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Problème 1 : Séries trigonométriques (D’après CCP MP 2017 )

Partie 1 : exemples

1. Soit n ∈ N. Soit x ∈ R. On a :

∣ 1
2n

Cn(x) +
1

3n
Sn(x)∣ = ∣

1

2n
cos(nx) + 1

3n
sin(nx)∣ ⩽ ∣ 1

2n
cos(nx)∣+ ∣ 1

3n
sin(nx)∣ ⩽ 1

2n
+ 1

3n
.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ne dépend pas de x

Ainsi,
1

2n
+ 1

3n
est un majorant de l’ensemble {∣ 1

2n
Cn(x) +

1

3n
Sn(x)∣ , x ∈ R} et ∥ 1

2n
Cn +

1

3n
Sn∥

R

∞

est le plus petit majorant de cet ensemble.

On en déduit que pour tout n ∈ N, 0 ⩽ ∥ 1
2n

Cn +
1

3n
Sn∥

R

∞

⩽ 1

2n
+ 1

3n
.

Or, les séries géométriques ∑
1

2n
et ∑

1

3n
convergent car −1 < 1

2 < 1 et −1 < 1
3 < 1 donc par

linéarité, la série numérique ∑(
1

2n
+ 1

3n
) converge.

Par comparaison, on en déduit que la série ∑∥
1

2n
Cn +

1

3n
Sn∥

R

∞

converge.

Ainsi :

la série trigonométrique ∑( 1
2nCn + 1

3nSn) converge normalement sur R.

2. Soit p ∈ N avec p ⩾ 2.

On a ∣e
ix

p
∣ = 1

p
< 1 donc la série géométrique ∑(

eix

p
)
n

converge et on a :

+∞

∑
n=0

(e
ix

p
)
n

= 1

1 − eix

p

= p

p − eix
.

On a donc en multipliant numérateur et dénominateur par l’expression conjuguée du dénomi-
nateur :

+∞

∑
n=0

einx

pn
= p(p − cos(x) + i sin(x))
(p − cos(x))2 + sin2(x)

.

En prenant les parties réelle et imaginaire, on en déduit que les séries∑
cos(nx)

pn
et∑

sin(nx)
pn

convergent et on a :

+∞

∑
n=0

cos(nx)
pn

= p2 − p cos(x)
p2 − 2p cos(x) + 1

et
+∞

∑
n=0

sin(nx)
pn

= p sin(x)
p2 − 2p cos(x) + 1

Il reste à combiner les résultats pour p = 2 et p = 3 :

+∞

∑
n=0

( 1
2n

cos(nx) + 1

3n
sin(nx)) = 4 − 2 cos(x)

5 − 4 cos(x)
+ 3 sin(x)
10 − 6 cos(x)

.
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3. Soit n ∈ N∗.
On a pour tout x ∈ R, ∣sin(nx)√

n
∣ ⩽ 1√

n
avec égalité lorsque x = π

2n
.

On en déduit
1√
n

est le maximum de la fonction x↦ ∣sin(nx)√
n
∣ sur R d’où ∥ 1√

n
Sn∥R∞ =

1√
n

.

Comme la série ∑
n⩾1

1√
n

diverge (série de Riemann d’exposant 1
2 ⩾ 1), on en déduit que :

la série trigonométrique ∑
n⩾1

1√
n
Sn ne converge pas normalement sur R.

4. Soit x ∈ R. On a :

exp(eix) = exp(cosx + i sinx) = exp(cosx) exp(i sinx) = exp(cosx) (cos(sinx) + i sin(sinx))
= exp(cosx) cos(sinx)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈R

+i exp(cosx) sin(sinx)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈R

.

On en déduit que Re(exp(eix)) = φ(x).
Or, on sait de plus que pour tout complexe z, la série ∑

n⩾0

zn

n!
converge et a pour somme ez.

En appliquant ceci avec z = eix, on obtient :

exp(eix) =
+∞

∑
n=0

einx

n!
.

Comme la série ∑
n⩾0

einx

n!
converge, la série ∑

n⩾0

Re(e
inx

n!
) converge et on a :

Re(exp(eix)) = Re(
+∞

∑
n=0

einx

n!
) =

+∞

∑
n=0

Re(e
inx

n!
) =

+∞

∑
n=0

cos(nx)
n!

.

On a donc pour tout x ∈ R, φ(x) =
+∞

∑
n=0

cos(nx)
n!

.

Ainsi :

La fonction φ est la somme de la série trigonométrique ∑
n⩾0

1

n!
Cn.

Partie 2 : propriétés

Une condition suffisante
5. On suppose que les séries ∑an et ∑ bn convergent absolument.

On a pour tout n ∈ N et tout x ∈ R :

∣an cos(nx) + bn sin(nx)∣ ⩽ ∣an cos(nx)∣ + ∣bn sin(nx)∣ ⩽ ∣an∣ + ∣bn∣.
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ne dépend pas de x

On en déduit que pour tout n ∈ N, 0 ⩽ ∥anCn + bnSn∥R∞ ⩽ ∣an∣ + ∣bn∣.
Or, les séries ∑∣an∣ et ∑∣bn∣ convergent donc par linéarité, la série numérique ∑(∣an∣ + ∣bn∣)
converge.
Par comparaison, on en déduit que la série ∑∥anCn + bnSn∥R∞ converge.
Ainsi :

si les séries ∑an et ∑ bn convergent absolument alors la série trigonométrique ∑(anCn + bnSn)
converge normalement sur R.
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Une condition nécessaire

6. Si (a, b) = (0,0) alors pour tout x ∈ R, on a ∣a cosx + b sinx∣ = 0 =
√
a2 + b2.

On suppose désormais (a, b) ≠ (0,0).
Comme ( a√

a2+b2
)
2
+ ( b√

a2+b2
)
2
= 1, il existe φ ∈ [0,2π[ tel que cosφ = a√

a2+b2
et sinφ = b√

a2+b2
.

On a alors pour tout x ∈ R :

∣a cosx + b sinx∣ =
√
a2 + b2∣ cosφ cosx + sinφ sinx∣ =

√
a2 + b2∣ cos(φ − x)∣ ⩽

√
a2 + b2

avec égalité lorsque x = φ.
Ainsi :

le maximum de la fonction x↦ ∣a cosx + b sinx∣ sur R est
√
a2 + b2.

7. On suppose que la série ∑∥anCn + bnSn∥R∞ converge.
D’après la question précédente, en remarquant que pour n ∈ N∗ fixé, lorsque x parcourt R
alors nx parcourt R, on a :

∀n ∈ N∗, ∥anCn + bnSn∥R∞ =Max
x∈R
∣an cos(nx) + bn sin(nx)∣ =

√
a2n + b2n.

Or, on a pour tout n ∈ N∗, 0 ⩽ ∣an∣ ⩽
√
a2n + b2n.

