- **6** Ballon sonde et stabilité On s'intéresse pour commencer à l'atmosphère terrestre. On considère l'air comme un gaz parfait diatomique de masse molaire M, et de température uniforme T_0 . Le champ de pesanteur, \vec{g} , est uniforme dans toute la zone de l'atmosphère étudiée. On travaille dans le référentiel terrestre, supposé galiléen, et on note (Oz) l'axe vertical ascendant.
- 1°) En l'absence de tout vent, quelle est l'équation locale vectorielle, faisant intervenir la pression, que l'on peut écrire en tout point de l'atmosphère étudiée ?
- 2°) Etablir la relation donnant la pression P en fonction de l'altitude z; on introduira le "facteur d'échelle", que l'on notera H.
- 3°) Etablir de même la relation donnant la masse volumique μ en fonction de l'altitude z.
- 4°) On considère un ballon sonde, de masse totale $m_b = 500$ g, considéré indéformable. Son volume total,
- $V_b = 500$ L, est donc invariable. Montrer qu'il existe une altitude d'équilibre z_{eq} pour ce ballon sonde. L'évaluer numériquement.
- 5°) Etudier qualitativement la stabilité de cet équilibre vertical.
- 6°) On étudie à présent les petits mouvements verticaux du ballon sonde autour de la position d'équilibre : on pose $z = z_{eq} + h$, avec $|h| \ll z_{eq}$. Déterminer la pulsation des petites oscillations.

Solution:

- 1. La relation fondamentale de la statique des fluides s'écrit, dans le référentiel terrestre : $\overrightarrow{\text{grad}}P = \mu \vec{g}$ en notant μ la masse volumique de l'air. Et avec le modèle du gaz parfait, l'équation d'état conduit à $\mu = \frac{PM}{RT_0}$. D'où $\overrightarrow{\text{grad}}P = \frac{PM}{RT_0}\vec{g}$.
- **2.** En projetant sur les axes (Ox) et (Oy), horizontaux, on obtient $\frac{\partial P}{\partial x} = 0$ et $\frac{\partial P}{\partial y} = 0$, donc P ne dépend que de z.

En projetant sur l'axe (Oz) imposé vertical ascendant, $\frac{\mathrm{d}P}{\mathrm{d}z} = -\frac{Mg}{RT_0}P$. On introduit le facteur d'échelle $H = \frac{RT_0}{Mg}$, d'où $\frac{dP}{P} = -\frac{dz}{H}$, qui s'intègre en : $P(z) = P(0) \exp(-z/H)$.

- 3. L'équation $\mu = \frac{PM}{RT_0}$ conduit à $\mu(z) = \mu(0) \exp\left(-\frac{z}{H}\right)$, avec $\mu(0) = \frac{P(0)M}{RT_0}$.

 4. On isole le ballon sonde, dans le référentiel terrestre, supposé galiléen; le théorème de la résultante dynamique s'écrit, en pro-
- **4.** On isole le ballon sonde, dans le référentiel terrestre, supposé galiléen; le théorème de la résultante dynamique s'écrit, en projection selon $\overrightarrow{e_z}$: $m_b \frac{\mathrm{d}^2 z}{\mathrm{d}t^2} = -m_b g + \mu(z) V_b g$.

L'équilibre z_{eq} correspond à $m_b = \mu(z_{eq})V_b$, d'où $\frac{m_b}{V_b} = \mu(0) \exp\left(-\frac{z_{eq}}{H}\right)$.

Puis $z_{eq} = H \ln \left(\frac{\mu(0) V_b}{m_b} \right) = \frac{R T_0}{M g} \ln \left(\frac{P(0) M V_b}{m_b R T_0} \right)$. Pour $T_0 = 273$ K, $M = 29 \, \mathrm{g \cdot mol}^{-1}$, P(0) = 1 bar, on trouve $z_{eq} \simeq 2$ km. Le résultat dépend sensiblement de la température : pour 300 K, on trouve 1,3 km.

- 5. Cet équilibre est stable. En effet,
- si une perturbation fait augmenter z, la masse volumique de l'air diminue, donc la poussée d'Archimède aussi, et elle devient inférieure au poids : le ballon redescend.
- si une perturbation fait diminuer z, la masse volumique de l'air augmente, donc la poussée d'Archimède aussi, et elle devient supérieure au poids : le ballon remonte.
- 6. On isole le ballon sonde, dans le référentiel terrestre, supposé galiléen; le théorème de la résultante dynamique s'écrit, en projection selon $\overrightarrow{e_z}$: $m_b \frac{\mathrm{d}^2 z}{\mathrm{d}t^2} = -m_b g + \mu(z) V_b g$.

Et $z = z_{eq} + h$, donc $\frac{d^2z}{dt^2} = \frac{d^2h}{dt^2}$ et $m_b \frac{d^2h}{dt^2} = -m_b g + \mu(0) V_b g \exp\left(-\frac{z_{eq} + h}{H}\right)$.

Soit $m_b \frac{\mathrm{d}^2 h}{\mathrm{d}t^2} = -m_b g + \mu(0) V_b g \exp\left(-\frac{z_{eq}}{H}\right) \exp\left(-\frac{h}{H}\right)$.

Puis, en remplaçant $\mu(0) \exp\left(-\frac{z_{eq}}{H}\right) V_b$ par m_b , grâce à l'équation de l'équilibre : $m_b \frac{\mathrm{d}^2 h}{\mathrm{d}t^2} = -m_b g + m_b g \exp\left(-\frac{h}{H}\right)$, c'est-à-dire $\frac{\mathrm{d}^2 h}{\mathrm{d}t^2} = g\left(-1 + \exp\left(-\frac{h}{H}\right)\right)$.

Un développement limité à l'ordre 1 de l'exponentielle donne alors : $\frac{d^2h}{dt^2} + g\frac{h}{H} = 0$.

C'est l'équation d'un oscillateur harmonique, avec pour pulsation $\omega_0 = \sqrt{\frac{g}{H}} = g\sqrt{\frac{M}{RT_0}}$.

On peut aussi passer par l'énergie.