en tant que produit (fini) de fonctions dérivables et

on a par dérivation du produit P,(z) = [] (1 + fx()) :
k=1

e, P)= Y @10 i) = 3 s - 3

i1 1+ fi(x) 1+ fr(z)
l+k
Pour tout ne N* et x € S, P.(x) = P,(x )ilféj‘(":?x)
5 _Sil@) NPHOR

Q19. Notons pour z € S, T'(x) = Z et pour n e N*, T),(x) = Z

1+ fk( ) 1+fk(x)

On sait par les questions 14 et 15 que la suite (P,) converge uniformement sur S vers P et les
fonctions P, (pour tout n € N*) et P sont continues sur le segment S donc elles sont bornées sur S.
Ainsi, la suite (P,) converge vers P dans l’espace vectoriel normé (#(S,R), |.|3,).
De méme, la suite (7},) converge uniformément sur S vers 7" et les fonctions 7,, (pour tout n € N*)
sont continues sur S (par somme finie puisque les fonctions f,, sont de classe C! et 1+ f,, ne s’annule
pas sur S) et donc la fonction 7" est aussi continue sur S (par le théoréme de continuité de la limite).
Ainsi, la suite (7},) converge vers T dans I'espace vectoriel normé (ZA(S,R), |.|3).
Par produit, on en déduit que (P,T,,) converge vers PT dans I'espace vectoriel normé (Z(S,R), ||.||3)
donc la suite (P, 7)) converge uniformément vers PT sur S.
On peut maintenant appliquer le théoréme de dérivation de la limite d’une suite de fonctions :

— pour tout n € N*, P, est de classe C! sur S,

— la suite (P,) converge simplement sur S vers P,

— la suite (P!) converge uniformément sur S vers PT.
Par conséquent, P = lim P, est de classe C! sur S et pour tout z € S, P'(x) = P(xz)T(z) et comme

P'(x) - T().

P(x) #0 d’aprés Q15, on a
P(r)

Ainsi :

P est de classe C! sur S et Vx € S,

’(iU) S falw)
Z 1+ fu(z)

Q20. D’apreés la formule du binébme de Newton, on a :
PL(X) = i2”+1(2n+1) i Xk _ (—i)k X
21 = k (2n+ 1)k (2n + 1)k

1 [ 720+l _ (_Z')Qn-%-l -
= — (@ s Do X"+ R(X)]| avec ReRy,[X]

-1\ .
_ —(Qn(+ 1))%1 X214 R(X),

———
+0
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Donc :

‘Pn est un polynome de degré 2n + 1.

Q21. Soit k € [0, 2n].

. 2n+1 . 2n+1
22’Pn(xk):(1+ L ) —(1— el )
2n +1

2n+1 2n+1
km - km km - km
_ (COS(2n+1) +zsm(2n+1)) 3 (COS(2n+1) _ZSIH(2n+1))

donc

1 ik —ikm
2iP,(xy) = —kﬂ) (62,’;1(27”1) _ 6%’11(2%1))

2n+1
cos™ ! (5%

1

- o2n+1 ( _km )
Ccos (2n+1

(eikﬂ' _ e—ikﬂ') =0.

Donc xy est une racine de P, pour tout k € [0, 2n].

De plus, k = x, est injective (par injectivité de la fonction tangente sur [O, o) [U]%, 7TD donc I’ensemble
{zk, k €[0,2n]} contient 2n + 1 racines distinctes de P, qui est un polynéme de degré 2n +1; on a
donc toutes les racines de P,.

L’ensemble des racines de P, est donc {xy |k € [0,2n]}.

Q22. On regroupe les racines xj deux a deux, en remarquant que pour 1 <k <n, 2n+1-k € [n+1,2n]
et on a:

km km
)=(2n+1)tan(7r—2n+1)=—(2n+1)tan(2n+1):—xk.

D’aprés la question précédente, on peut factoriser P dans C[X] de la fagon suivante : il existe p € C
tel que

2n+1)m -k
2n+1

Ton+1-k = (2n + 1) tan (

P,(X)= uH(X xp) = (X - xO)H(X xr) H(X xy)

k=n+1

=nX H(X - Tp) H(X — Tons1-x) (changement d’indice)

k=1 k=1 —

=—Tp

XTI - a2)

k=1

X2 - g2
—MH( :L’k)XH (pour tout k€ [1,n], x; #0)
—x2

k

(—1)ngx,§xﬁ(1—$—;).

J

=A

11 suffit de poser A = u(-1)" [ ]2} pour obtenir I'égalité demandée.
k=1

Il existe A € C tel que P,(X) = )\XH (1 - —)
x?