Comme la série ∑
√
a2n + b2n converge, on en déduit par comparaison que la série ∑∣an∣ converge

c’est-à-dire que la série ∑an converge absolument.
En raisonnant de même avec bn, on déduit que :

si la série ∑(anCn + bnSn) converge normalement sur R alors les séries
∑an et ∑ bn sont absolument convergentes.

Autres propriétés

8. Pour tout n ∈ N, la fonction anCn + bnSn est continue sur R.
La série de fonctions ∑(anCn + bnSn) converge normalement et donc uniformément sur R.
On en déduit, par le théorème de continuité des sommes de séries de fonctions, que la fonction
f est bien définie et continue sur R.
De plus, on a pour tout x ∈ R :

f(x + 2π) =
+∞

∑
n=0

(ak cos(nx + 2nπ) + bk sin(nx + 2nπ)) =
+∞

∑
n=0

(an cos(nx) + bn sin(nx)) = f(x)

par 2π-périodicité des fonctions cosinus et sinus. Ainsi :

f ∈ C2π.

9. Soit n ∈ N∗. On obtient en linéarisant (on peut pour cela passer par les formules d’Euler) :

∫
π

−π
cos2(nx) dx = ∫

π

−π

1

2
(cos(2nx) + 1) dx = [ 1

4n
sin(2nx) + x

2
]
π

−π

= π.

Soit (n, k) ∈ N2. Comme la fonction x↦ sin(kx) cos(nx) est impaire, on a :

∫
π

−π
sin(kx) cos(nx) dx = 0.

∫
π

−π
cos2(nx) dx = π et ∫

π

−π
sin(kx) cos(nx) dx = 0
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10. Soit n ∈ N. On a :

∫
π

−π
f(x) cos(nx) dx = ∫

π

−π

+∞

∑
k=0

(ak cos(kx) + bk sin(kx)) cos(nx) dx.

Pour tout k ∈ N, on pose uk ∶ x↦ (ak cos(kx) + bk sin(kx)) cos(nx).
On a pour tout n ∈ N :

∀x ∈ R, ∣uk(x)∣ ⩽ ∣ak cos(kx) + bk sin(kx)∣ ⩽ ∥akCk + bkSk∥R∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ne dépend pas de x

.

On en déduit que pour tout k ∈ N, 0 ⩽ ∥uk∥R∞ ⩽ ∥akCk + bkSk∥R∞.
Comme la série ∑∥akCk+bkSk∥R∞ converge, on en déduit par comparaison que la série ∑∥uk∥R∞
converge.
Ainsi, la série de fonctions ∑uk converge normalement et donc uniformément sur R donc sur
le segment [−π,π] et pour tout k ∈ N, la fonction uk est continue sur [−π,π].
On peut donc intervertir les symboles intégrale et somme :

∫
π

−π
f(x) cos(nx) dx =

+∞

∑
k=0

(ak ∫
π

−π
cos(kx) cos(nx) dx + bk ∫

π

−π
sin(kx) cos(nx)) dx)

Dans la somme, tous les termes sont nuls sauf celui d’indice k = n qui vaut anπ si n ≠ 0
(question précédente et résultat admis) et 2πa0 si n = 0.
Ainsi :

∀n ∈ N∗, αn(f) = an et α0(f) = 2a0.

11. On utilise la question précédente avec a0 = α0(f)/2, b0 = 0 et pour n ⩾ 1, an = αn(f) et
bn = βn(f). La somme est ici égale à g et on obtient donc :

∀n ∈ N, αn(f) = αn(g) et βn(f) = βn(g).

12. D’après la question 8., on a g ∈ C2π et f ∈ C2π donc on a g − f ∈ C2π.
De plus, par linéarité de l’intégrale, on a pour tout n ∈ N :

αn(g − f) = αn(g) − αn(f) = 0 et βn(g − f) = βn(g) − βn(f) = 0.

Par le résultat admis, on en déduit que g − f est la fonction nulle.
Ainsi :

pour tout réel x, g(x) = f(x).

13. Si f est une fonction paire alors la fonction x ↦ f(x) sin(nx) est impaire et la fonction
x↦ f(x) cos(nx) est paire.
On en déduit que pour tout n ∈ N :

βn(f) = 0 et αn(f) =
2

π ∫
π

0
f(x) cos(nx) dx.

14. Ci-dessous le graphe de f sur [−3π,3π] :
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Comme la fonction f est paire, on a :

pour tout n ∈ N, βn(f) = 0.

On a pour tout n ∈ N∗ :

αn(f) =
2

π ∫
π

0
x2 cos(nx) dx

Une double intégration par parties donne (les fonctions x↦ x2 et x ↦ cos(nx)
n2

sont de classe
C 2 sur [0, π]) :

∫
π

0
x2 cos(nx) dx = [x

2 sin(nx)
n

]
π

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

− 2
n ∫

π

0
x sin(nx) dx

= − 2
n
([−x cos(nx)

n
]
π

0

+ 1

n ∫
π

0
cos(nx) dx)

= 2π cos(nπ)
n2

+ 1

n
[sin(nx)

n
]
π

0

.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

Ainsi :

pour tout n ∈ N∗, αn(f) =
4 cos(nπ)

n2
= 4(−1)n

n2
.

On a aussi :

α0(f) =
2

π ∫
π

0
x2 dx = 2

3
π2.

Comme les séries ∑(αn(f)) et ∑(βn(f)) convergent absolument (série de Riemann d’exposant
2 > 1 et série nulle), d’après la question 5., la série trigonométrique ∑(αn(f)Cn + βn(f)Sn)
converge normalement sur R et donc d’après le résumé après la question 12., on a :

∀x ∈ R, f(x) = π2

3
+ 4

+∞

∑
n=1

(−1)n
n2

cos(nx).

15. Pour x = 0, on a f(0) = 02 = 0 donc par la question précédente,
π2

3
+ 4

+∞

∑
n=1

(−1)n
n2

= 0 d’où :

+∞

∑
n=1

(−1)n
n2

= −π
2

12
.
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Pour x = π, on a f(π) = π2 donc par la question précédente,
π2

3
+ 4

+∞

∑
n=1

(−1)n
n2
(−1)n = π2 donc :

+∞

∑
n=1

1

n2
= π2

6
.

On découpe cette somme en isolant les termes d’indice pair et ceux d’indice impair (ce qui est
possible car ces deux séries sont convergentes), on obtient :

+∞

∑
n=1

1

n2
=
+∞

∑
n=1

1

(2n)2
+
+∞

∑
n=0

1

(2n + 1)2
= 1

4

+∞

∑
n=1

1

n2
+
+∞

∑
n=0

1

(2n + 1)2
.

On en déduit :
+∞

∑
n=0

1

(2n + 1)2
= π2

6
− 1

4

π2

6
= π2

8
.

