
Chapitre 9

Endomorphismes d’un espace euclidien

Dans ce chapitre E est un espace euclidien de dimension n ⩾ 1.

I Adjoint d’un endomorphisme

Soit f ∈ L(E,R) une forme linéaire sur E, alors il existe un unique vecteur y ∈ E
tel que :

∀x ∈ E, f(x) = ⟨x, y⟩ .

Théorème 1.1 (Représentation des formes linéaires)

Remarque 1.2 : Pour tout y ∈ E, l’application fy : x 7→ ⟨x, y⟩ est une forme linéaire
sur E.

Soit u ∈ L(E) un endomorphisme de E. Il existe un unique endomorphisme u∗,
appelé adjoint de u tel que :

∀x, y ∈ E, ⟨u(x), y⟩ = ⟨x, u∗(y)⟩ .

Définition/Théorème 1.3

Soit u, v ∈ L(E),

u = v ⇔ ∀x, y ∈ E, ⟨u(x), y⟩ = ⟨v(x), y⟩ .

Lemme 1.4

• ∀u ∈ L(E), (u∗)∗ = u ;
• u 7→ u∗ est linéaire ;
• ∀u, v ∈ L(E), (u ◦ v)∗ = v∗ ◦ u∗.

Proposition 1.5

Soit F un sous-espace vectoriel de E.
Si F est stable par u, alors F ⊥ est stable par u∗.

Théorème 1.6

Soit u ∈ L(E), B une base orthonormée de E et A la matrice de u dans la base B.
Alors la matrice de u∗ dans la base B est : A⊤.

Proposition 1.7 (matrice de l’adjoint)

Remarque 1.8 : On peut retrouver les résultats de la proposition 1.5 à l’aide de ce
résultat, de plus :

rg(u∗) = rg(u), tr(u∗) = tr(u), det(u∗) = det(u),

χu∗ = χu et Sp(u∗) = Sp(u).

II Matrices orthogonales

II. A Définition et caractérisations

Soit A ∈ Mn(R), on dit que A est une matrice orthogonale lorsque A⊤A = In.
Définition 2.1

Remarque 2.2 : Une matrice orthogonale A est inversible et : A−1 = A⊤.

Soit A ∈ Mn(R), les lignes et colonnes de A sont vues comme des vecteurs de Rn

muni de son produit scalaire canonique.
Sont équivalents :
• A est orthogonale ;
• la famille des colonnes de A est une base orthonormée de Rn ;
• la famille des lignes de A est une base orthonormée de Rn.

Théorème 2.3

Exemples 2.4 : • In est une matrice orthogonale.

• Pour tout θ ∈ R,

(
cos θ − sin θ
sin θ cos θ

)
est une matrice orthogonale.

Soit B une base orthonormée de E et B′ une famille de n vecteurs de E.
Alors B′ est une base orthonormée de E si et seulement si MatB(B′) est une matrice
orthogonale.

Proposition 2.5

Deux matrices A, B ∈ Mn(R) sont dites orthogonalement semblables lorsqu’il
existe une matrice de passage orthogonale P telle que : B = P −1AP = P ⊤AP .

Définition 2.6
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II. B Groupe orthogonal

L’ensemble des matrices orthogonales de taille n est un sous-groupe de (GLn(R), ×),
appelé groupe orthogonal d’ordre n et noté On(R) ou O(n).

Définition/Proposition 2.7

Soit A une matrice orthogonale, alors det A ∈ {−1, 1},
• on dit que A est une matrice orthogonale positive ou directe lorsque det A = 1 ;
• on dit que A est une matrice orthogonale négative ou indirecte lorsque

det A = −1.

Définition/Proposition 2.8

L’ensemble des matrices orthogonales positives est un sous-groupe de On(R) appelé
groupe spécial orthogonal d’ordre n et noté SOn(R) ou SO(n).

Définition/Proposition 2.9

II. C Espaces euclidiens orientés
1) Orientation d’un espace vectoriel réel de dimension finie

Dans cette sous-section, E désigne un espace vectoriel réel de dimension finie n ⩾ 1.
Si B et B′ sont deux bases de E, alors detB(B′) ̸= 0. On définit sur l’ensemble des
bases de E la relation suivante :

BRB′ ⇔ detB(B′) > 0.

La relation R est une relation d’équivalence sur l’ensemble des bases de E. Elle a
deux classes d’équivalence.

Proposition 2.10

Une orientation de E est un choix de l’une des deux classes d’équivalences de la
relation R. Une base est dite directe lorsqu’elle est dans la classe d’équivalence
choisie, indirecte sinon.

Définition 2.11

Remarque 2.12 : Pour un choix d’orientation et une base B0 dans cette classe
d’équivalence, une base B de E est :
• directe si et seulement si detB0(B) > 0.
• indirecte si et seulement si detB0(B) < 0.

