
Classe de PSI

Devoir sur table de mathématiques no 3 jeudi 19 décembre 2024
4 heures · 12h45-16h45

Présentation générale de la copie

□ Sur la première copie uniquement : NOM Prénom,
classe, référence du devoir, place pour les annotations.
□ Sur les copies suivantes : NOM et numéro de la copie

en bas à droite
□ Feuilles rangées dans l’ordre
□ Marge à gauche de 4 cm sur toutes les pages
□ Rien dans la marge sauf les numéros de questions
□ Correcteur blanc et crayon de papier interdits
□ Résultats mis en évidence
□ FIN écrit à la fin du devoir.
Rédaction

□ Phrases délimitées par points et majuscules
□ Écriture lisible et sur les lignes
□ Pas d’abréviations
□ Orthographe convenable
□ Correction de la langue (pas de « on a que »)
Rédaction mathématique

□ Pas de formule déconnectée du raisonnement
□ Usage de ∀ / ∃ : toujours devant une formule
□ Usage de⇔ / « donc » / ⇒
□ Variables toujours introduites :

• dans le texte (« Soit x ∈ · · · »)
• et dans les formules (∀/∃ x ∈ · · · )

□ Distinction f / f (x)
□ Nature des objets (objets nuls 0 / 0E / 0n / 0 / {0E})

Séries entières

Exercice 1

On définit, pour tout entier naturel non nul n : hn =
n
∑

k=1

1
k

.
On introduit les séries entières :

∑

n⩾1

hn xn,
∑

n⩾1

1
n2

xn et
∑

n⩾1

hn

n
xn,

dont les sommes sont notées respectivement : H, S et T .
On note I l’intervalle (ouvert) de convergence de la série dé-
finissant H.

1) Soit n un entier naturel non nul.
Justifier que h2n − hn ⩾

1
2 .

2) Démontrer que la suite (hn)n∈N∗ diverge vers +∞.

3) Déterminer le rayon de convergence de la série en-
tière définissant H. En déduire l’intervalle I .

4) Déterminer les rayons de convergence des séries en-
tières définissant S et T .

5) Quel est le développement en série entière de la fonction
�

g : x 7→ ln(1−x)
�

? Préciser son rayon de convergence.

6) Justifier que la fonction

G : x 7→
ln(1− x)

1− x
est développable en série entière sur l’intervalle ]−1,1[.
Établir une relation entre G et H.

Soit L la primitive de H sur l’intervalle I telle que L(0) = 0.

7) Exprimer L à l’aide de la fonction
�

g : x 7→ ln(1− x)
�

.

8) Justifier que L est développable en série entière et ex-
pliciter son développement en série entière. On vérifiera
soigneusement les hypothèses du théorème utilisé.

9) En déduire une relation entre T − S et L.

Exercice 2

1) Question préliminaire
En utilisant l’égalité cos(2θ ) = 2 cos2(θ ) − 1 pour
θ ∈ R, démontrer que la suite

�

cos(n)
�

n∈N ne converge
pas vers 0.

On considère la série entière
∑

n⩾1
an xn où :

∀n ∈N∗, an =
cos(n)

n
.

On note R son rayon de convergence.

2) Montrer que R⩾ 1.

3) Prouver que la série de terme général cos(n) diverge.

4) En déduire la valeur de R.

On note alors, pour tout x ∈ ]−R, R[ :

f (x) =
+∞
∑

n=1

cos(n)
n

xn.

5) Donner le rayon de convergence et la somme de la série
entière définie par :

+∞
∑

n=0

ei n xn

où i désigne le nombre complexe usuel tel que i2 = −1.

6) En déduire une expression simple de f ′(x) pour tout
x ∈ ]−R, R[.

7) Déterminer alors une expression de la somme de la série
entière proposée à l’aide de fonctions usuelles.

8) En déduire le rayon de convergence et la somme g(x)
de la série entière

∑

n⩾1

cos2 (n/2)
n

xn.