16. Dans l’exemple de la question 14, on a obtenu une série trigonométrique normalement conver-
gente sur R.
Cependant, sa somme f n’est pas dérivable sur R. En effet, f est dérivable à droite et gauche
en π avec pour nombres dérivés 2π (à gauche) et −2π (à droite).

La somme d’une série trigonométrique qui converge normalement sur R n’est pas
nécessairement une fonction dérivable sur R.

On suppose que les séries ∑nan et ∑nbn sont absolument convergentes.
- Pour tout n ∈ N, la fonction anCn + bnSn est de classe C 1 sur R et on a pour tout x ∈ R :

(anCn + bnSn)′(x) = −nan sin(nx) + nbn cos(nx).

- Les séries ∑an et ∑ bn convergent absolument car ∣an∣ = o(n∣an∣
±
⩾0

) et ∣bn∣ = o(n∣bn∣
±
⩾0

).

On en déduit (question 5.) que la série trigonométrique ∑(anCn + bnSn) converge norma-
lement et donc simplement sur R.

- Les séries ∑(−nan) et ∑nbn convergent absolument donc (question 5.) la série trigonomé-
trique ∑(anCn + bnSn)′ converge normalement et donc uniformément sur R.

On en déduit, par le théorème de classe C 1 des sommes de séries de fonctions, que la fonction
somme de la série trigonométrique ∑(anCn + bnSn) est une fonction de classe C 1 sur R et on
peut la dériver terme à terme.

La convergence absolue des séries ∑nan et ∑nbn est donc une condition suffisante.

17. On a vu à la question 2. que :

∀x ∈ R,
+∞

∑
n=0

sin(nx)
3n

= 3 sin(x)
10 − 6 cos(x)

.

Pour tout n ∈ N, on pose an = 0 et bn =
1

3n
.

Comme les séries ∑nan et ∑nbn convergent absolument (par le critère de d’Alembert pour

∑nbn car pour tout n ∈ N∗, n

3n
> 0 et lim

n→+∞

n + 1
3n+1

3n

n
= lim

n→+∞

1

3
(1 + 1

n
) = 1

3
< 1), d’après la

question précédente, on peut dériver terme à terme. On obtient alors en dérivant l’égalité
ci-dessus :

∀x ∈ R,
+∞

∑
n=0

n cos(nx)
3n

= 3

2

5 cos(x) − 3
(5 − 3 cos(x))2

.
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Problème 2 : Produits infinis (D’après Centrale PC 2024 )

Q1. Procédons par récurrence sur n ∈ N∗.
L’initialisation pour n = 1 est claire car les deux membres de l’inégalité donnent ∣x1∣.
Soit n ∈ N∗. Supposons l’inégalité vérifiée au rang n et montrons-la au rang n + 1.
Soit x1, . . . , xn+1 n + 1 réels. On a :

∣(
n+1

∏
k=1

(1 + xk)) − 1∣ = ∣(
n

∏
k=1

(1 + xk)) − 1 + xn+1

n

∏
k=1

(1 + xk)∣

⩽ ∣(
n

∏
k=1

(1 + xk)) − 1∣ + ∣xn+1

n

∏
k=1

(1 + xk)∣ (inégalité triangulaire)

⩽ (
n

∏
k=1

(1 + ∣xk∣)) − 1 + ∣xn+1∣
n

∏
k=1

(1 + ∣xk∣) (hypothèse de récurrence et IT)

⩽ (1 + ∣xn+1∣) (
n

∏
k=1

(1 + ∣xk)) − 1

⩽ (
n+1

∏
k=1

(1 + ∣xk∣)) − 1.

On en déduit que pour tout n ∈ N∗ :

pour tout (x1, . . . , xn) ∈ Rn, ∣(
n

∏
k=1

(1 + xk)) − 1∣ ⩽ (
n

∏
k=1

(1 + ∣xk∣)) − 1.

Q2. Pour tout x ∈ R, 1+x ⩽ ex (ce résultat s’obtient par une simple étude de la fonction x↦ ex−x−1
ou par convexité de exp - courbe située au-dessus de la tangente en 0 -).
Soit (x1, . . . , xn) ∈ [−1,+∞[n. On a donc pour tout k ∈ J1, nK :

0 ⩽ 1 + xk ⩽ exk .

En multipliant ces inégalités (à termes positifs), on obtient :

n

∏
k=1

(1 + xk) ⩽
n

∏
k=1

exk = exp(
n

∑
k=1

xk) .

Ainsi :

pour tout (x1, . . . , xn) ∈ [−1,+∞[n,
n

∏
k=1

(1 + xk) ⩽ exp(
n

∑
k=1

xk) .

Q3. Soit t ∈ C. On a par inégalité triangulaire puis croissance (pour tout k ⩾ 2, 0 < (k − 2)! ⩽ k! et
toutes les séries en jeu convergent) :

∣(1 + t) − et∣ = ∣1 + t −
+∞

∑
k=0

tk

k!
∣ = ∣−

+∞

∑
k=2

tk

k!
∣ ⩽

+∞

∑
k=2

∣t∣k
k!
⩽ ∣t∣2

+∞

∑
k=2

∣t∣k−2
(k − 2)!

= ∣t∣2
+∞

∑
k=0

∣t∣k
k!
= ∣t∣2e∣t∣.

Ainsi :
pour tout t ∈ C, ∣(1 + t) − et∣ ⩽ ∣t∣2e∣t∣.

Q4. On a par inégalité triangulaire :

∣an − bn∣ = ∣(a − b)
n−1

∑
k=0

akbn−1−k∣ ⩽ ∣a − b∣
n−1

∑
k=0

∣a∣k
°
⩽Mk

∣b∣n−1−k
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
Mn−1−k

⩽ nMn−1∣a − b∣.

∣an − bn∣ ⩽ nMn−1∣a − b∣.
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Q5. Soit n ∈ N∗, on pose M =max{∣1 + z

n
∣ , ∣e z

n ∣}.
D’après les questions précédentes :

∣(1 + z

n
)
n

− ez∣ = ∣(1 + z

n
)
n

− (e z
n )n∣ ⩽ nMn−1 ∣1 + z

n
− e z

n ∣ ⩽ nMn−1 ∣ z
n
∣
2

e
∣z∣
n .

De plus, on a ∣1 + z
n
∣ ⩽ 1 + ∣z∣n ⩽ e

∣z∣
n et ∣e z

n ∣ = ∣
+∞

∑
k=0

zk

nkk!
∣ ⩽ e

∣z∣
n (obtenu par inégalité triangulaire) donc

M ⩽ e
∣z∣
n .

Par conséquent :

∣(1 + z

n
)
n

− ez∣ ⩽ nMn−1 ∣ z
n
∣
2

e
∣z∣
n ⩽ ∣z∣

2

n
e
(n−1)∣z∣

n e
∣z∣
n = ∣z∣

2

n
e∣z∣.

