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Problème 1 : Matrices tridiagonales symétriques et matrices blocs
(niveau 1)

Dans tout cet exercice, n désigne un entier naturel non nul.

Objectifs
Dans la partie I, on détermine les éléments propres d’une matrice tridiagonale symétrique réelle
particulière. Dans la partie II, on démontre des résultats sur les matrices par blocs.

Partie I – Éléments propres d’une matrice

I.1 – Localisation des valeurs propres

On considère une matrice A = ((ai,j))1⩽i,j⩽n ∈ Mn(C). Soient une valeur propre λ ∈ C de A et un

vecteur propre associé x =
⎛
⎜
⎝

x1

⋮

xn

⎞
⎟
⎠
∈Mn,1(C) ∖ {0Mn,1(C)}.

1. Montrer que pour tout i ∈ J1, nK, on a : λxi =
n

∑
j=1

ai,jxj.

2. Soit i0 ∈ J1, nK tel que ∣xi0 ∣ = max
j∈J1,nK

∣xj ∣. Montrer que : ∣λ∣ ⩽
n

∑
j=1

∣ai0,j ∣.

En déduire que :

∣λ∣ ⩽ max
i∈J1,nK

{
n

∑
j=1

∣ai,j ∣} .

Soient α et β deux nombres réels. On considère la matrice An(α,β) ∈Mn(R) définie par:

An(α,β) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α β 0 ⋯ 0
β α β ⋱ ⋮

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ β α β
0 ⋯ 0 β α

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3. Soit λ ∈ R une valeur propre de An(α,β). Montrer que :

∣λ∣ ⩽ ∣α∣ + 2∣β∣.

I.2 – Calcul des valeurs propres de An(α,β)

4. En utilisant la question précédente, montrer que pour toute valeur propre λ de An(0,1), il
existe θ ∈ [0, π] tel que λ = 2 cos(θ).
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On note χAn(0,1) le polynôme caractéristique de An(0,1) et Un le polynôme χAn(0,1)(2X).

5. Établir, pour n ⩾ 3, une relation entre χAn(0,1), χAn−1(0,1) et χAn−2(0,1).

En déduire, pour n ⩾ 3, une relation entre Un, Un−1 et Un−2.

6. Montrer par récurrence sur n que pour tout θ ∈]0, π[ :

Un(cos(θ)) =
sin((n + 1)θ)

sin(θ)
.

7. Déduire de la question précédente que l’ensemble des valeurs propres de An(0,1) est

{2 cos(
jπ

n + 1
) ; j ∈ J1, nK}. Déterminer la multiplicité des valeurs propres et la dimension des

sous-espaces propres associés.

Considérons j ∈ J1, nK et posons θj =
jπ

n + 1
.

8. Soit x =
⎛
⎜
⎝

x1

⋮

xn

⎞
⎟
⎠

un vecteur non nul de Mn,1(R).

Montrer que x est un vecteur propre de An(0,1) associé à la valeur propre 2 cos(θj) si et
seulement si :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−2 cos(θj)x1 + x2 = 0
∀k ∈ J2, n − 1K, xk−1 − 2 cos(θj)xk + xk+1 = 0

xn−1 − 2 cos(θj)xn = 0
.

Soit E l’ensemble des suites réelles (uk)k∈N vérifiant la relation de récurrence:

∀k ∈ N∗, uk−1 − 2 cos(θj)uk + uk+1 = 0.

9. Déterminer l’ensemble des suites (uk)k∈N ∈ E telles que u0 = un+1 = 0.

10. En déduire l’espace propre de An(0,1) associé à la valeur propre 2 cos(θj).

11. En déduire, pour tout (α,β) ∈ R2, l’ensemble des valeurs propres de An(α,β) et les espaces
propres associés. On distinguera le cas β ≠ 0 du cas β = 0.

Partie II – Matrices par blocs

On considère A, B, C et D des matrices de Mn(C) telles que C et D commutent.

