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ÉTUDE DE L’OSCILLATEUR A PONT DE WIEN 
 

I. Equations de l’oscillateur à pont de Wien (avant de programmer en python) 
I.1. Rappels théoriques 

On rappelle que, si on pose 𝛼 = 1 +
𝑅2

𝑹𝟏
, on a en régime harmonique :  

𝑣− =
1

𝛼
 𝑣 𝑠  et  𝑣+ =

𝑗𝑅𝐶𝜔

1+3𝑗𝑅𝐶𝜔−𝑅2𝐶2𝜔2  𝑣 𝑠. 

On pourra poser 𝜔0 =
1

𝑅∗𝐶
 

 

• Ecrire l’équation différentielle  (1) reliant 𝑣𝑠(𝑡) à 𝑣+(𝑡) 

• Ecrire l’équation (2) reliant 𝑣𝑠(𝑡) à 𝑣−(𝑡)  

 

 

I.2. Fonctionnement en régime linéaire 

• En régime linéaire, en utilisant (2), écrire l’équation (3) (très simple) liant 𝑣𝑠(𝑡) à 𝑣+(𝑡). 

• Quelle inégalité doit vérifier |𝑣𝑠(𝑡)|, et donc |𝑣+(𝑡)| pour que l’ALI fonctionne en régime linéaire ? 

• Exprimer alors 
𝑑𝑣𝑠

𝒅𝒕
(𝑡) en fonction de 

𝑑𝑣+

𝒅𝒕
(𝑡). 

 

 

I.3. Fonctionnement en régime de saturation haute 

• En régime de saturation haute, que vaut 𝑣𝑠(𝑡) ? que vaut 𝑣−(𝑡) ? 

• Exprimer alors 
𝑑𝑣𝑠

𝒅𝒕
(𝑡). 

• Quelle inégalité doit vérifier 𝑣+(𝑡) pour que l’ALI fonctionne en saturation haute ? 

 

 

I.4. Fonctionnement en régime de saturation basse 

• En régime de saturation basse, que vaut 𝑣𝑠(𝑡) ? que vaut 𝑣−(𝑡) ? 

• Exprimer alors 
𝑑𝑣𝑠

𝒅𝒕
(𝑡). 

• Quelle inégalité doit vérifier 𝑣+(𝑡) pour que l’ALI fonctionne en saturation basse ? 

 

 

I.5. Lien général entre 𝑣𝑠(𝑡) et  𝑣+(𝑡) 

• Regrouper les résultats obtenus en I.2, I.3 et I.4 en donnant les différentes expressions de 
𝑑𝑣𝑠

𝒅𝒕
 selon la valeur que 

prend 𝑣+ (donc selon que l’ALI est en fonctionnement linéaire, saturé à l’état haut ou saturé à l’état bas). 

• On définit à présent la fonction 𝑓2(𝑣+) donnant la valeur de 
𝑑𝑣𝑠

𝒅𝒕
 en fonction de celle de 𝑣+. C’est une fonction 

constante par morceaux La représenter, c’est-à-dire tracer 𝑓2(𝑣+) en fonction de 𝑣+. 

• Montrer que, quel que soit le régime de fonctionnement de l’ALI (linéaire, saturé haut ou saturé bas), 
𝑑𝑣𝑠

𝒅𝒕
(𝑡) peut 

se calculer au moyen de 𝑓2(𝑣+(𝑡)) et de 
𝑑𝑣+

𝒅𝒕
(𝑡). 

• En déduire (grâce à l’équation différentielle (1) du I.1) l’équation différentielle du second ordre vérifiée par 

𝑣+(𝑡) quel que soit le type de fonctionnement, linéaire ou saturé. Cette équation différentielle, que l’on notera 

(4) utilise notamment la fonction 𝑓2(𝑣+). 
 
 

II. Simulation numérique de l’oscillateur à pont de Wien avec python 
II.1. Utilisation de l’instruction odeint du module scipy.integrate 

Après avoir installé odeint du module scipy.integrate (from scipy.integrate import odeint), on peut 

résoudre numériquement une équation différentielle de la forme : 
𝒅𝒚

𝒅𝒕
= 𝒇(𝒚, 𝒕) 

Et ceci de façon bien plus performante qu’avec la méthode d’Euler.  

La variable y est, soit un scalaire, soit un vecteur. 

La syntaxe est de la forme suivante :  

• Définir une fonction python f, correspondant au second membre de l’équation différentielle ; 

• Déclarer une valeur initiale yini de y. 

• Créer un tableau t à une dimension, contenant les instants pour lesquels on souhaite calculer les valeurs successives de 

la solution y. 
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Ainsi, odeint(f, yini,t) renvoie les valeurs de y pour les différentes valeurs successives du tableau t. 

 
 

Avant de passer à la programmation de l’oscillateur quasi-sinusoïdal à pont de Wien, étudions deux exemples plus simples : 

 

Exemple 1 : On cherche à résoudre l’équation différentielle du premier ordre : 
𝑑𝑦

𝑑𝑡
+

𝑦

𝜏
= 0, avec 𝑦(𝑡 = 0) = 𝑦𝑖𝑛𝑖  

 

 
 

Exemple 2 : On cherche à résoudre l’équation différentielle du second ordre : 
𝑑2𝑣

𝑑𝑡2 + 2𝜁𝜔0
𝑑𝑣

𝑑𝑡
+ 𝜔0

2𝑣 = 0, avec 𝑣(𝑡 = 0) = 𝑣𝑖𝑛𝑖 

et 
𝑑𝑣

𝑑𝑡
 (𝑡 = 0) = 𝑣𝑝𝑖𝑛𝑖 .  

On définit le « vecteur d’état » 𝑦(𝑡) = (𝑣(𝑡),
𝑑𝑣

𝑑𝑡
(𝑡)).  Les deux composantes du vecteur 𝑦 sont notées 𝑦0 et 𝑦1 : 𝑦 = (𝑦0, 𝑦1). 

On a donc 𝑦0 = 𝑣 et 𝑦1 =
𝑑𝑣

𝑑𝑡
 

Et on a aussi 
𝑑𝑦

𝑑𝑡
 (𝑡) = (

𝑑𝑣

𝑑𝑡
(𝑡),

𝑑2𝑣

𝑑𝑡2
(𝑡)), c’est-à-dire 

𝑑𝑦

𝑑𝑡
 = (𝑦1,

𝑑𝑦1

𝑑𝑡
)  

Avec cette « astuce », on se ramène à une équation différentielle d’ordre 1, puisque ce que l’on a à résoudre est  
𝑑𝑦

𝑑𝑡
= 𝑓(𝑦, 𝑡),  

avec 𝑓(𝑦, 𝑡) = (𝑦1, −2𝜁𝜔0𝑦1 − 𝜔0
2𝑦0 ) 

 

 

 

II.2. Application à l’oscillateur à pont de Wien 

• Définir les constantes (Vsat=15 V, R = 10 k, C = 100 nF, R1 = 1,2 k, R2 = 2,52 k pour commencer), le 

nombre d’échantillons, la période d’échantillonnage de la variable temporelle. 

• Définir la fonction 𝑓2 du I.5. 

• Définir la fonction 𝑓 pour la résolution de l’équation différentielle (elle correspond à (4) du I.5). 

• Créer la variable vectorielle t (ou t_ech) pour le temps 

• Résoudre l’équation différentielle. 

• Tracer 𝑣+ en fonction du temps. 

• Tracer la trajectoire de phase pour 𝑣+, c’est-à-dire 
𝑑𝑣+

𝑑𝑡
 en fonction de 𝑣+ 

 

 

 


