Classe de PSI

Corrigé du devoir surveillé n°3

extrait d’E3A PC 2018

Exercice 1

Soit, pour tout n € IN*, h, =
entiéres par les expressions : k

%. On introduit les sommes H, S et T de séries

M=

1

_ n _ = yn _ n .n
H(x)—Zhnx, S(x)—anx et T(x)—Z nx.
n=1 n=1 n=1
On note I I'ouvert de convergence de la série entiere de somme H.
2n 1 n 1 2n 1
1) Soitne IN*. Alorshy,—h,= > 1 — > 1= > %
k=1 k=1 k=n+1
2n
Mais 1 > 5~ pourtoutk € [n+1;2n], donc: hy,—h,> Y o =a=1.
k=n+1

2) % La suite (h,),>; est croissante. Ou bien elle est majorée (et par le théo-
reme de la limite monotone, elle tend vers une limite finie), ou bien non
majorée (et elle tend vers +00). Le contraire de h, —— +00 est donc
«(hy)p>1 admet une limite finie ». e

x Par ’absurde, supposons que (h,),>; converge, et notons £ sa limite (finie).
Par le théoreme des suites extraites, h,, —— { également.
n—oo

Par différence de limites finies: h,—h,, —— {—{ =0
n—oQ

Mais puisque pour tout n = 1, h, —h,, = 5, par passage a la limite dans
les inégalités larges : 0 = 5, qui est une contradiction.
Conclusion : La suite (h,),>; tend vers +00.

3) * Enx =1, lasérie >, h, 1" est grossiérement divergente car son terme gé-
n=1
néral tend vers +00; donc Ry = 1.

n n
x* Enoutre: 0<h,= Y < >1=n donc h, = 0O(n). Le rayon de
k=1 k=1
convergence cherché est au moins égal a celui de »; nx", qui vaut 1 (série
n=1
entiére usuelle pour a =—1). Ainsi Ry = 1.

Conclusion : La série Y, h, x" a pour rayon de convergence Ry, = 1.
n=1
Son intervalle ouvert de convergence est I = ]—1,1[.

Remarque. La regle de d’Alembert fonctionne également pour obtenir ce rayon de
convergence, a condition de justifier sérieusement la limite obtenue.
4) + Lasérie entiere Y. % x™ est une série entiere de référence : Rg = 1.
n=1
Remarque. On peut aussi refaire la preuve par échantillonage; en x = 1, le terme
général tend vers 0; en x > 1, il tend vers +00 par croissances comparées.

s .y h A
* La série entiére Y. -* x" a méme rayon de convergence que ». h, x", car

n=1 n=1
multiplier par n les coefficients ne modifie pas le rayon de convergence :
Ry =Ry =1.
5) Soit g(x) =In(1 — x) pour tout réel x < 1.
S (_1)n—1
Onsaitque: VYue]-1,1[, In(1 +u)=Z —u".
n=1 n

Comme pour tout x € ]—1,1[, —x € ]—1, 1[, par changement de variable :

( 1)2n 1 n
Z

Vxel-1,1[, In(1— x)—Z( Dnl

[ee]
xn

n

s . -\ . N n 7 .
La série entiére ci-dessus a méme rayon de convergence que », %, série en-
tiere usuelle : R, = 1. n>1
In(1—x) -
1— Ainsi :
—Xx

1
6) Pour tout x € ]—1,1[, soit G(x) = =In(1—x) x 1

G(x) = (—Z%x) y (Z)X) =_(§;anxn) . @) bnxn)’

en posant a, = 1 et a, = 1/n pour tout n = 1, et b, = 1 pour tout n € IN.
Comme ces deux derniéres séries entiéres sont de rayon de convergence 1, sur
lintervalle ]—1,1[, le produit des sommes est aussi la somme du produit de

Cauchy >’ c, x" de ces deux séries entiéres. Calculons ses coefficients :
n=0
n n

