Chapitre 9
Endomorphismes d’un espace euclidien

Dans ce chapitre E est un espace euclidien de dimension n > 1.

I Adjoint d’un endomorphisme

Théoréme 1.1 (Représentation des formes linéaires))

Soit f € L(F,R) une forme linéaire sur E, alors il existe un unique vecteur y € E
tel que :
Vo € E, f(z) = (z,y).

Remarque 1.2 : Pour tout y € E, Papplication f, : © — (z,y) est une forme linéaire
sur F.

’_[Déﬁnition /Théoréme 1.3)

Soit v € L(F) un endomorphisme de E. Il existe un unique endomorphisme u*,
appelé adjoint de wu tel que :

Vr,y € E, (u(z),y) = (z,u"(y)) -

\. J

(Lemme 1.4)

' N

Soit u,v € L(F),

~

u=v < Vz,y € E, (u(z),y) = (v(x),y).

\. J

’iProposition 1.5)
o Yu€ L(E),(u*)" =u;

e u— u* est linéaire;

o Yu,v € L(E),(uov)* =v*ou*.

J

. (Théoréme 1.6) .

Soit F' un sous-espace vectoriel de E.
Si F est stable par u, alors F'* est stable par u*.

\. J

’_[Proposition 1.7 (matrice de I’adjoint) )

Soit u € L(E), B une base orthonormée de E et A la matrice de u dans la base B. ]
| Alors la matrice de u™ dans la base B est : AT,

J

Remarque 1.8 : On peut retrouver les résultats de la proposition 1.5 a ’aide de ce
résultat, de plus :

rg(u®) =rg(u), tr(u*) =tr(u), det(u*)=det(u),

Xur = Xu et Sp(u”) = Sp(u).

II Matrices orthogonales

II. A Définition et caractérisations

Définition 2.1
Soit A € M, (R), on dit que A est une matrice orthogonale lorsque AT A = I,,. ]

Remarque 2.2 : Une matrice orthogonale A est inversible et : A=1 = AT,

(Théoréme 2.3)

Soit A € M,,(R), les lignes et colonnes de A sont vues comme des vecteurs de R”
muni de son produit scalaire canonique.
Sont équivalents :

e A est orthogonale;

¢ la famille des colonnes de A est une base orthonormée de R™;

e la famille des lignes de A est une base orthonormée de R™.

\ J

Exemples 2.4 : « [, est une matrice orthogonale.

cosf) —sinf

¢ Pour tout 6 € R, <Sin9 cos

) est une matrice orthogonale.

Proposition 2.5)

Soit B une base orthonormée de E et B’ une famille de n vecteurs de E.
Alors B’ est une base orthonormée de E si et seulement si Matg(B’) est une matrice
orthogonale.

Définition 2.6

Deux matrices A, B € M, (R) sont dites orthogonalement semblables lorsqu’il
existe une matrice de passage orthogonale P telle que : B = P~'AP = PT AP.
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II. B Groupe orthogonal 2) Bases orthonormées directes

’_[Déﬁnition/ Proposition 2.7) A nouveau E désigne un espace euclidien de dimension n > 1.
L’ensemble des matrices orthogonales de taille n est un sous-groupe de (GL, (R), %), ]
appelé groupe orthogonal d’ordre n et noté O, (R) ou O(n). Proposition 2.14)
) ’ Soit B une base orthonormée de E et B’ une famille de n vecteurs de E.
’iDéﬁnition/ Proposition 2.8) . Alors B’ est une base orthonormée de E de méme orientation que B si et seulement
Soit A une matrice orthogonale, alors det A € {—1,1}, si: Matg(B') € SO, (R).

e on dit que A est une matrice orthogonale positive ou directe lorsque det A = 1;

e on dit que A est une matrice orthogonale négative ou indirecte lorsque

det A=—1 Proposition 2.15)

/ On suppose que FE est un espace euclidien orienté, B et B’ deux bases orthonormées
directes de E. Alors :

_(Définition/Proposition 2.9)

L’ensemble des matrices orthogonales positives est un sous-groupe de O,,(R) appelé
groupe spécial orthogonal d’ordre n et noté SO, (R) ou SO(n).

\. J

detg = detp: .

II. C Espaces euclidiens orientés III Endomorphismes autoadjoints

1) Orientation d’un espace vectoriel réel de dimension finie IITI. A Définition et caractérisation matricielle

Dans cette sous-section, E désigne un espace vectoriel réel de dimension finie n > 1. Définition 3.1

Si B et B’ sont deux bases de E, alors detg(B’) # 0. On définit sur I’ensemble des Un endomorphisme u € £(E) est dit autoadjoint lorsque u = u*. ]
bases de F la relation suivante :

BRB' < detg(B') > 0.
5(5) Notation : L’ensemble des endomorphisme autoadjoints de E est noté S(E).