Dans Rn, la base canonique est directe.
Définition 2.13 (Orientation de Rn)

2) Bases orthonormées directes

À nouveau E désigne un espace euclidien de dimension n ⩾ 1.

Soit B une base orthonormée de E et B′ une famille de n vecteurs de E.
Alors B′ est une base orthonormée de E de même orientation que B si et seulement
si : MatB(B′) ∈ SOn(R).

Proposition 2.14

On suppose que E est un espace euclidien orienté, B et B′ deux bases orthonormées
directes de E. Alors :

detB = detB′ .

Proposition 2.15

III Endomorphismes autoadjoints

III. A Définition et caractérisation matricielle

Un endomorphisme u ∈ L(E) est dit autoadjoint lorsque u = u∗.
Définition 3.1

Notation : L’ensemble des endomorphisme autoadjoints de E est noté S(E).

Remarque 3.2 : Un endomorphisme u ∈ L(E) est autoadjoint si et seulement si :

∀x, y ∈ E, ⟨x, u(y)⟩ = ⟨u(x), y⟩ .

Soit B une base orthonormée de E et u ∈ L(E). Alors :

u ∈ S(E) ⇔ MatB(u) ∈ Sn(R).

Proposition 3.3

Remarque 3.4 : Les endomorphismes autoadjoints sont parfois appelés endomor-
phismes symétriques, d’où la notation S(E).

Les projecteurs orthogonaux sont les projecteurs autoadjoints.
Proposition 3.5
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III. B Réduction des endomorphismes autoadjoints

Soit u ∈ S(E) et F un sous-espace vectoriel de E stable par u. Alors F ⊥ est stable
par u.

Proposition 3.6

Les sous-espaces propres d’un endomorphisme autoadjoint sont deux à deux ortho-
gonaux.

Proposition 3.7

Soit u ∈ L(E). Sont équivalents :
• u est autoadjoint ;

• E est la somme orthogonale des sous-espaces propres de u : E =
⊥⊕

λ∈Sp(u)
Eλ(u) ;

• il existe une base orthonormée diagonalisant u.

Théorème 3.8 (spectral)

Soit A ∈ Mn(R). Alors A est symétrique si et seulement si elle est orthogonalement
diagonalisable (i.e. orthogonalement semblable à une matrice diagonale).

Corollaire 3.9

Attention : Faux pour les matrices complexes !

Contre exemple 3.10 :
(

i 1
1 −i

)
est symétrique complexe et nilpotente non nulle

donc non diagonalisable.

III. C Endomorphismes autoadjoints positifs, définis positifs

Soit u ∈ L(E).
• On dit que u est autoadjoint positif lorsque :

u ∈ S(E) et ∀x ∈ E, ⟨x, u(x)⟩ ⩾ 0.

• On dit que u est autoadjoint défini positif lorsque :

u ∈ S(E) et ∀x ∈ E {0} , ⟨x, u(x)⟩ > 0.

Définition 3.11

Notation : L’ensemble des endomorphismes autoadjoints positifs est noté S+(E),
l’ensemble des endomorphismes autoadjoints définis positifs est noté S++(E).

Soit u ∈ L(E), alors :

u ∈ S+(E) ⇔ u ∈ S(E) et Sp(u) ⊂ R+,

et
u ∈ S++(E) ⇔ u ∈ S(E) et Sp(u) ⊂ R∗

+.

Proposition 3.12

Soit A ∈ Sn(R).
• On dit que A est symétrique positive lorsque :

∀x ∈ Rn, ⟨x, Ax⟩ ⩾ 0

• On dit que A est symétrique définie positive lorsque :

∀x ∈ Rn {0n} , ⟨x, Ax⟩ > 0

Définition 3.13

Notation : On note S+
n (R) et S++

n (R) l’ensemble des matrices symétriques positives
et définie positives de taille n.

Soit A ∈ Mn(R),

A ∈ S+
n (R) ⇔ A ∈ Sn(R) et Sp(A) ⊂ R+,

et
A ∈ S++

n (R) ⇔ A ∈ Sn(R) et Sp(A) ⊂ R∗
+.

Proposition 3.14
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IV Isométries vectorielles
IV. A Définition et caractérisations

On appelle isométrie vectorielle ou simplement isométrie un endomorphisme
u ∈ L(E) qui conserve la norme :

∀x ∈ E, ∥u(x)∥ = ∥x∥ .

Définition 4.1

Exemple 4.2 : Une symétrie orthogonale est une isométrie. En particulier, une ré-
flexion (symétrie orthogonale par rapport à un hyperplan) est une isométrie.

Soit u ∈ L(E) et B une base orthonormée de E. Sont équivalents :
• u est une isométrie ;
• u conserve le produit scalaire : ∀x, y ∈ E, ⟨u(x), u(y)⟩ = ⟨x, y⟩ ;
• l’image de B par u est une base orthonormée de E ;
• u est un isomorphisme et u∗ = u−1.