1
Co=0a9gby=0 et ¥Yn=1 cn=Zakbn_k:ZE=hn_
k=0 k=1
On obtient alors :
oo oo
Vxel-1,1[, G(x)= —chx” = —Z h, x™ = —H(x).
n=0 n=1
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7) Soit L T'unique primitive de H sur I qui s’annule en O.
Fixons x € I et intégrons le résultat de la question précédente entre O et x :

f H(t)dt:—J G(t)dt donc :
0 0

L(x)—L(O)z—J lngl%t)dt =J In(1—1t) x —(ln(l—t))
0 0

X

_ [% (1n(1—t))2]0 = (- ),

1
Conclusion: VxelI, L(x)= 5 In%(1 —x).

8) La fonction H est développable en série entiere et 'on a :
o

Vxel-11[, Hx)=) h,x".
n=1

Ses primitives sur ]—1,1[ sont développables en série entiére et se calculent
terme a terme; en particulier pour L :

Vxel-1,1[, L(x)= Zh” 1

n

n=

On a prouvé que la fonction L est développable en série entiére.

Remarque. Ne pas dire : «on peut intégrer terme a terme sur I'ouvert de convergence »
car c’est imprécis; il n’est pas possible d’intégrer sur ]—R,R[ tout entier. Dire plutét :
«on peut intégrer terme a terme sur un segment inclus dans 'ouvert de convergence ».

9) Calculons I’expression de T — S ; pour tout réel x de ]—1,1][ :

T(x)—S(x)zi—x i% _irll(h ——)x”.

n=1 n=1 =
0 sin=1 2 h
Or: h —1i= > donc: T(x)—S(x)= ol —
. {hH Gin>o, ()= S(x) 22 == L(x)

d’aprés la question précédente.

Conclusion: Vxe€]-1,1[, T(x)—S(x)=L(x).

E3A MP 2023, un exerice sur les 4

Exercice 2

1) Question préliminaire
Par I’absurde : supposons que cos(n) —— 0.
n—oo
Par le théoreme des suites extraites, on aurait également cos(2n) —— 0.
n—oo

Toutefois, on aurait aussi :

YnelN, cos(2n)=2 cos?(n)—1 — 2x0%2—1=-1,
n—

donc par unicité de la limite de la suite (cos(2 n))n>0, 0 = —1 : contradiction.

Conclusion : La suite (cos(n))nelN ne converge pas vers 0.

Soit R le rayon de convergence de la série entiére Y. a, x" pour a, = cosn)

n=1

cos(n
2) Enx=1, ona: an.1”=L — 0,
n n—00
car (cos(n))n>1 est bornée et n tend vers I'infini.

Par conséquent, R = 1.
3) La suite (cos(n))n>0 ne tend pas vers 0 d’apres Q1,

donc la série Y. cos(n) est grossiérement divergente.
n=0

4) Onaenvuen Q2 queR > 1; prouvons que R < 1. Pour cela :

R:R(Z anx”) :R(Z cos(n) x") :R(Z cos(n)x”).
n=1 n=1 n n=1

Oren x =1, la derniére série entiére diverge grossierement d’apres la question
précédente. R est donc au plus égal a 1.

Conclusion: R=1.

On note f la somme de la série entiére Y. a, x".
n=1

5) Fixons x € IR quelconque. La série numérique . el"x" = > (eix)n est une
n=0 n=0
série géométrique de raison e'x : elle converge si et seulement si |eix| <1,
cad. |x|<1.
Le rayon de convergence de la série entiére est donc égal a 1, et sa somme
s’exprime :

Vxel-1,1[, S(x) —Z

n=0

Z(ex - ey

Remarque.
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x Le rayon de convergence appartient toujours a [0,+00] : c’est un réel positif,
ou +00. Le rayon de convergence n’est jamais un nombre complexe.

* Sur cet exemple, on pouvait aussi trouver le rayon de convergence a l'aide de la régle
de d’Alembert.