Ainsi :

pour tout n ∈ N⋆, ∣(1 + z

n
)
n

− ez∣ ⩽ ∣z∣
2

n
e∣z∣.

Q6. On a :

∀n ∈ N∗,0 ⩽ ∣un − ez ∣ ⩽
∣z∣2
n

e∣z∣ et lim
n→+∞

∣z∣2
n

e∣z∣ = 0

donc par le théorème des gendarmes :

lim
n→+∞

∣un − ez ∣ = 0 c’est-à-dire lim
n→+∞

un = ez.

Q7. Pour N ⩾ 2, on a :

N

∏
n=2

(1 − 1

n2
) =

N

∏
n=2

((n − 1)(n + 1)
n2

) =

N

∏
n=2

(n − 1)

N

∏
n=2

n

N

∏
n=2

(n + 1)

N

∏
n=2

n

= 1

N

N + 1
2
= 1

2
+ 1

2N
.

Ainsi :

lim
N→+∞

N

∏
n=2

(1 − 1

n2
) = lim

N→+∞
(1
2
+ 1

2N
) = 1

2
.

On a donc établi que :

le produit infini ∏
n⩾2

(1 − 1

n2
) converge et

+∞

∏
n=2

(1 − 1

n2
) = 1

2
.

Et pour N ⩾ 2, en séparant le produit pour n = 2k (alors n + (−1)n+1 = 2k − 1) et n = 2k − 1 (alors
n + (−1)n+1 = 2k), on obtient :

2N

∏
n=2

(1 + (−1)
n+1

n
) = 1

(2N)!

2N

∏
n=2

(n + (−1)n+1) = 1

(2N)!

N

∏
k=1

(2k − 1)
N

∏
k=2

(2k) = 1

(2N)!
(2N − 1)! = 1

2
Ð→

N→+∞

1

2
.

De plus, on a :

2N+1

∏
n=2

(1 + (−1)
n+1

n
) =

2N

∏
n=2

(1 + (−1)
n+1

n
) × (1 + (−1)

2N+2

2N + 1
) = 1

2
(1 + 1

2N + 1
) Ð→
N→+∞

1

2
.

Par propriété des suites extraites d’indices pairs et impairs, on en déduit que :

N

∏
n=2

(1 + (−1)
n+1

n
) Ð→
N→+∞

1

2
.
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Ainsi :

le produit infini ∏
n⩾2

(1 + (−1)
n+1

n
) converge et

+∞

∏
n=2

(1 + (−1)
n+1

n
) = 1

2
.

Q8. Soit n ∈ N. On a par intégration par parties :

Wn+2 = ∫
π
2

0
(cosu)n+1 cosudu = [(cosu)n+1 sinu]

π
2

0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

−∫
π
2

0
(n + 1)(− sinu)(cosu)n sinudu

= ∫
π
2

0
(n + 1)(cosu)n sin2 udu = (n + 1)∫

π
2

0
(n + 1)(cosu)n(1 − cos2 u)du = (n + 1)Wn − (n + 1)Wn+2

d’où Wn+2 =
n + 1
n + 2

Wn.

Montrons alors par récurrence que pour tout n ∈ N, W2n+1 =
22n(n!)2
(2n + 1)!

.

Pour n = 0, on a W1 = ∫
π
2

0 cosudu = [sinu]
π
2
0 = 1 =

20(0!)2
1!

.

Soit n ∈ N. On suppose que W2n+1 =
22n(n!)2
(2n + 1)!

.

On a alors par l’égalité précédente et l’hypothèse de récurrence :

W2n+3 =
2n + 2
2n + 3

W2n+1 =
2(n + 1)
2n + 3

22n(n!)2
(2n + 1)!

= 2(n + 1)
2n + 2

2(n + 1)
2n + 3

22n(n!)2
(2n + 1)!

= 22n+2((n + 1)!)2
(2n + 3)!

.

On en déduit que :

pour tout n ∈ N, W2n+1 =
22n(n!)2
(2n + 1)!

.

Q9. On utilise la formule de Stirling :

n! ∼
n→+∞

√
2πn(n

e
)
n

et (2n)! ∼
n→+∞

√
2π(2n) (2n

e
)
2n

.

Ainsi :
W2n+1 =

22n

(2n + 1)
(n!)2
(2n)!

∼
n→+∞

22n

(2n)
2πn(n/e)2n

2
√
πn(2n/e)2n

∼
n→+∞

1

2

√
π

n
.

W2n+1 ∼
n→+∞

1

2

√
π

n
.

Pour tout n ∈ N∗, on a :

n

∏
k=1

(1 + 1

4k2 − 1
) =

n

∏
k=1

4k2

(2k − 1)(2k + 1)
= 4n(n!)2

n

∏
k=1

(2k)(2k)

(2n)!(2n + 1)!
= (2n + 1)W 2

2n+1 ∼
n→+∞

π

2
.

Ainsi :

∏
n⩾1

(1 + 1

4n2 − 1
) converge et

+∞

∏
n=1

(1 + 1

4n2 − 1
) = π

2
.

Q10. Pour tout N ⩾ n, d’après Q2 (sachant que pour tout p ∈ N, −P (Ap) ⩾ −1), on a :

0 ⩽
N

∏
p=n

(1 − P (Ap)) ⩽ exp(
N

∑
p=n

−P (Ap))

9



La série ∑P (Ap) étant divergente et à termes positifs, on en déduit que lim
N→+∞

N

∑
n=p

P (Ap) = +∞.

Par conséquent :

lim
N→+∞

exp(
N

∑
p=n

−P (Ap)) = 0.

On conclut avec le théorème d’encadrement que :

∏
p⩾n

(1 − P (Ap)) converge et
+∞

∏
p=n

(1 − P (Ap)) = 0.

Q11. La suite (Bn)n∈N définie par Bn = ⋃
p⩾n

Ap est décroissante pour l’inclusion donc par continuité

décroissante, on a :

P (⋂
n∈N
⋃
p⩾n

Ap) = lim
n→+∞

P (⋃
p⩾n

Ap) .

Or pour tout n ∈ N :

P (⋃
p⩾n

Ap) = 1 − P (⋂
p⩾n

Ap)

et par continuité décroissante appliquée à la suite (Cq)q⩾n où Cq =
q

⋂
p=n

Ap, décroissante pour l’inclusion,

on obtient :

P (⋂
p⩾n

Ap) = lim
q→+∞

P (
q

⋂
p=n

Ap) =
indep.

lim
q→+∞

q

∏
p=n

P (Ap) =
+∞

∏
p=n

(1 − P (Ap)) =
Q10

0.

Ainsi :

P (⋂
n∈N
⋃
p⩾n

Ap) = lim
n→+∞

(1 − P (⋂
p⩾n

Ap)) = 1.

Q12. Soit x ∈ S et n ∈ N∗.