12. Calculer (A B
C D

)(
D 0n
−C In

).

L’objectif des trois prochaines questions est de démontrer la relation :

det((A B
C D

)) = det(AD −BC). (1)
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13. Montrer l’égalité (1) dans le cas où D est inversible.

14. On ne suppose plus D inversible. Montrer qu’il existe p0 ∈ N∗ tel que pour tout p ⩾ p0, la

matrice D +
1

p
In soit inversible.

15. En déduire que l’égalité (1) est également vraie dans le cas où D n’est pas inversible.

On admettra que les fonctions f ∶ x ↦ det((A B
C D + xIn

)) et g ∶ x ↦ det(A(D + xIn) − BC)

sont continues en 0.

Considérons une matrice M ∈Mn(C) et formons la matrice :

N = (
0n In
M 0n

) .

16. Montrer que Sp(N) = {µ ∈ C ; µ2 ∈ Sp(M)}.

17. Soient µ ∈ Sp(N) et x =
⎛
⎜
⎝

x1

⋮

xn

⎞
⎟
⎠
∈Mn,1(C) un vecteur propre de M associé à la valeur propre µ2.

Montrer que le vecteur ( x
µx
) ∈M2n,1(C) est vecteur propre de N associé à la valeur propre µ.

18. Montrer que si M est diagonalisable et inversible, alors N est également diagonalisable et
inversible.

Problème 2 : Deux démonstrations du théorème de Cayley-Hamilton
(niveau 2)

Méthode 1 : par les matrices compagnons (version endomorphisme)

Soit E un K-espace vectoriel de dimension finie n non nulle. Soit f ∈L (E).

Q1 Dans cette question uniquement, on suppose que x est un vecteur de E tel que la famille
B = (x, f(x), . . . , fn−1(x)) est une base de E.

a) Déterminer la matrice de f dans la base B.

b) Calculer le polynôme caractéristique de f .

c) En déduire χf(f)(x).
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Q2 On revient au cas général, en supposant que x est un vecteur quelconque de E non nul.

a) Montrer qu’il existe un entier k compris entre 1 et n tel que F = (x, f(x), . . . , fk−1(x))
est libre et Vect(F ) est stable par f .

b) Justifier qu’il existe une base B = (e0, . . . , en−1) de E telle que pour tout j ∈ J0, k − 1K,
ej = f j(x) et déterminer la matrice de f dans cette base.

c) Montrer que χf(f)(x) = 0E.

Q3 Conclure.

Méthode 2 : par trigonalisation (version matricielle)

Soit n ∈ N∗. Soit A ∈Mn(K).
On voit A comme une matrice à cœfficients complexes et on note u l’endomorphisme de Cn canoniquement
associé à A.

Q4 Montrer qu’il existe une base B = (e1, . . . , en) de Cn telle que T = MatB(u) est triangulaire
supérieure.

On note λ1, . . . , λn les cœfficients diagonaux de T .

Pour tout k ∈ J1, nK, on pose Pk =
k

∏
i=1

(X − λi).

Q5 Donner l’expression de χA en fonction de λ1, . . . , λn.

Q6 Montrer que pour tout x ∈ Vect(e1), P1(u)(x) = 0Cn .

Q7 Soit k ∈ J1, n − 1K. On suppose P(k) : ∀x ∈ Vect(e1, . . . , ek), Pk(u)(x) = 0Cn .

a) Montrer que pour tout x ∈ Vect(e1, . . . , ek), Pk+1(u)(x) = 0Cn .

b) Montrer que (u − λk+1idCn)(ek+1) ∈ Vect(e1, . . . , ek).

c) En déduire que Pk+1(u)(ek+1) = 0Cn .

d) En déduire P(k + 1) : ∀x ∈ Vect(e1, . . . , ek+1), Pk+1(u)(x) = 0Cn .

Q8 Conclure.
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