6) ¢ Lasomme d’une série entiére est dérivable terme a terme sur son ouvert de
convergence. Ainsi, pour tout réel x € ]—1,1[ :

fl(x)= % (Z cosn(n) x”) = Z cosn(n) .nxtl

n=1 n=1
oo
= Z cos(n) x" !
n=1

Si l’on suppose de plus x # 0, on peut écrire :

, 1w 1w
f'lx)== Z cos(n)x" = — Z Re(e'”
X n=1 X n=1
oo
= % Z Re (ei”x”) car x € R,
n=1
= % [Re(S(x))—l].

e Mettons S(x) sous forme algébrique :
1 1
1—eix (1—cos(1)x)—isin(1)x
(1—cos(1)x)+isin(1)x  (1—cos(1)x)+isin(1)x
|(1—cos(1)x) —isin(1)x |[*  (1—cos(1)x)?+sin*(1) x2
_ (1—cos(1)x)+isin(1)x
 1—2cos(1)x + x2

S(x)=

e Onrevient a f'(x) :

1
5/ =< | Re(s(x))-1]
1 1—cos(1)x
~x [1 2 cos(1) x + x2 1]
_1 N cos(1) x — x?
T x 1—2cos(1)x + x2
cos(1)—x

1.2 cos(1)x + x2°

* Enfin, on constate que cette formule reste valable pour x =0 :

IraN 3 a1 _ cos(1)—0
f (0)—;cos(n).0 =cos(1) = T2 c0s(1) 0102

cos(1)—x
1—2cos(1)x +x2°
7) Pour trouver une expression de f, on cherche les primitives de f’, qui est une
fonction rationnelle. Pour simplifier les écritures, notons a := cos(1), de sorte
que :

Conclusion : Pour tout x € ]-1,1[, f'(x)=

/ _ a—Xx
VXE]—l,].[, f(x)_l—Zax+x2'

La dérivée du dénominateur est —2 a+2 x ; on la fait apparaitre au numérateur :

—2a+2t
1—2at+t2

Vxel-1,1[, f(x)=f(0)+f f’(t)dtzO—%J
0

0

1 T 1 y
=—§ ln’l—Zat+t =—§1n(1—2ax+x)
———

>0 0

= —% In(1—2 cos(1)x +x?).

oo . " n cos? (/2) .
8) Etudions la série entiére E b,x" = E —— = x™" et R” son rayon de
n
convergence. n>1 n>1

* En utilisant la formule de linéarisation cos?(9) = —HCO;(ZQ)

série entiére :

Z bnx"=2 1+;—(:(n)x”=2 % (%+an) x™.

n=1 n=1 n=1

, on réécrit la

Yo L3N . . . Ve . 7 . IRy n
La série entiére . b, x" est combinaison linéaire des séries entiéres ) *-
n=1 n=1
et Y. a,x", qui ont toutes les deux un rayon de convergence égal & 1.
n=1
Pour cette raison, R” > 1 et :

Vxel-1,1[, g(x) =§:%(r1l+a)x_2(i);” ianx)

=1 n=1

=

%( Z( Ol l(_x)n+2anx )
%( In(1—x)—1n(1—2 cos(1) x + x?))
1

-3 = In [(1 —Xx) (1 2 cos(1) x +x2):|
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* Reste & voir que R” = 1; par l’absurde, supposons que R” > 1.
Le réel 1 se trouverait dans 'ouvert de convergence, donc la somme g de la
série entiére serait continue en 1. En particulier, la limite de g(x) quand
x — 17 serait finie. Toutefois :

(1—x) (1—2cos(1)x +x?) —— 0% x (2—2 cos(1)) =07,

donc g(x)= —% In [(1 —Xx) (1 —2cos(1)x +x2)] — +00:

x—1=

il y a une contradiction, donc R” =1.

Conclusion : R(Z b, x”) =1let:

n=1

Vxel-1,1[, Z @x”z—% ln[(l—x) (1—2 cos(l)x+x2)].
n=1

d’aprés INP PC 2024

Racine cubique d’une matrice

Dans tout 'exercice, on considére un entier n € IN*.