Suite du sujet au verso ▶
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Algèbre linéaire

Problème

Racine cubique d’une matrice

Dans tout l’exercice, on considère un entier n ∈N∗.
On dit qu’une matrice A∈Mn(R) admet une racine cubique
s’il existe B ∈ Mn(R) telle que A = B3. Dans ce cas, on dit
que B est une racine cubique de A.

I — Étude d’un exemple

Dans cette partie, on considère la matrice :

A=
�

4 −12
−1 5

�

∈M2(R).

Nous allons déterminer toutes les racines cubiques de la ma-
trice A.

1) Justifier qu’il existe une matrice inversible P ∈ M2(R),
qu’il n’est pas nécessaire de déterminer explicitement,
telle que A= P D P−1 avec :

D =
�

1 0
0 8

�

∈M2(R).

2) Montrer qu’une matrice B ∈ M2(R) est une racine cu-
bique de A si et seulement si ∆= P−1 B P est une racine
cubique de D.

3) Soit ∆ ∈M2(R) une racine cubique de D. Montrer que
les matrices D et ∆ commutent, puis en déduire que la
matrice ∆ est diagonale.

4) Déterminer l’ensemble des racines cubiques de D, puis
l’ensemble des racines cubiques de A.
On pourra se contenter de décrire ce dernier ensemble en
fonction de P et de ∆.

II — Dans un plan euclidien

Dans cette partie, on considère un plan euclidien orienté E
muni d’une base orthonormée directeB = (ex , ey).
Pour tout θ ∈ R, on pose :

M(θ ) =
�

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

�

et N(θ ) =
�

cos(θ ) sin(θ )
sin(θ ) − cos(θ )

�

.

On note uθ et vθ les endomorphismes de E dont les matrices
dans la baseB sont M(θ ) et N(θ ).

5) a. Représenter graphiquement les vecteurs uθ (ex) et
uθ (ey). Comment s’appelle l’endomorphisme uθ ?

b. Conjecturer une racine cubique de M(θ ).

c. Démontrer que :

∀θ ,θ ′ ∈ R, M(θ )×M(θ ′) = M(θ + θ ′).

Démontrer alors la conjecture de la question précé-
dente.

6) a. Calculer le polynôme caractéristique de N(θ ).
b. Montrer que la matrice N(θ ) est diagonalisable

sur R, et déterminer ses éléments propres.
c. Qui est l’endomorphisme vθ ?
d. Déterminer une racine cubique de N(θ ).

III — Racines cubiques et diagonalisation

Dans toute cette partie, on considère une matrice diagonali-
sable A∈Mn(R). On note λ1, . . . ,λd ∈ R les valeurs propres
deux à deux distinctes de la matrice A.

Existence d’une racine cubique polynomiale

7) Soient λ ∈ R et p ∈N∗. Déterminer une racine cubique
de la matrice :

Hp(λ) =











λ 0 · · · 0

0
...

. . .
...

...
. . .

. . . 0
0 · · · 0 λ











∈Mp(R).

8) Déduire de la question précédente que la matrice A ad-
met une racine cubique. On pourra remarquer que A est
semblable à une matrice diagonale par blocs où les blocs sur la
diagonale sont de la forme Hp(λ) avec (p,λ) ∈N∗ ×R.

Réduction d’une racine cubique
Dans cette sous-partie, on suppose de plus que la matrice A
est inversible et on considère le polynôme :

Q(X ) =
d
∏

k=1

�

X 3 −λk

�

.

9) Montrer que les nombres λ1, . . . ,λd sont non nuls.

10) Soit λ ∈ C∗ que l’on écrit sous la forme λ = ρ ei θ avec
ρ > 0 et θ ∈ R. Montrer que l’équation z3 = λ d’in-
connue z ∈ C admet exactement trois solutions.

11) En déduire que le polynôme Q est scindé à racines
simples sur C.

12) Déduire des questions précédentes que si B est une ra-
cine cubique de A, alors la matrice B est diagonalisable
dansMn(C).

— FIN —
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