Théorème 4.3

Un endomorphisme u ∈ L(E) est une isométrie si et seulement si sa matrice dans
une base orthonormée est orthogonale.

Proposition 4.4

Remarque 4.5 : Les isométries sont des automorphisme, parfois appelées automor-
phismes orthogonaux.

IV. B Groupe orthogonal

L’ensemble des isométries de E est un sous-groupe de (GL(E), ◦), appelé groupe
orthogonal de E, noté O(E).

Définition/Proposition 4.6

Soit u une isométrie de E, alors det(u) ∈ {−1, 1}.
Proposition 4.7

Soit u une isométrie,
• on dit que u est une isométrie directe lorsque det u = 1 ;
• on dit que u est une isométrie indirecte lorsque det u = −1.

Définition 4.8

L’ensemble des isométries directes est un sous-groupe de O(E) appelé groupe
spécial orthogonal de E et noté SO(E).

Définition/Proposition 4.9

IV. C Matrices orthogonales de taille 2

Le groupe SO2(R) des matrices orthogonales directes de taille 2 est l’ensemble des
matrices de la forme :

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
, avec θ ∈ R.

L’ensemble O2(R) SO2(R) des matrices orthogonales indirectes de taille 2 est
l’ensemble des matrices de la forme :

Aθ =
(

cos θ sin θ
sin θ − cos θ

)
, avec θ ∈ R.

Proposition 4.10

L’application :
R : (R, +) −→ (SO2(R), ×)

θ 7−→
(

cos θ − sin θ
sin θ cos θ

)
est un morphisme de groupes surjectif de noyau 2πZ.

Proposition 4.11

Le groupe (SO2(R), ×) est commutatif et isomorphe à (U, ×).
Proposition 4.12

IV. D Isométries d’un plan euclidien orienté

Soit E un plan euclidien orienté et u ∈ SO(E). Il existe θ ∈ R, unique modulo 2π,
tel que pour toute base orthonormée directe B :

MatB(u) =
(

cos θ − sin θ
sin θ cos θ

)
.

On dit alors que u est la rotation d’angle θ.

Proposition 4.13
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Soit E un plan euclidien orienté. Le groupe (SO(E), ◦) est isomorphe à (U, ×).
Proposition 4.14

Soit E un plan euclidien orienté et u ∈ O(E) SO(E), alors u est une réflexion de
E.

Proposition 4.15

Remarque 4.16 : Pour E un plan euclidien orienté,
• si u ∈ SO(E) avec u ̸= idE et u ̸= −idE , alors u est ni diagonalisable ni

trigonalisable ;
• si u ∈ O(E) SO(E), alors u est une réflexion diagonalisable en base ortho-

normée sous la forme
(

1 0
0 −1

)
.

Soit E un plan euclidien orienté, x et y des vecteurs unitaires de E. Il existe une
unique rotation u ∈ SO(E) telle que u(x) = y.

Proposition 4.17

Soit x et y deux vecteurs non nuls d’un plan euclidien orienté E. Alors il existe
une unique rotation u telle que u

(
x

∥x∥

)
= y

∥y∥ , l’angle de cette rotation est appelé
angle orienté des vecteurs x et y, il est noté (x, y).

Définition 4.18

IV. E Réduction des isométries

Soit u une isométrie vectorielle de E et F un sous-espace vectoriel de E.
Si F est stable par u, alors F ⊥ est stable par u.

Proposition 4.19

Soit A ∈ On(R) une matrice orthogonale, les valeurs propres complexes de A sont
de module 1.

Proposition 4.20

Soit u un endomorphisme d’un R-espace vectoriel de dimension finie non nulle,
alors il existe une droite ou un plan stable par u.

Lemme 4.21

Soit u une isométrie vectorielle. Il existe une base orthonormée B de E dans laquelle
la matrice de u est diagonale par blocs avec des blocs diagonaux :
• de taille 1 de la forme (1) ou (−1) ;
• de taille 2 de la forme :

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
, avec θ ∈ R πZ.

Théorème 4.22

Toute matrice orthogonale est orthogonalement semblable à une matrice de la
forme : 

Ip

−Iq (0)
R(θ1)

(0) . . .
R(θr)

 , avec (θ1, . . . , θr) ∈ R πZ.

Corollaire 4.23

Soit u ∈ SO(E) avec E un espace euclidien de dimension 3, alors il existe une base
orthonormée B de E telle que :

MatB(u) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 avec θ ∈ R.

Proposition 4.24

Remarques 4.25 : • Un élément de SO(R3) est donc une rotation autour d’un
axe : il existe une droite D et un plan P orthogonal à D tels que u|D = idD

et u|P est une rotation.
• Si u ∈ O(R3) SO(R3), alors −u ∈ SO(R3) et il existe une base B de E telle

que :
MatB(u) =

(
−1 0
0 R(θ + π)

)
.
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