On dit qu'une matrice A € #,(R) admet une racine cubique s'il existe B € ., (R)
telle que A = B>. Dans ce cas, on dit que B est une racine cubique de A.

| — Etude d’un exemple

4 —12

SoitA= (_1 5 )E%Z(IR).

1)

2)

3)

Montrons que A est diagonalisable, et plus précisément qu’elle est semblable a
la matrice D = diag(1;8). Ona:

Za=X>—tr(A)X +det(A) =X?>—9X +8=(X—-1)(X —8).

Le polynome caractéristique de A est scindé a racines simples sur R, condition
suffisante pour que A soit diagonalisable sur RR.

La matrice A est donc semblable a une matrice diagonale dont la diagonale
comporte les valeurs propres de A répétées selon leur multiplicité : 1a matrice D
convient.

Conclusion : 1l existe une matrice P € GL,(R) telle que A= PD P!, en no-
tant D = (§3).

Soit B € .#,(IR) quelconque.
Posons A ;=P !BP, desorteque B=PAP™. Ainsi:

B est une racine cubique de A

e B’=A < (PAP V) =pDP! < pA’pl=ppp!
()
&= A®=D <= A estune racine cubique de D.

(Léquivalence & se montre, dans le sens direct, en multipliant par P~! & gauche, et
par P a droite; et dans le sens réciproque, en multipliant par P & gauche et par P! &
droite.)

Conclusion : Si A = P"'BP, alors : B est une racine cubique de A si et
seulement si A est une racine cubique de D.

Supposons que A soit une racine cubique de D.
Alors A et D commutent car :

AXD=AxA3=A*=A3xA=DxA.
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Ecrivons A = (Ccl Z) Légalité A x D =D x A donne :

a 8D a b 8b=b |
(c Sd)_(Sc Sd) donc {c=8c dou b=c=0.
La matrice A est donc elle aussi diagonale.
Conclusion : Si A est une racine cubique de D, alors A est diagonale.
4) < Cherchons les racines cubiques de D.
Par analyse-synthése : si A est une racine cubique de D, nécessairement
A est diagonale. Réciproquement : prenons A = diag(a, 8) € #,(IR) une
matrice diagonale quelconque. Alors :

A est racine cubique de D

o w5200

o p® 0 8
a®=1 «per a=1 1 0
— — — AI( )
=8 =2 0 2

Conclusion : D admet une unique racine cubique A; := diag(1 ; 2).

* On en déduit les racines cubiques de A.
D’apres Q2, les racines cubiques de A s’écrivent P AP ol A est une ra-
cine cubique de D.
Conclusion : La matrice A admet une unique racine cubique :

PA, P! =P diag(1;2)P".

Il — Dans un plan euclidien

Dans cette partie, on considere un plan euclidien orienté E muni d'une base ortho-
normée directe % = (e,,e, ).
Pour tout 8 € R, on pose :

__(cos(8) —sin(B) _ (cos(8) sin(0)
M(e)_(sin(e) cos(@)) et N(e)_(sin(Q) —cos(G))'

On note uy et vy les endomorphismes de E dont les matrices dans la base % sont
M(0) et N(O).

5) a. En lisant les colonnes de la matrice M(6) de uy, on constate que :
ug(e,) =cos(0)e, +sin(0)e, et ug(e,)=—sin(0)e, +cos()e,.

Graphiquement, ces deux vecteurs se représentent ainsi :

0

—sin(6) cos{9)>“ €x

L'endomorphisme u, fait tourner d'un angle 6 autour de l'origine les deux
vecteurs de la base orthonormée; uy est la rotation d’angle 8 du plan
orienté E.

. Pour deviner une racine cubique de M(0), on utilise le miroir de I’algebre

linéaire. Elever une matrice au cube revient 4 appliquer 3 fois successive-
ment Pendomorphisme correspondant. A la matrice M(8) correspond la
rotation d’angle 6 ; appliquer 3 fois la rotation d’angle ¢/3 revient a effec-
tuer une seule rotation d’angle 6.

On conjecture donc que M (9/3) est une racine cubique de M(6).

