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Soit l'équation di�érentielle d'inconnue y suivante :

(E) : y
′′
(x) + y(x) = 2− x

1. a) Résoudre (Eh) : y
′′

+ y = 0

b) Cherchez une solution particulière (E) de la forme yp = ax + b, où a et b sont réels que vous préciserez et en déduire

l'ensemble des solutions de (E).

2. Soit maintenant une fonction f , dé�nie sur R et dérivable véri�ant :

(R) : ∀x ∈ R, f ′(x) + f(−x) = x + 1

a) Montrez que f est dérivable deux fois, avec, ∀x ∈ R, f ′′(x) = 1 + f
′
(−x).

b) En déduire que f est une solution de (E), et déterminez l'ensemble des fonctions f véri�ant (R).

Exercice 1 :

1. a) (E0) a pour équation caractéristique r2 + 1 = 0, donc deux racines complexes qui sont i
et −i.
On en déduit que (E0)⇔ ∃A,B ∈ R/∀x ∈ R, y(x) = A cos(x) +B sin(x)

b) On cherche une solution particulière sous la forme yp(x) = ax + b. Ainsi y′p = a et on a

y′′p = 0.

Cet yp est solution de (E) si et seulement si ax+ b = 2− x.
Il su�t de prendre a = −1 et b = 2, c'est à dire yp = 2− x.
Ainsi

(E)⇔ ∃A,B ∈ R, y : x 7→ A cos(x) +B sin(x) + 2− x

2. a) De R, on déduit que ∀x ∈ R, f ′(x) = −f(−x) + x+ 1.

Par composition et somme de fonctions dérivables, f ′ est dérivable (donc f est dérivable
deux fois) et

f ′′(x) = −(−f ′(−x)) + 1 = f ′(−x) + 1

(notez le "−" qui provient de la composition)

b) Comme f ′(x) = −f(−x) + x+ 1, on a f ′(−x) = −f(x)− x+ 1.

De f ′′(x) = f ′(−x) + 1, il vient donc f ′′(x) = −f(x)− x+ 1 + 1, c'est à dire

f ′′(x) + f(x) = 2− x

Ainsi, f est une solution de (E).

Donc il existe A,B ∈ R tels que f(x) = A cos(x) +B sin(x) + 2− x

ATTENTION : CE N'EST PAS FINI ! à cette étape, on n'a pas encore répondu
au problème ! On sait que f est solution de (E), mais ça ne veut pas dire que toute les
solutions de (E) véri�ent la relation R. Vous êtes très nombreux à vous êtes arrêtés....

Le problème est que pour obtenir l'équation (E), on a dérivé R : le sens réciproque de-
manderait d'intégrer, ce qui ne donne pas forcément R à cause des constantes impliquées !

Bref, il revenir à R : on veut f ′(x) + f(−x) = x+ 1.

On sait que f est de la forme des solutions de (E), donc on va remplacer :

On trouve f ′(x) = −A sin(x) +B cos(x)− 1 et f(−x) = A cos(x)−B sin(x) + 2 + x.

Et ainsi f ′(x)+f(−x) = cos(x)(A+B)− sin(x)(A+B)+1+x qui doit être égale à 1+x.

Soit au �nal : (A+B)(cos(x) + sin(x)) = 0, pour tout x ∈ R.
Ainsi, en prenant en particulier x = 0, on doit avoir A + B = 0, donc nécessairement
A = −B.



ET C'EST TOUJOURS PAS FINI ! ! ! ! : on a trouvé une condition pour que ça
marche, mais ça veut pas dire que n'importe quels A et B tels que A = −B fonctionne.
A = −B n'est qu'une condition nécessaire à cette étape.

De plus, si A = −B, la propriété est e�ectivement valable pour tout x (il su�t de le
véri�er), et on a obtenu toutes les solutions :

∃A ∈ R; f : x 7→ A(cos(x)− sin(x)) + 2− x

ATTENTION : CE N'EST PAS.... euh, si, là c'est bon. Mais en réalité cette dernière
étape est facultative, car tout peut s'écrire sous forme d'équivalence à partir de la première
remarque "ATTENTION", en particulier en utilisant une unicité d'écriture des fonctions
polynômiales en sin et cos dont on parlera plus tard dans l'année.

On considère Cn =
n∑
k=0

cos(kx) et Sn =
n∑
k=0

sin(kx)

1. On suppose qu'il existe un entier m ∈ Z tel que x = 2mπ.
Calculez Cn et Sn.

2. On suppose maintenant que x ne s'écrit pas sous forme x = 2mπ.

a) Pour tout θ ∈ R, on pose Zθ = (1− eiθ).

Montrez que Zθ = e
i θ
2

(
−2i sin

(
θ

2

))
b) Montrez que Cn + iSn est un quotient de deux nombres complexes de la forme de Zθ pour deux expressions de θ que vous

préciserez.

3. En déduire, toujours dans le cas où x ne s'écrit pas 2mπ avec m ∈ Z, que Cn + iSn =

(
cos

(
n

2
x

)
+ i sin

(
n

2
x

))
×

sin
(
n+1
2
x
)

sin
(
x
2

)
et en déduire Cn et Sn.

Exercice 2 :

1. Si x = 2mπ, alors x est un multiple de 2π, et donc quel que soit k ∈ N, on a cos(kx) = 1 et

sin(kx) = 0. Ainsi, Cn =

n∑
k=0

1 = n+ 1 et Sn = 0.

2. a) Avec la technique de l'angle moitié, il vient : Zθ = (1 − eiθ) = ei
θ
2 (e−i

θ
2 − ei

θ
2 ) =

ei
θ
2 (−2i sin θ

2
) via les formules d'Euler.

b)
Cn + iSn =

n∑
k=0

cos(kx) + i

n∑
k=0

sin(kx)

=

n∑
k=0

(cos(kx) + i sin(kx))

=
n∑
k=0

eikx =
n∑
k=0

(eix)k

On reconnaît une série géométrique de raison eix, et eix 6= 1 car on a supposé x non

multiple de 2π, d'où Cn + iSn =
1− (eix)n+1

1− eix
.

Finalement

Cn + iSn =
Z(n+1)x

Zx

3. On peut appliquer la formule obtenue en 2a) avec θ = (n + 1)x pour le numerateur, et θ = x
pour le dénominateur)

Cn + iSn =
ei
n+1
2
x(−2i sin(n+1

2 x))

ei
n
2
x(−2i sin x

2 )
= ei

n
2
x−2i sin(

n+1
2 x)

−2i sin x
2

= (cos(
n

2
x) + i sin(

n

2
x))×

sin(n+1
2 x)

sin x
2

Reste à comparer partie réelle et imaginaire et on a

Cn = cos(
n

2
x)

sin(n+1
2 x)

sin x
2

et Sn = sin(
n

2
x)

sin(n+1
2 x)

sin x
2