Qn+1(x) −Qn(x) =
⎛
⎜⎜
⎝

n

∏
k=1

(1 + ∣fk(x)∣
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
⩾0

)
⎞
⎟⎟
⎠
(1 + ∣fn+1(x)∣ − 1)

⩽
Q2

exp(
n

∑
k=1

∣fk(x)∣) ∣fn+1(x)∣

⩽ exp (R0(x)) ∣fn+1(x)∣ car
n

∑
k=1

∣fk(x)∣ ⩽
+∞

∑
k=1

∣fk(x)∣ = R0(x).

Par le théorème de continuité de la somme d’une série de fonctions, sachant que pour tout n ∈ N∗,
∣fn∣ est continue sur S et ∑n⩾1 ∣fn∣ converge uniformément sur S, on en déduit que R0 est continue
sur le segment S donc R0 est bornée sur S.
Par conséquent, il existe M > 0 tel que pour tout x ∈ S, R0(x) ⩽M .
On a ainsi pour tout x ∈ S et n ∈ N∗ :

Qn+1(x) −Qn(x) ⩽ eR0(x)∣fn+1(x)∣ ⩽ eM ∣fn+1(x)∣.

Q13. Soit x ∈ S et n ∈ N∗. On a :

∣Pn+1(x) − Pn(x)∣ = ∣1 + fn+1(x) − 1∣ ∣
n

∏
k=1

(1 + fk(x)∣

⩽ ∣fn+1(x)∣
n

∏
k=1

(1 + ∣fk(x)∣) (inégalité triangulaire)

⩽ (1 + ∣fn+1(x)∣ − 1)Qn(x).
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Ainsi :
∣Pn+1(x) − Pn(x)∣ ⩽ Qn+1(x) −Qn(x).

Q14. Commençons par la convergence simple. Soit x ∈ S.
Par les questions précédentes, pour tout n ∈ N∗, 0 ⩽ ∣Pn+1(x) − Pn(x)∣ ⩽ eM ∣fn+1(x)∣.
La série ∑n⩾1 ∣fn+1(x)∣ est convergente car la série de fonctions ∑n⩾1 ∣fn∣ converge uniformément donc
simplement sur S.
Par comparaison par inégalité, on en déduit que la série ∑

n⩾1

(Pn+1(x) − Pn(x)) est absolument conver-

gente et donc convergente.
Comme il s’agit d’une série télescopique, on en déduit que la suite (Pn(x))n⩾1 est convergente et on
a donc :

lim
n→+∞

Pn(x) =
+∞

∏
k=1

(1 + fk(x)) = P (x).

Soit n ∈ N∗ et x ∈ S. En utilisant le télescopage on a :

+∞

∑
k=n

(Pk+1(x) − Pk(x)) = lim
N→+∞

PN(x) − Pn(x) = P (x) − Pn(x).

On a donc avec les inégalités des questions précédentes :

∣Pn(x) − P (x)∣ = ∣−
+∞

∑
k=n

(Pk+1(x) − Pk(x))∣ ⩽
+∞

∑
k=n

∣Pk+1(x) − Pk(x)∣ ⩽
+∞

∑
k=n

eM ∣fk+1(x)∣ = eMRn(x) ⩽ eM∥Rn∥S∞

en notant Rn(x) =
+∞

∑
k=n+1

∣fk(x)∣.

On en déduit que ∥Rn∥S∞ est un majorant de l’ensemble {∣Pn(x) − P (x)∣ , x ∈ S}.
Comme ∥Pn − P ∥S∞ est le plus petit des majorants de cet ensemble, on en déduit :

∥Pn − P ∥S∞ ⩽ eM∥Rn∥S∞.

Comme lim
n→+∞

∥Rn∥S+∞ = 0 car la série ∑∣fn∣ converge uniformément sur S, on en déduit par le théorème
des gendarmes que :

lim
n→+∞

∥Pn − P ∥∞ = 0.

Ainsi :
la suite (Pn)n∈N∗ converge uniformément vers P sur S.

Q15. Pour tout n ∈ N∗, Pn est continue sur S par produit (fini) de fonctions continues (toutes les
fonctions fk sont continues sur S) et la suite de fonctions (Pn)n⩾1 converge uniformément sur S donc
par le théorème de continuité de la limite d’une suite de fonctions :

la fonction P est continue sur S.

Soit x ∈ S. Soit n ∈ N∗. Comme pour tout k ∈ J1, nK, 1 + fk(x) > 0, on a :

ln(Pn(x)) =
n

∑
k=1

ln(1 + fk(x)).

De plus, la série ∑
k⩾1

ln(1 + fk(x)) est (absolument) convergente car :

— lim
k→+∞

fk(x) = 0 donc ∣ ln(1 + fk(x))∣ ∼
k→+∞

∣fk(x)∣ ⩾ 0,
— la série ∑k⩾1 ∣fk(x)∣ est convergente (par convergence simple de ∑k⩾1 ∣fk∣ sur S).

11



Par conséquent, lim
n→+∞

ln(Pn(x)) =
+∞

∑
k=1

ln(1 + fk(x)) = L(x) ∈ R.

Par continuité de la fonction exponentielle sur R, on en déduit que :

lim
n→+∞

Pn(x) = lim
n→+∞

eln(Pn(x)) = eL(x) > 0 donc P (x) > 0.

Ainsi :
la fonction P ne s’annule pas sur R.

Q16. On pose pour tout n ∈ N∗ et x ∈ R∗+, fn(x) = −e−nx
2 .

Appliquons la question précédente. Pour cela, il faut vérifier toutes les hypothèses sur la suite (fn).
Soit S = [a, b] un segment inclus dans R∗+.
On a :

— Pour tout n ∈ N∗ et x ∈ [a, b], fn(x) > −1 car e−nx
2 < 1.

— Pour tout n ∈ N∗, fn est continue sur S.
— Montrons que la série de fonctions ∑n⩾1 ∣fn∣ converge uniformément sur S.

On a pour tout n ∈ N∗, ∥fn∥S∞ = e−na
2 car la fonction ∣fn∣ est décroissante sur S.

De plus, la série ∑ e−na
2 = (e−a2)n converge (série géométrique avec ∣e−a2 ∣ = e−a2 < 1).

On en déduit que la série ∑n⩾1 fn converge normalement et donc uniformément sur S.
Par conséquent, d’après les deux questions précédentes, f est bien définie et continue sur S et ceci
pour tout segment S inclus dans R∗+, donc :

f est définie et continue sur R∗+.

Q17. Soit x et y deux réels tels que 0 < x ⩽ y.
Pour tout n ∈ N∗, −nx2 ⩾ −ny2 donc 1 − e−nx2 ⩾ 1 − e−ny2 ⩾ 0, donc en multipliant ces inégalités :

N

∏
n=1

(1 − e−nx2) ⩾
N

∏
n=1

(1 − e−ny2) d’où f(x) ⩾ f(y) par passage à la limite N → +∞

Donc :
f est décroissante sur R∗+.