 Soit 0,60’ € R quelconques. Par le calcul du produit matriciel et grice
aux formules d’addition de trigonométrie :

cos(0) —sin(@))x(cos(G’) —sin(@’))

M(0)x M(0') = (sin(@) cos(6) sin(6”)  cos(6")

cos(8) cos(6”) —cos(8) sin(8")
—sin(0) sin(8") —sin(0) cos(8’)
| sin(6) cos(6”) —sin() sin(6")

+ cos(0) sin(6’) + cos(8) cos(8")
cos(6+6') —sin(6 +0)
- (sin(@ +0’)  cos(0+06) )
=M(6+6").

* Montrons maintenant que M (6/3)> = M(0) :

M (9/3)° = (M (9/3) x M (9/3)) x M (8/3)
=M (26/3) x M (9/3)
=M (20/3+0/3)
=M(0).

Conclusion : M (9/3) est bien une racine cubique de M(6).
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6) a. Calculons le polynéme caractéristique de N(6) :
Ineoy =X>—1tr(N(0)) X +det(N(0)) =X*—0.X + (—cos*(6) —sin*(6))
=X’—1=X-1(X+1).

b. ¢ La matrice N(6) est diagonalisable sur IR car son polynéme caracté-
ristique est scindé a racines simples sur IR (on peut aussi remarquer que
N(0) € S,(IR)).

* Ses valeurs propres sont les racines de yy(g), soit 1 et —1.

Notons E; et E_; ses deux sous-espaces propres (SEP). Comme les
valeurs propres sont simples, ce sont des droites vectorielles, et il suf-
fit de trouver un vecteur propre pour chacune des valeurs propres pour
connaitre ces SEP

* Pour expliciter E;, examinons la matrice N(6)—1, :

cos(6)—1 sin(0) )

N(O)-1,= ( sin(0)  —cos(6)—1.

Pour éliminer les 1, on utilise les formules de duplication :
cos(8) = cos(2-0/2) = 2 cos? (6/2) —1 =1 —2 sin?(¢/2)
sin(0) =sin(2-9/2) = 2 sin(9/2) cos (9/2).

En notant ¢ := ¢/2 pour alléger, on obtient :

[ —2sin*(¢) 2 sin(¢) cos(¢)
N(O)—I,= (2 sin(¢) cos(¢p)  —2 cos?(¢). )

Il apparait maintenant que : cos(¢)C; +sin(¢)C, = (8).

Le vecteur V; = (Zﬁf((f;; ) (toujours non nul car de norme 1) engendre

donc E;.
* On montre de méme que E_;
. [ —sin(¢)
Vo= (o))
Conclusion : La matrice N(60) est diagonalisable, de spectre {1 ;—1}.
Ses sous-espaces propres E; et E_; sont des droites, de bases (V;) et (V,)
pour les vecteurs V; = (‘;’If((:;g) et V, = (;;gggjg))

est engendré par le vecteur

c. Les sous-espaces propres E; et E_; de vy sont supplémentaires dans E.
De plus, les vecteurs de E; sont laissés invariants par vy, tandis que les vec-
teurs de E_; sont transformés en leur opposé.
On reconnait la symétrie par rapport a E;, parallelement a E_;.
De plus, V, étant orthogonal a V;, ona E_; | E;.
Conclusion : L’endomorphisme vy est la symétrie orthogonale par rapport

a la droite E;, engendrée par le vecteur V; = (Efrf((zg)) )

d. Puisque vy est une symétrie, v§ = idy et matriciellement, N(6)* =1,.

On en déduit que : N(0)® =1, x N(6) =N(0).
Conclusion : La matrice N(6) est sa propre racine cubique.

lll — Racines cubiques et diagonalisation

Soit A € ._#,(R) diagonalisable dont les valeurs propres distinctes sont
Al hg €R.