J

Q23. En reprenant la définition de P,, sachant que P/(0) est le coefficient devant X dans P,(X),

on a : | om s 1yl - (i)t
n+ i

P’ = =1.
n(0) 22( 1 ) 2n+1

14



n X2
De plus en dérivant P, avec l'expression de la question Q22, en notant Q,(X) =] (1 - —2), on

obtient :
Pr(X) =AM (XQ(X) +Qn(X)) dou F(0) =AQx(0) = A.

Donc A = P/(0) =1 d’ou le résultat.

Po(X) - Xﬁ(1-f—2)

J

Q24. Soit x € R. D’apreés la question Q6 :

. 2n+1 . 2n+1
lim (1 + “ ) =e” et lim (1 - ) = e ",
2 n—+00 2n+1

Ainsi : )
lim P,(z)=— (e -e™)=sin(z)
2i

n—>+00

Donc :

la suite de fonctions polynomiales (P,) converge simplement vers la fonction sinus sur R.

Q25. Soit t € R, et k e N tel que k > 2.

Jm
On note z;(t) = (2|t] + 1) tan (2ltJ " 1).
— Cas 1 :t<k-1
On a vi(t) = vp-1(t) = Pyj(x). L'inégalité est claire.
— Cas 2 : k-1<t<k
Ona [t]=k-1etz;(t)=z;(k-1). Donc :

vp(t) = Pyj(2) = Pea (o) = xg (1 - [:cj(k——l)f) (d’apres Q23)

et

e (1) = 1‘[( ](;2) ve(t).

7=1

L’inégalité demandée est alors évidente.

— Cas 3 :t2k
Alors :
k 22 22
ve(1) =7 | =vp_1(t) |1 - ——
donc :

[0k () = vk-1 (8)] = V1 (D))

(1 - m(t)z) ) 1‘ =l Ol e

[ tanu > 1négalité des accroissements finis a partir de l'inégalité
1

) d’ou :zzk(t)

Or pour tout u € [O,%
tan’(u) = 1 +tan?(u) >

Par conséquent,
2

[or (£) = vr-1 (1)) = |Uk—1(t)|#i)2 < |Uk—1(t)|#.

Pour tout t € R, et k€N tel que k> 2, |ug(t) — vp_1 ()] € |v,€ 1(1)]-

k22
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Q26. Soit t e R, et k e N*.
Premier cas : t > k
On applique I'inégalité triangulaire puis 'inégalité de la question 2 :

g ()] = 2| [T |1 - ](t)z < |z H (1 + ](t)Q) < |z]exp (Z t)2)

j=1
Or, x;(t)? > (jm)? (cf question précédente) et par croissance de la fonction exp :

ko 2 ko 2
olslrle (Z x-<t>2) e (Z (m?)'

j=1Lj

Deuzieme cas : t <k
On utilise le premier cas pour obtenir la premiére inégalité, puis la croissance de exp :

72

| koo g2
- o8] < |x|exp(z (W) o3 s )

[or(8)] = | Pey ()] =

Dans tous les cas :

koo g2
pour tout ¢t € R, et k € N*, |vg(t)] < |x|exp(z G )2)
g

Q27. Par les inégalités obtenues aux deux questions précédentes, on a :

V22 VteR,, |vp(t)—-vp_1(t)| < % 2|vk_1(t)|
T
|x|3 (k—l 2 )
L22 ]; (jr)?
< |2[3 X a? (srie a t g te)
< ex série a termes positifs convergente).
k2m? P j=1 (jm)? P &
On en déduit :
Vi >2 <ok — v |2 i p(Jrio i )
z k= Vk-1]loo $ €x X .
’ ke & ()’
1 |JI|3 X 2P - :
Or, la série Z p| Y —— | converge (série de Riemann avec 2 > 1).
iz k us j=1 (jm)
constante
Par comparaison, on en déduit que la série Z vk — ve-1| % est convergente ce qui signifie que la série
k2
de fonctions Z(Uk — Up_1) converge normalement sur R, .

k>2
Ainsi :

la série de fonctions Y (v — vg_1) converge uniformément sur R,.
k>2

Q28. Soit ke N*. On a :

Jm Jm :
tan(2[tj " 1) e M1 donc tl_griotan(

Jm .
eI CURIR

D’ou par produit fini de limites finies :

' ) k ZL‘2 k ZL‘2
Jin oe(t) = tim o T 1- 2 xn(lm)

(tan (525



Soit ¢ € R,. Pour tout entier k >, v4(t) = P;(x) donc

kliﬂnm vp(t) = Pyj(x).