Limite en 0. On applique la question Q2 :

∀x > 0 ∀N ∈ N∗, 0 ⩽
N

∏
n=1

(1 − e−nx2) ⩽ exp(
N

∑
n=1

−e−nx2) .

Or, pour tout x > 0,
+∞

∑
n=1

−e−nx2 = −e
−x2

1 − e−x2 (série géométrique de raison e−x
2 ∈ [0,1[) d’où par passage

à la limite quand N → +∞ :

∀x > 0 0 ⩽ f(x) ⩽ exp( −e
−x2

1 − e−x2 ) .

Or, lim
x→0+

−e−x2

1 − e−x2 = −∞ d’où lim
x→0+

exp( −e
−x2

1 − e−x2 ) = 0.

On obtient donc par le théorème des gendarmes :

lim
x→0+

f(x) = 0.

Limite en +∞. On applique la question Q1 puis Q2 :

∀x > 0, ∀n ∈ N∗, ∣(
n

∏
k=1

(1 − e−kx2)) − 1∣ ⩽ (
n

∏
k=1

1 + ∣−e−kx2 ∣) − 1 ⩽ exp(
n

∑
k=1

e−kx
2) − 1.
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Par passage à la limite quand n→ +∞, en utilisant
+∞

∑
k=1

e−kx
2 = e−x

2

1 − e−x2 , on obtient :

∀x > 0, ∣f(x) − 1∣ ⩽ exp( e−x
2

1 − e−x2 ) − 1.

Or, lim
x→+∞

e−x
2

1 − e−x2 = 0 donc lim
x→+∞

exp( e−x
2

1 − e−x2 ) = 1 d’où par le théorème des gendarmes :

lim
x→+∞

∣f(x) − 1∣ = 0 soit lim
x→+∞

f(x) = 1.

Q18. Soit n ∈ N∗. La fonction Pn est dérivable en tant que produit (fini) de fonctions dérivables et

on a par dérivation du produit Pn(x) =
n

∏
k=1

(1 + fk(x)) :

∀x ∈ S, P ′(x) =
n

∑
k=1

f ′k(x)
n

∏
ℓ=1
ℓ≠k

(1 + fℓ(x)) =
n

∑
k=1

f ′k(x)
Pn(x)

1 + fk(x)
= Pn(x)

n

∑
k=1

f ′k(x)
1 + fk(x)

.

Pour tout n ∈ N⋆ et x ∈ S, P ′n(x) = Pn(x)
n

∑
k=1

f ′k(x)
1 + fk(x)

.

Q19. Notons pour x ∈ S, T (x) =
+∞

∑
k=1

f ′k(x)
1 + fk(x)

et pour n ∈ N∗, Tn(x) =
n

∑
k=1

f ′k(x)
1 + fk(x)

.

On sait par les questions 14 et 15 que la suite (Pn) converge uniformément sur S vers P et les
fonctions Pn (pour tout n ∈ N∗) et P sont continues sur le segment S donc elles sont bornées sur S.
Ainsi, la suite (Pn) converge vers P dans l’espace vectoriel normé (B(S,R), ∥.∥S∞).
De même, la suite (Tn) converge uniformément sur S vers T et les fonctions Tn (pour tout n ∈ N∗)
sont continues sur S (par somme finie puisque les fonctions fn sont de classe C1 et 1+ fn ne s’annule
pas sur S) et donc la fonction T est aussi continue sur S (par le théorème de continuité de la limite).
Ainsi, la suite (Tn) converge vers T dans l’espace vectoriel normé (B(S,R), ∥.∥S∞).
Par produit, on en déduit que (PnTn) converge vers PT dans l’espace vectoriel normé (B(S,R), ∥.∥S∞)
donc la suite (PnTn) converge uniformément vers PT sur S.
On peut maintenant appliquer le théorème de dérivation de la limite d’une suite de fonctions :

— pour tout n ∈ N∗, Pn est de classe C1 sur S,
— la suite (Pn) converge simplement sur S vers P ,
— la suite (P ′n) converge uniformément sur S vers PT.

Par conséquent, P = lim
n→+∞

Pn est de classe C1 sur S et pour tout x ∈ S, P ′(x) = P (x)T (x) et comme

P (x) ≠ 0 d’après Q15, on a
P ′(x)
P (x)

= T (x).

Ainsi :

P est de classe C1 sur S et ∀x ∈ S, P ′(x)
P (x)

=
+∞

∑
n=1

f ′n(x)
1 + fn(x)

.

Q20. D’après la formule du binôme de Newton, on a :

Pn(X) =
1

2i

2n+1

∑
k=0

(2n + 1
k
)( ik

(2n + 1)k
Xk − (−i)k

(2n + 1)k
Xk)

= 1

2i
(i

2n+1 − (−i)2n+1
(2n + 1)2n+1

X2n+1 +R(X)) avec R ∈ R2n[X]

= (−1)n
(2n + 1)2n+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≠0

X2n+1 +R(X).
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Donc :
Pn est un polynôme de degré 2n + 1.

Q21. Soit k ∈ J0,2nK.

2iPn(xk) = (1 +
ixk

2n + 1
)
2n+1

− (1 − ixk

2n + 1
)
2n+1

=
⎛
⎝
cos ( kπ

2n+1
) + i sin ( kπ

2n+1
)

cos ( kπ
2n+1
)

⎞
⎠

2n+1

−
⎛
⎝
cos ( kπ

2n+1
) − i sin ( kπ

2n+1
)

cos ( kπ
2n+1
)

⎞
⎠

2n+1

donc

2iPn(xk) =
1

cos2n+1 ( kπ
2n+1
)
(e ikπ

2n+1 (2n+1) − e −ikπ2n+1 (2n+1))

= 1

cos2n+1 ( kπ
2n+1
)
(eikπ − e−ikπ) = 0.

Donc xk est une racine de Pn pour tout k ∈ J0,2nK.
De plus, k ↦ xk est injective (par injectivité de la fonction tangente sur [0, π2 [∪]

π
2 , π[) donc l’ensemble

{xk, k ∈ J0,2nK} contient 2n + 1 racines distinctes de Pn qui est un polynôme de degré 2n + 1 ; on a
donc toutes les racines de Pn.

L’ensemble des racines de Pn est donc {xk ∣k ∈ J0,2nK}.

Q22. On regroupe les racines xk deux à deux, en remarquant que pour 1 ⩽ k ⩽ n, 2n+1−k ∈ Jn+1,2nK
et on a :

x2n+1−k = (2n + 1) tan(
(2n + 1)π − kπ

2n + 1
) = (2n + 1) tan(π − kπ

2n + 1
) = −(2n + 1) tan( kπ

2n + 1
) = −xk.

