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Pour le jeudi 4 décembre

PROBLEME 1 : MATRICES TRIDIAGONALES SYMETRIQUES ET MATRICES BLOCS
(NIVEAU 1)

Dans tout cet exercice, n désigne un entier naturel non nul.

Objectifs
Dans la partie I, on détermine les éléments propres d’'une matrice tridiagonale symétrique réelle
particuliére. Dans la partie II, on démontre des résultats sur les matrices par blocs.

Partie I — Eléments propres d’une matrice

I.1 — Localisation des valeurs propres

On considére une matrice A = ((a;j)) ¢ ;c, € #x(C). Soient une valeur propre A € C de A et un
L1

vecteur propre associ¢ x =| | € #,1(C) {O(///n,l(C)}
xn

1. Montrer que pour tout i € [1,n], on a : A\z; = Zai,jmj.
j=1

n
2. Soit i € [1,n] tel que |z;| = 'H[haX]] |z;]. Montrer que : |A| < ) |ai, 1.
je[l,n j=1

En déduire que :

|\l € max {Z |a; ; }

i€[1,n] =1

Soient «v et [ deux nombres réels. On considére la matrice A, («, f) € 4, (R) définie par:

[e>REER

3. Soit A € R une valeur propre de A, («, 3). Montrer que :
Al < Jaf +2/3].

I.2 — Calcul des valeurs propres de A,(«,3)

4. En utilisant la question précédente, montrer que pour toute valeur propre A de A,(0,1), il
existe 0 € [0, 7] tel que A =2cos(6).



On note x4, (0,1y le polynéme caractéristique de A, (0,1) et U, le polynéme x4, (0,1)(2X).

5. Etablir, pour n > 3, une relation entre XAn(0,1)> XAn-1(0,1) €0 XA, 5(0,1)-

En déduire, pour n > 3, une relation entre U, U, _1 et U, _s.

6. Montrer par récurrence sur n que pour tout 6 €]0, [ :

sin((n+1)0) ‘

Un(cos(9)) = Sin(0)

7. Déduire de la question précédente que l'ensemble des valeurs propres de A, (0,1) est

{2 COS( ‘7+ 1) ;7 €1, n]]} Déterminer la multiplicité des valeurs propres et la dimension des
n
sous-espaces propres associés.

. . Jm
Considérons j € [1,n]| et posons 0; = .
J [[ ]] p J n+1
xy
8. Soit z =| : | un vecteur non nul de ., ;(R).
Tn
Montrer que = est un vecteur propre de A,(0,1) associé a la valeur propre 2cos(6;) si et
seulement si :
—-2cos(0)r + 2 =
Vke[2,n-1], zk1—2cos(b;)xp + Tpa1 =
Tp1 —2cos(0;)x, =

o O O

Soit E I'ensemble des suites réelles (uy)ren vérifiant la relation de récurrence:
VkeN*,  upq—2cos(0;)uy +upe =0.

9. Déterminer ’ensemble des suites (ug)ken € F telles que ug = 41 = 0.
10. En déduire I'espace propre de A,(0,1) associé a la valeur propre 2cos(6;).

11. En déduire, pour tout (a, ) € R2?, 'ensemble des valeurs propres de A, («,3) et les espaces
propres associés. On distinguera le cas § # 0 du cas 3 =0.

Partie II — Matrices par blocs

On considére A, B, C' et D des matrices de .#,(C) telles que C' et D commutent.

A B\(D 0,
12. Calculer (C’ D)(—C In)‘

L’objectif des trois prochaines questions est de démontrer la relation :

det((é g)) _ det(AD - BC). (1)

2



13. Montrer I’égalité (1) dans le cas ou D est inversible.

14. On ne suppose plus D inversible. Montrer qu’il existe py € N* tel que pour tout p > pg, la
matrice D + —1,, soit inversible.
p
15. En déduire que 'égalité (1) est également vraie dans le cas ou D n’est pas inversible.

A )) et g :x v~ det(A(D + z1,) - BC)

. B
On admettra que les fonctions f : x det((c D+al,

sont continues en Q.

Considérons une matrice M € .#,,(C) et formons la matrice :

0, I,
N= (M On) ’
16. Montrer que Sp(N) ={ueC; u? e Sp(M)}.

a1
17. Soient pe Sp(N) et x =| : | € #,1(C) un vecteur propre de M associé a la valeur propre p2.
Tn

Montrer que le vecteur (/ZU) € Mo,1(C) est vecteur propre de N associé a la valeur propre .

18. Montrer que si M est diagonalisable et inversible, alors N est également diagonalisable et
inversible.

PROBLEME 2 : DEUX DEMONSTRATIONS DU THEOREME DE CAYLEY-HAMILTON
(NIVEAU 2)

Méthode 1 : par les matrices compagnons (version endomorphisme)

Soit E' un K-espace vectoriel de dimension finie n non nulle. Soit f e Z(F).

Q1 Dans cette question uniquement, on suppose que z est un vecteur de E tel que la famille
B = (x,f(:v), . .,f"‘l(x)) est une base de E.

a) Déterminer la matrice de f dans la base A.
b) Calculer le polynéme caractéristique de f.

c¢) En déduire x¢(f)(x).



Q2 On revient au cas général, en supposant que x est un vecteur quelconque de E non nul.

a) Montrer qu'il existe un entier k& compris entre 1 et n tel que % = (x,f(x), . ,fk‘l(a:))
est libre et Vect(.#) est stable par f.

b) Justifier qu’il existe une base % = (60, . .,en_l) de E telle que pour tout j € [0,k - 1],
e; = f7(x) et déterminer la matrice de f dans cette base.

¢) Montrer que xs(f)(x) =0g.

Q3 Conclure.

Méthode 2 : par trigonalisation (version matricielle)

Soit n € N*. Soit A € #,,(K).
On voit A comme une matrice & coefficients complexes et on note u ’endomorphisme de C* canoniquement
associé a A.

Q4 Montrer qu’il existe une base Z = (ey,...,e,) de C" telle que T' = Matg(u) est triangulaire

supérieure.
On note Aq,..., \, les ccefficients diagonaux de T'.
k
Pour tout k € [1,n], on pose P, = [J(X - \)).
i=1
Q5 Donner 'expression de x4 en fonction de A\q,..., \,.

Q6 Montrer que pour tout x € Vect(ey), Pi(u)(x) = Ocn.

Q7 Soit k€ [[1,n—1]. On suppose Z(k) : Va € Vect(ey,...,ex), Pe(u)(x) = Ocn.

a) Montrer que pour tout = € Vect(eq, ..., er), Peri(u)(x) = 0cn.
b) Montrer que (u— Agy1iden)(egs1) € Vect(eq, ..., ex).
¢) En déduire que Pyyq(u)(egs1) = Ocn.

d) En déduire Z(k+1) : Vx e Vect(eq,...,exs1), Prr1(u)(z) = O0cn.

Q8 Conclure.