Ainsi :

2
pour tout k € N*, hm v(t) = xH ( (I—)Q) et, pour tout t € R,, klim vp(t) = Pyy(x).
G=1 ]71' —>+00

Q29. Notons pour t € R,

V() =) (vi(t) —vee1(8)) = lim vg(t) —v1(t) = Pyj(x) —vi(t).
k=2 k—+oo Q28
2
D’aprés la question 24, tlim Pj(x) =sin(x) et tlim vi(t) =z (1 - x_2) donc :
—+00 —+00 e

: : r?
tE?io V(t) =sin(x) -z (1 - ﬁ) :

Calculons maintenant tlim V(t) a l'aide du théoréme de la double limite :
—>+00

— pour chaque k > 2, d’apres la question précédente :
(1 o) -+ TI (- =
hm vk(t)—vk 1(t) =x (1— ) ( )
7=1 (]77)2 7=1 (]77')2

— la série de fonctions Z(vk - vj_1) converge uniformément sur R, et +oco est une borne de R,.
k>2

Donc :
+00 too
lim V(¢) = lim > () = vp1 () = Y. lim (vg(t) — o1 (2))
t—+o0 t—+o0 =2 =2 t—+o0
+00 k 2 k-1 2
x x
= €T ]_ — - - 1 - R
;;2 (H( (]W)2) gq ( (JW)Z))
+00 x2 332
=x (1 - —2) - (1 - —2) par télescopage.
j=1 (Jm) m
Ainsi :
(z) (1 2) lim V(t) = H(1 2) (1 $2)
sin(z) —z|1-—]= lim T - z|ll-—].
t—+o00 =1 (]7{')2 7‘(2
D’ou :
sin(x) =x
i1 (J?T )
2
Q30. On va appliquer le résultat de la question 19 avec S = [—%, g] et pour tout n e N*, f,, 1 x — —W.
nmw
Commengons par vérifier que (f,,) vérifie bien les hypothéses de la question 19.
2 1 1
— Pour tout n € N*, pour tout x € S, on a x_ donc fa(z) 2 — > -1
72
— La série de fonctions Z | fn| converge uniformement sur S car pour tout n e N*, || f,]3, = 1=
nx1
(par parité et croissance de |f,| sur [0, %]) donc la série Y. | f, ]2, converge ce qui signifie que
n>1
la série de fonctions ) |f,| converge normalement donc uniformément sur S.
n>1

17
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— La série de fonctions Z converge uniformément sur S car

fa
nxz1 1 +fn

fi(x) -2 T
Vn e N*, Vr e S, L = N
" ! Ut fu(2)|  [(nm)2 = 1|~ (nm)? -
Donc : 5
/
vneN'. o< || <« —T 11
1+ fulle  (nm)2=1n-teo g an?’
!/

On en déduit la convergence normale sur S (donc uniforme) de la série de fonctions Z f %
n>]_ n

On peut donc maintenant appliquer le résultat de la question 19 avec pour z € S~ {0} :

P(z) = IIa+mw» H( - }fmx

i\ (m)? )

rcosx —sing

et donc P'(z) = 5

x
+00 o +00 _
5 @) mcos(x). sin(z) -3 2 ‘
P(a:) o+ fn(x) rsinw = (nm)? - a?
On en déduit :
cos(z) 1 & 2z

pour tout x € [-Z, 2] - {0},

sin(z) @ j=1 (jm)? —a?

Q31. Utilisons l'indication. On a a?sin(x) ~ a3 et

20
xcos(x) —sin(z) = x(l = +0(x2)) -x+ z +0(1:3) = - +0(az3)
20 2 6 =0 3
Donc :
lim Z‘COS(Z‘)‘ —sin(z) _ _1‘
=0 z2sin(z) 3

De plus pour tout x € [—7—5, g] ~ {0}, en utilisant la question précédente :

zcos(z) —sin(z) 1 (cos(:c) 1) _ Jrz":" 2

r2sin(z) oz z (jm)? — 22

sin(x) = st

Or, la série de fonctions ) g; ol g;(z) = —3
5>1 (jm)? -
2

J e N*, ngng’g] = G (puisque |g;| est croissante sur ]0,7]) d’oti la convergence normale de la

série Zgj. De plus, pour tout j € N*, g; a une limite finie en 0 donc par le théoréme de la double

5 converge uniformément sur ]0, 3] car pour tout

g1
limite :
lim Z Z lim ———— 2 io L
20" £ (J?T)2 x? a0t ()P - o (m)?
D’ou :
1 lim xcos(:r? —sin(z) _ _*Z":" »2 .
3 z-0* x?sin(x) = (jm)?
Ainsi :
+o00 1 7T2
257