Existence d’une racine cubique polynomiale

7) Soit A€ R, peIN* et H,(A) :=A1L,.
Tout nombre réel A admet une racine cubique réelle.
En effet, I'application ¢ : x € IR — x> € R est continue et strictement croissante
sur l'intervalle R, donc elle est bijective de IR dans ¢ (IR) = ] lim¢ ; lim¢ [ =IRR.
A admet un unique antécédent par ¢, que 'on note V4. ©ore
La matrice R := VA I, est une racine cubique de H,(A) car :

R =(V21,)

Remarque. Lécriture A* n’est admise que si A est un réel positif. Cette notation est
définie a l'aide de la fonction exponentielle :

(¥2)' 1, =21, =H,).

exp(% ln(?t)) siA>0,

AeR,, A/=
v * {0 sil=0.

8) Puisque A est diagonalisable, en notant p,...,p, les ordres de multiplicités de
ses valeurs propres distinctes A4, ..., A4, la matrice A est semblable a la matrice
D, diagonale par blocs, de blocs diagonaux Hy, (44), ..., H, (44).

Considérons A la matrice diagonale par blocs, de blocs diagonaux
A Lyseees Ay I,,. Elle vérifie A3 = D en calculant les produits par blocs :
C’est une racine cubique de D.

Soit P € GL,(IR) telle que A=PDP~!. Posons B:=PAP™!; alors :
B =(PaP )Y =paA’pl=pDP ' =4;
la matrice B est une racine cubique de A.

Réduction d’une racine cubique

Dans cette sous-partie, on suppose de plus que la matrice A est inversible et on
considere le polynéme :

d
Q) =] [ (x*-2).

k=1
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9) La matrice A est inversible, donc 0 n’est pas valeur propre de A. 11) Pour chaque A, € R*, notons a;, f; et v ses 3 racines complexes distinctes.
Les A, qui sont les valeurs propres de A, sont donc tous non nuls. Alors :

10) Soit A € C* que I'on écrit sous forme exponentielle A = pel?, ott p > 0 et 3

0 € IR. Cherchons ses racines cubiques complexes. Vke[l,d], X*—A=&-a)X )X -1

Considérons z =re'?, pour r > 0 et ¢ € IR quelconques. Alors :

d
d’ott : QX)) = l_[ (X —ap) (X = Br) (X — 7).

P =) = (reinp)Szpeie — r3e3i¢=pei9. :
On identifie modules et arguments : Les racines complexes de ce polynéme sont les ay, By, vi, pour k € [1,d].
rP=p r=Jp (arrpeR) Remarquons qu’elles sont toutes distinctes; prenons deux racines du poly-
3p=0 [27] @ =6/3 [27/3] nome Q :

= 3JkeZ/z=pexp(i(¢+%)).

P=1 = {
* si elles correspondent au méme indice k € [1,d] fixé, ce sont deux racines
distinctes complexes de A ;

* sielle correspondent a deux indices k et k’ différents, leurs cubes respectifs,
Ak et Ay, sont différents, donc les deux racines ne peuvent pas étre égales.

Conclusion : Le polyndéme Q(X) est scindé a racines simples sur C.

12) Supposons que B soit une racine cubique de A : B3 = A.
Comme A est diagonalisable et que ses valeurs propres distinctes sont
Ag,..., A4, elle admet comme polynéme annulateur :

d

Z(X) = ]_[ (X — 4.

k=1
On en déduit que Q est un polyndéme annulateur de B :

d d

B =] [E -1y =] Ja-r1)=z@=o,.

k=1 k=1

Puisque Q est un polynome scindé a racines simples sur €, on en déduit que B

. . ., est diagonalisable sur C.
Dans cette expression, lorsque I'entier k augmente de 3 unités, 'argument aug-

mente de 27 : 'expression est 3-périodique par rapport a k. De plus, les
trois solutions pour k = 0,1, 2 sont distinctes car leurs arguments ne sont pas
congrus modulo 27.

Conclusion : Si A est une matrice diagonalisable sur R et inversible, ses ra-
cines cubiques B sont nécessairement diagonalisables sur C.

Conclusion : Pour tout A € C*, I'équation 2> = A admet exactement 3 solu-
tions distinctes.
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