’_[Proposition 2.10)
La relation R est une relation d’équivalence sur ’ensemble des bases de E. Elle a

deux classes d’équivalence. Va,y € B, (z,u(y)) = (u(x),y).

Remarque 3.2 : Un endomorphisme u € L(FE) est autoadjoint si et seulement si :

’iDéﬁnition 2.11) .
Une orientation de E est un choix de 'une des deux classes d’équivalences de la
relation R. Une base est dite directe lorsqu’elle est dans la classe d’équivalence

Lchoisie7 indirecte sinon. ) u € S(E) & Matg(u) € S, (R).

Proposition 3.3)
Soit B une base orthonormée de E et v € L(E). Alors :

Remarque 2.12 : Pour un choix d’orientation et une base By dans cette classe

d’équivalence, une base B de E est : Remarque 3.4 : Les endomorphismes autoadjoints sont parfois appelés endomor-

o directe si et seulement si detg, (B) > 0. phismes symétriques, d’ou la notation S(E).
o indirecte si et seulement si detg, (B) < 0.
Définition 2.13 (Orientation de R™)) [fPropf)sﬂ:lon 3'513 1 : —
Dans R”, la base canonique est directe. ] es projecteurs orthogonaux sont les projecteurs autoadjoints. ]
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III. B Réduction des endomorphismes autoadjoints fiProposition 3.12)
Soit u € L(F), alors :

Proposition 3.6)

Soit u € S(E) et F un sous-espace vectoriel de E stable par u. Alors F- est stable uweST(E) & ueS(E) et Sp(u) C RY,
par u.

et

++ *
’_[Proposition 37 \ ueSTT(E) & uec S(E)et Sp(u) C RY. )

N\
Les sous-espaces propres d’'un endomorphisme autoadjoint sont deux a deux ortho-

gonaux.
.

J

’_[Théoréme 3.8 (spectral))
Soit u € L(E). Sont équivalents :

e u est autoadjoint ;

_(Définition 3.13)

L

o F est la somme orthogonale des sous-espaces propres de u : E= € FE\(u); Soit A € S,,(R).
AESP(u) . T ‘s

e il existe une base orthonormée diagonalisant u. * Ondit que A est symétrique positive lorsque :

\. J

Ve e R", (z,Az) >0
(Corollaire 3.9)

Soit A € M,,(R). Alors A est symétrique si et seulement si elle est orthogonalement
Ldiagonalisable (i.e. orthogonalement semblable & une matrice diagonale). ) Wz € R"N{0,), (2, Az) > 0

e On dit que A est symétrique définie positive lorsque :

Attention : Faux pour les matrices complexes !
i 1

1 —i

donc non diagonalisable.

Contre exemple 3.10 : est symétrique complexe et nilpotente non nulle

III. C Endomorphismes autoadjoints positifs, définis positifs Notation : On note S;"(R) et S;(R) I'ensemble des matrices symétriques positives
et définie positives de taille n.

_(Définition 3.11)
Soit u € L(E).

e On dit que u est autoadjoint positif lorsque :

>
u€S(E) et VreE, (x,u(z)) >0. fiProposition 3.14)

e On dit que u est autoadjoint défini positif lorsque : Soit A € My (R),
we SE) et Vae EN{O},(z,u(z)) > 0. A€S)(R) & A€ S,(R)et Sp(4) CRT,
et
Notation : L’ensemble des endomorphismes autoadjoints positifs est noté S*(F), AeSH(R) & AeS,(R) et Sp(4) C R

I’ensemble des endomorphismes autoadjoints définis positifs est noté STT(E).
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IV Isométries vectorielles

IV. A Définition et caractérisations

Définition 4.1
On appelle isométrie vectorielle ou simplement isométrie un endomorphisme
u € L(F) qui conserve la norme :

Ve € B, |lu()]| = ]l

Exemple 4.2 : Une symétrie orthogonale est une isométrie. En particulier, une ré-
flexion (symétrie orthogonale par rapport & un hyperplan) est une isométrie.

(Théoréme 4.3)

Soit u € L(E) et B une base orthonormée de E. Sont équivalents :

e 1w est une isométrie;

o wu conserve le produit scalaire : Vz,y € E, (u(x),u(y)) = (z,y) ;

I'image de B par u est une base orthonormée de F ;

e wu est un isomorphisme et u* = u~"'.

\. J

JProposition 4.4)

Un endomorphisme u € L£(F) est une isométrie si et seulement si sa matrice dans
une base orthonormée est orthogonale.

