LVH 25-26 Capacité numérique pour la physique PSI

ETUDE DE L’OSCILLATEUR A PONT DE WIEN

1. Equations de I’oscillateur a pont de Wien (avant de programmer en python)
1.1. Rappels théoriques

. R L :
On rappelle que, sion pose a = 1 + R—Z, on a en régime harmonique :
1

1 +_ JRCw

v ==v et vV =————— 7,
= a =S = 14+3jRCw—R2C2w2 =5

On pourra poser wy =

RxC Ry

e Ecrire I’équation différentielle (1) reliant vs(t) a v*(t)
e Ecrire I’équation (2) reliant v, (t) a v~ (t)

L.2. Fonctionnement en régime linéaire
e Enrégime linéaire, en utilisant (2), écrire 1’équation (3) (trés simple) liant v (t) a v+ (¢).
e Quelle inégalité doit vérifier |v,(t)], et donc |v* (t)| pour que I’ALI fonctionne en régime linéaire ?

e Exprimer alors — (t) en fonction de — (t)

L.3. Fonctionnement en régime de saturation haute
e Enrégime de saturation haute, que vaut vs(t) ? que vaut v=(t) ?

e Exprimer alors — (t)
¢ Quelle inégalité d01t vérifier v*(t) pour que I’ ALI fonctionne en saturation haute ?

1.4. Fonctionnement en régime de saturation basse
e Enrégime de saturation basse, que vaut vg(t) ? que vaut v=(t) ?

e Exprimer alors — (t)
¢ Quelle inégalité d01t vérifier v*(t) pour que I’ALI fonctionne en saturation basse ?

L.5. Lien général entre v, (t) et v*(¢)

e Regrouper les résultats obtenus en 1.2, 1.3 et 1.4 en donnant les différentes expressions de % selon la valeur que
prend v* (donc selon que I’ALI est en fonctionnement linéaire, saturé & 1’état haut ou saturé a I’état bas).

e On définit a présent la fonction f, (v*) donnant la valeur de % en fonction de celle de v*. C’est une fonction
constante par morceaux La représenter, ¢’est-a-dire tracer f,(v*) en fonction de v™.

e Montrer que, quel que soit le régime de fonctionnement de ’ALI (linéaire, saturé haut ou saturé bas), % (t) peut

se calculer au moyen de f5 (v (t)) et de & (t)

e En déduire (grace a I’équation dlfferentlelle (1) du I.1) I’équation différentielle du second ordre vérifiée par
vt (t) quel que soit le type de fonctionnement, linéaire ou saturé. Cette équation différentielle, que 1’on notera
(4) utilise notamment la fonction f, (v*).

I1. Simulation numérique de ’oscillateur a pont de Wien avec python

IL.1. Utilisation de I’instruction odeint du module scipy.integrate

Aprés avoir installé odeint du module scipy.integrate (from scipy.integrate import odeint), on peut
résoudre numériquement une équation différentielle de la forme :

Y o fo0

Et ceci de fagon bien plus performante qu’avec la méthode d’Euler.
La variable y est, soit un scalaire, soit un vecteur.
La syntaxe est de la forme suivante :

e Définir une fonction python £, correspondant au second membre de I’équation différentielle ;

e Déclarer une valeur initiale yini de .

e Créer un tableau t a une dimension, contenant les instants pour lesquels on souhaite calculer les valeurs successives de

la solution y.

LVH 25-26 Capacité numérique pour la physique PSI

Ainsi, odeint (f, yini,t) renvoie les valeurs de y pour les différentes valeurs successives du tableau t.

Avant de passer a la programmation de 1’oscillateur quasi-sinusoidal a pont de Wien, étudions deux exemples plus simples :

Exemple 1 : On cherche a résoudre 1I’équation différentielle du premier ordre : % +% =0, avec y(t = 0) = yini
1 dimport matplotlib.pyplot as plt
2 import numpy as np
3 from scipy.integrate import odeint

Ne=400;tau=0.01;Te=5*tau/Ne # Déclaration des constantes
5 def fly,t ech):)))
7 - return -y/tau # Detinition de la fonction f
yini=2. # Condition 1initiale
t_ech=np.array([n*Te for n in range(Ne)]) # tableau de valeurs des instants t

11 sol=odeint(f,yini,t_ech)
12 plt.plot(t_ech,sol)

13 plt.axas([0,5*tau,0,yin1])
14 plt.showl()

2
Exemple 2 : On cherche a résoudre I’équation différentielle du second ordre : % + 20w, % + wiv = 0, avec v(t = 0) = vini
et% (t =0) = vpini .

On définit le « vecteur d’état » y(t) = (v(t), % (t)). Les deux composantes du vecteur y sont notées yy et y; : ¥ = (Vo, ¥1)-

d
Onadoncy0=vety1=d—:

. dy dv d?v « 4. dy dy,
Eton aaussi — (t) = | —(t),== (t)), c’est-a-dire = = —=
dt () dt ()I dat2 () B dt YJ.I dt

Avec cette « astuce », on se ramene a une équation différentielle d’ordre 1, puisque ce que 1’on a a résoudre est

d
< =fo0,

avec f(y,t) = (y1, —2{woy; — w5Yo)

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from scipy.integrate import odeint

4

5 # Déclaration des constantes

6 Ne=400

7 tau=0.01

8 zeta=-0.1 # essayer d'autres valeurs de zeta, en changeant la valeur et le signe ; zeta est le coefficient d'amortissement
9 f0=1000

10 wO=2*np.pi*fo

11 Te=5/f0/Ne

12

13 def f(y,t_ech):

14 # a compléter

15

16 yini=np.array([0.1,0.]) # Condition initiale

17

18 t_ech=np.array([n*Te for n in range(Ne)]) # tableau de valeurs des instants t
19

20 sol=odeint(f,yini,t_ech)
21 plt.plot(t_ech,sol][:,0])
22 plt.show()

11.2. Application a Poscillateur a pont de Wien
e Définir les constantes (Vsat=15 V, R = 10 kQ, C = 100 nF, R; = 1,2 kQ, R, = 2,52 kQ pour commencer), le
nombre d’échantillons, la période d’échantillonnage de la variable temporelle.
e Définir la fonction f, du L.5.
e Définir la fonction f pour la résolution de 1’équation différentielle (elle correspond a (4) du L.5).
e Créer la variable vectorielle t (ou t _ech) pour le temps
e Résoudre I’équation différentielle.
e Tracer v* en fonction du temps.

. . . 4. dvt .
e Tracer la trajectoire de phase pour v, ¢’est-a-dire - en fonction de vt