D’après la question précédente, on peut factoriser P dans C[X] de la façon suivante : il existe µ ∈ C
tel que

Pn(X) = µ
2n

∏
k=0

(X − xk) = µ(X − x0)
n

∏
k=1

(X − xk)
2n

∏
k=n+1

(X − xk)

= µX
n

∏
k=1

(X − xk)
n

∏
k=1

(X − x2n+1−k
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=−xk

) (changement d’indice)

= µX
n

∏
k=1

(X2 − x2
k)

= µ
n

∏
k=1

(−x2
k)X

n

∏
k=1

X2 − x2
k

−x2
k

(pour tout k ∈ J1, nK, xk ≠ 0)

= µ(−1)n
n

∏
k=1

x2
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=λ

X
n

∏
j=1

(1 − X2

x2
j

) .

Il suffit de poser λ = µ(−1)n
n

∏
k=1

x2
k pour obtenir l’égalité demandée.

Il existe λ ∈ C tel que Pn(X) = λX
n

∏
j=1

(1 − X2

x2
j

) .

Q23. En reprenant la définition de Pn, sachant que P ′n(0) est le coefficient devant X dans Pn(X),
on a :

P ′n(0) =
1

2i
(2n + 1

1
)i

1 − (−i)1
2n + 1

= 1.
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De plus en dérivant Pn avec l’expression de la question Q22, en notant Qn(X) =
n

∏
j=1

(1 − X2

x2
j

), on

obtient :
P ′n(X) = λ (XQ′n(X) +Qn(X)) d’où P ′n(0) = λQn(0) = λ.

Donc λ = P ′n(0) = 1 d’où le résultat.

Pn(X) =X
n

∏
j=1

(1 − X2

x2
j

) .

Q24. Soit x ∈ R. D’après la question Q6 :

lim
n→+∞

(1 + ix

2n + 1
)
2n+1

= eix et lim
n→+∞

(1 − ix

2n + 1
)
2n+1

= e−ix.

Ainsi :
lim

n→+∞
Pn(x) =

1

2i
(eix − e−ix) = sin(x)

Donc :

la suite de fonctions polynomiales (Pn) converge simplement vers la fonction sinus sur R.

Q25. Soit t ∈ R+ et k ∈ N tel que k ⩾ 2.

On note xj(t) = (2⌊t⌋ + 1) tan(
jπ

2⌊t⌋ + 1
).

— Cas 1 : t < k − 1
On a vk(t) = vk−1(t) = P⌊t⌋(x). L’inégalité est claire.

— Cas 2 : k − 1 ⩽ t < k
On a ⌊t⌋ = k − 1 et xj(t) = xj(k − 1). Donc :

vk(t) = P⌊t⌋(x) = Pk−1(x) = x
k−1

∏
j=1

(1 − x2

[xj(k − 1)]2
) (d’après Q23)

et

vk−1(t) = x
k−1

∏
j=1

(1 − x2

xj(t)2
) = vk(t).

L’inégalité demandée est alors évidente.
— Cas 3 : t ⩾ k

Alors :

vk(t) = x
k

∏
j=1

(1 − x2

xj(t)2
) = vk−1(t)(1 −

x2

xk(t)2
)

donc :

∣vk(t) − vk−1(t)∣ = ∣vk−1(t)∣ ∣(1 −
x2

xk(t)2
) − 1∣ = ∣vk−1(t)∣

x2

xk(t)2
.

Or pour tout u ∈ [0, π2 [, tanu ⩾ u (inégalité des accroissements finis à partir de l’inégalité
tan′(u) = 1 + tan2(u) ⩾ 1) d’où xk(t) ⩾ kπ.
Par conséquent,

∣vk(t) − vk−1(t)∣ = ∣vk−1(t)∣
x2

xk(t)2
⩽ ∣vk−1(t)∣

x2

k2π2
.

Pour tout t ∈ R+ et k ∈ N tel que k ⩾ 2, ∣vk(t) − vk−1(t)∣ ⩽
x2

k2π2
∣vk−1(t)∣.

15



Q26. Soit t ∈ R+ et k ∈ N∗.
Premier cas : t ⩾ k
On applique l’inégalité triangulaire puis l’inégalité de la question 2 :

∣vk(t)∣ = ∣x∣
k

∏
j=1

∣1 − x2

xj(t)2
∣ ⩽ ∣x∣

k

∏
j=1

(1 + x2

xj(t)2
) ⩽ ∣x∣ exp(

k

∑
j=1

x2

xj(t)2
) .

Or, xj(t)2 ⩾ (jπ)2 (cf question précédente) et par croissance de la fonction exp :

∣vk(t)∣ ⩽ ∣x∣ exp(
k

∑
j=1

x2

xj(t)2
) ⩽ ∣x∣ exp(

k

∑
j=1

x2

(jπ)2
) .

Deuxième cas : t < k
On utilise le premier cas pour obtenir la première inégalité, puis la croissance de exp :

∣vk(t)∣ = ∣P⌊t⌋(x)∣ =
RRRRRRRRRRR
x
⌊t⌋

∏
j=1

(1 − x2

xj(t)2
)
RRRRRRRRRRR
= ∣v⌊t⌋(t)∣ ⩽

cas 1
∣x∣ exp

⎛
⎝

⌊t⌋

∑
j=1

x2

(jπ)2
⎞
⎠
⩽ ∣x∣ exp(

k

∑
j=1

x2

(jπ)2
) .

Dans tous les cas :

pour tout t ∈ R+ et k ∈ N⋆, ∣vk(t)∣ ⩽ ∣x∣ exp(
k

∑
j=1

x2

(jπ)2
) .

Q27. Par les inégalités obtenues aux deux questions précédentes, on a :

∀k ⩾ 2,∀t ∈ R+, ∣vk(t) − vk−1(t)∣ ⩽
x2

k2π2
∣vk−1(t)∣

⩽ ∣x∣
3

k2π2
exp(

k−1

∑
j=1

x2

(jπ)2
)

⩽ ∣x∣
3

k2π2
exp(

+∞

∑
j=1

x2

(jπ)2
) (série à termes positifs convergente).

On en déduit :

∀k ⩾ 2, 0 ⩽ ∥vk − vk−1∥R+∞ ⩽
∣x∣3
k2π2

exp(
+∞

∑
j=1

x2

(jπ)2
) .

Or, la série ∑
k⩾2

1

k2

∣x∣3
π2

exp(
+∞

∑
j=1

x2

(jπ)2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
constante

converge (série de Riemann avec 2 > 1).

Par comparaison, on en déduit que la série ∑
k⩾2

∥vk − vk−1∥R+∞ est convergente ce qui signifie que la série

de fonctions ∑
k⩾2

(vk − vk−1) converge normalement sur R+.

Ainsi :
la série de fonctions ∑

k⩾2
(vk − vk−1) converge uniformément sur R+.