\. J

~

Remarque 4.5 : Les isométries sont des automorphisme, parfois appelées automor-
phismes orthogonaux.

IV. B Groupe orthogonal

Définition/Proposition 4.6)

L’ensemble des isométries de E est un sous-groupe de (GL(E), o), appelé groupe
orthogonal de E, noté O(E).

Proposition 4.7)
Soit u une isométrie de F, alors det

Définition 4.8
Soit u une isométrie,

|

(u) € {~1,1}.

e on dit que u est une isométrie directe lorsque detu = 1;

e on dit que u est une isométrie indirecte lorsque det u = —1.

Définition/Proposition 4.9)

L’ensemble des isométries directes est un sous-groupe de O(FE) appelé groupe
spécial orthogonal de FE et noté SO(E).

IV. C Matrices orthogonales de taille 2
fiProposition 4.10)

Le groupe SO3(R) des matrices orthogonales directes de taille 2 est I’ensemble des

matrices de la forme :
cos 0
Ry = (51119

L’ensemble O3(R) \ SO2(R) des matrices orthogonales indirectes de taille 2 est
I’ensemble des matrices de la forme :

—sinf

) , avecf eR.
cos

Ay = (Z?jz —822)590> , avec f € R.
Proposition 4.11) .
L’application :
R (R,+) — (SO2(R), x)
0 (cos # —sin 9)
sinf  cosf

est un morphisme de groupes surjectif de noyau 27Z.

Proposition 4.12)
Le groupe (SO2(R), x) est commutatif et isomorphe & (U, x).

IV. D Isométries d’un plan euclidien orienté

’iProposition 4.13)

Soit F un plan euclidien orienté et u € SO(E). 1l existe 6 € R, unique modulo 2,
tel que pour toute base orthonormée directe B :

~

cosf —sinf
Matss(u) = (sin@ cos 6 ) '
On dit alors que u est la rotation d’angle 6.
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Proposition 4.14)
Soit E un plan euclidien orienté. Le groupe (SO(E), o) est isomorphe a (U, x). ]

Proposition 4.15)

Soit E un plan euclidien orienté et u € O(E)\ SO(FE), alors u est une réflexion de]

E.

Remarque 4.16 : Pour E un plan euclidien orienté,

e siu € SO(F) avec u # idg et u # —idg, alors u est ni diagonalisable ni
trigonalisable ;

o siu € O(E)\NSO(E), alors u est une réflexion diagonalisable en base ortho-

, 1 0
normée sous la forme 0 -1/

’_[Proposition 4.17)

Soit E' un plan euclidien orienté, x et y des vecteurs unitaires de F. Il existe une
unique rotation v € SO(E) telle que u(z) = y.

\. J

’iDeﬁnltlon 4.18)

Soit z et y deux vecteurs non nuls d’un plan euclidien orienté E. Alors il exmte

m, I’angle de cette rotation est appelé

angle orienté des vecteurs x et y, il est noté (x,y).

\. J

une unique rotation u telle que u (HTII) =

IV. E Réduction des isométries

Proposition 4.19)
Soit u une isométrie vectorielle de E et F' un sous-espace vectoriel de F. ]

Si F est stable par u, alors F'* est stable par u.

’_[Proposition 4.20)

Soit A € O, (R) une matrice orthogonale, les valeurs propres complexes de A sont
| de module 1.

~

J

(Lemme 4.21) .

Soit u un endomorphisme d’un R-espace vectoriel de dimension finie non nulle,
alors il existe une droite ou un plan stable par .

\. J

fiTheoreme 4.22)

Soit u une isométrie vectorielle. Il existe une base orthonormée B de E dans laquelle
la matrice de u est diagonale par blocs avec des blocs diagonaux :

« de taille 1 de la forme (1) ou (—1);
o de taille 2 de la forme :

RO) = (S ). avecserNa

fiCorollalre 4.23)

Toute matrice orthogonale est orthogonalement semblable & une matrice de la
forme :

, avec (61,...,0,) e R\7Z.

R(0)

fiProposition 4.24)

Soit u € SO(E) avec E un espace euclidien de dimension 3, alors il existe une base
orthonormée B de F telle que :

~

1 0 0
Matg(u) = | 0 cosf —sind avec 6 € R.
0 sinf cosé

Remarques 4.25 : « Un élément de SO(R?) est donc une rotation autour d'un
axe : il existe une droite D et un plan P orthogonal a D tels que u;p = idp
et u p est une rotation.

e Siue OR})NSO(R3), alors —u € SO(R?) et il existe une base B de E telle

que :
Matp(u) = (—01 R<90+ m) :
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