Q28. Soit k ∈ N∗. On a :

tan( jπ

2⌊t⌋ + 1
) ∼

t→+∞

jπ

2⌊t⌋ + 1
donc lim

t→+∞
tan( jπ

2⌊t⌋ + 1
)(2⌊t⌋ + 1) = jπ

D’où par produit fini de limites finies :

lim
t→+∞

vk(t) = lim
t→+∞

x
k

∏
j=1

⎛
⎜⎜
⎝
1 − x2

(tan ( jπ
2⌊t⌋+1) (2⌊t⌋ + 1))

2

⎞
⎟⎟
⎠
= x

k

∏
j=1

(1 − x2

(jπ)2
) .
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Soit t ∈ R+. Pour tout entier k > t, vk(t) = P⌊t⌋(x) donc

lim
k→+∞

vk(t) = P⌊t⌋(x).

Ainsi :

pour tout k ∈ N⋆, lim
t→+∞

vk(t) = x
k

∏
j=1

(1 − x2

(jπ)2
) et, pour tout t ∈ R+, lim

k→+∞
vk(t) = P⌊t⌋(x).

Q29. Notons pour t ∈ R+ :

V (t) =
+∞

∑
k=2

(vk(t) − vk−1(t)) = lim
k→+∞

vk(t) − v1(t) =
Q28

P⌊t⌋(x) − v1(t).

D’après la question Q24, lim
t→+∞

P⌊t⌋(x) = sin(x) et lim
t→+∞

v1(t) = x(1 −
x2

π2
) donc :

lim
t→+∞

V (t) = sin(x) − x(1 − x2

π2
) .

Calculons maintenant lim
t→+∞

V (t) à l’aide du théorème de la double limite :
— pour chaque k ⩾ 2, d’après la question précédente :

lim
t→+∞

vk(t) − vk−1(t) = x
k

∏
j=1

(1 − x2

(jπ)2
) − x

k−1

∏
j=1

(1 − x2

(jπ)2
) ,

— la série de fonctions ∑
k⩾2

(vk − vk−1) converge uniformément sur R+ et +∞ est une borne de R+.

Donc :

lim
t→+∞

V (t) = lim
t→+∞

+∞

∑
k=2

vk(t) − vk−1(t) =
+∞

∑
k=2

lim
t→+∞

(vk(t) − vk−1(t))

=
+∞

∑
k=2

x(
k

∏
j=1

(1 − x2

(jπ)2
) −

k−1

∏
j=1

(1 − x2

(jπ)2
))

= x
+∞

∏
j=1

(1 − x2

(jπ)2
) − x(1 − x2

π2
) par télescopage.

Ainsi :

sin(x) − x(1 − x2

π2
) = lim

t→+∞
V (t) = x

+∞

∏
j=1

(1 − x2

(jπ)2
) − x(1 − x2

π2
) .

D’où :

sin(x) = x
+∞

∏
j=1

(1 − x2

(jπ)2
) .

Q30. On va appliquer le résultat de la question 19 avec S = [−π
2 ,

π
2
] et pour tout n ∈ N∗, fn ∶ x↦ −

x2

(nπ)2
.

Commençons par vérifier que (fn) vérifie bien les hypothèses de la question 19.

— Pour tout n ∈ N∗, pour tout x ∈ S, on a
x2

π2
⩽ 1

4
donc fn(x) ⩾

−1
4n2
> −1.

— La série de fonctions ∑
n⩾1

∣fn∣ converge uniformément sur S car pour tout n ∈ N∗, ∥fn∥S∞ = 1
4n2

(par parité et croissance de ∣fn∣ sur [0, π4 ]) donc la série ∑
n⩾1

∥fn∥S∞ converge ce qui signifie que

la série de fonctions ∑
n⩾1

∣fn∣ converge normalement donc uniformément sur S.
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— La série de fonctions ∑
n⩾1

f ′n
1 + fn

converge uniformément sur S car

∀n ∈ N∗,∀x ∈ S, ∣ f ′n(x)
1 + fn(x)

∣ = ∣ −2x
(nπ)2 − 1

∣ ⩽ π

(nπ)2 − 1

Donc :

∀n ∈ N∗, 0 ⩽ ∥ f ′n
1 + fn

∥
S

∞

⩽ π

(nπ)2 − 1
∼

n→+∞

1

π

1

n2
.

On en déduit la convergence normale sur S (donc uniforme) de la série de fonctions ∑
n⩾1

f ′n
1 + fn

.

On peut donc maintenant appliquer le résultat de la question 19 avec pour x ∈ S ∖ {0} :

P (x) =
+∞

∏
n=1

(1 + fn(x)) =
+∞

∏
n=1

(1 − x2

(nπ)2
) = sinx

x

et donc P ′(x) = x cosx − sinx
x2

:

P ′(x)
P (x)

=
+∞

∑
n=1

f ′n(x)
1 + fn(x)

soit
x cos(x) − sin(x)

x sinx
=
+∞

∑
n=1

−2x
(nπ)2 − x2

.

On en déduit :

pour tout x ∈ [−π
2 ,

π
2
] − {0}, cos(x)

sin(x)
= 1

x
−
+∞

∑
j=1

2x

(jπ)2 − x2
.

Q31. Utilisons l’indication. On a x2 sin(x) ∼
x→0

x3 et

x cos(x) − sin(x) =
x→0

x(1 − x2

2
+ o (x2)) − x + x3

6
+ o (x3) =

x→0

−x3

3
+ o (x3)

Donc :
lim
x→0

x cos(x) − sin(x)
x2 sin(x)

= −1
3
.

De plus pour tout x ∈ [−π
2 ,

π
2
] ∖ {0}, en utilisant la question précédente :

x cos(x) − sin(x)
x2 sin(x)

= 1

x
(cos(x)
sin(x)

− 1

x
) = −

+∞

∑
j=1

2

(jπ)2 − x2
.

Or, la série de fonctions ∑
j⩾1

gj où gj(x) =
2

(jπ)2 − x2
converge uniformément sur ]0, π2 ] car pour tout

j ∈ N∗, ∥gj∥
]0,π

2
]

∞ = 2

(jπ)2−π2

4

(puisque ∣gj ∣ est croissante sur ]0, π2 ]) d’où la convergence normale de la

série ∑
j⩾1

gj. De plus, pour tout j ∈ N∗, gj a une limite finie en 0 donc par le théorème de la double

limite :
lim
x→0+

+∞

∑
j=1

2

(jπ)2 − x2
=
+∞

∑
j=1

lim
x→0+

2

(jπ)2 − x2
=
+∞

∑
j=1

2

(jπ)2
.

D’où :
−1
3
= lim

x→0+
x cos(x) − sin(x)

x2 sin(x)
= −

+∞

∑
j=1

2

(jπ)2
.

Ainsi :
+∞

∑
n=1

1

n2
= π2

6
.
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