
Classe de PSI

Corrigé du devoir surveillé no 3 (v2)

Exercice 1
extrait d’E3A PC 2018

Soit, pour tout n ∈ N∗, hn =
n
∑

k=1

1
k . On introduit les sommes H, S et T de séries

entières par les expressions :

H(x) =
∞
∑

n=1

hn xn, S(x) =
∞
∑

n=1

1
n2

xn et T (x) =
∞
∑

n=1

hn

n
xn.

On note I l’ouvert de convergence de la série entière de somme H.

1) Soit n ∈N∗. Alors h2n − hn =
2n
∑

k=1

1
k −

n
∑

k=1

1
k =

2n
∑

k=n+1

1
k .

Mais 1
k ⩾

1
2n pour tout k ∈ Jn+ 1 ; 2nK, donc : h2n−hn ⩾

2n
∑

k=n+1

1
2n =

n
2n =

1
2 .

2) ∗ La suite (hn)n⩾1 est croissante. Ou bien elle est majorée (et par le théo-
rème de la limite monotone, elle tend vers une limite finie), ou bien non
majorée (et elle tend vers +∞). Le contraire de hn −−−−→n→∞

+∞ est donc
« (hn)n⩾1 admet une limite finie ».

∗ Par l’absurde, supposons que (hn)n⩾1 converge, et notons ℓ sa limite (finie).
Par le théorème des suites extraites, h2n −−−−→n→∞

ℓ également.

Par différence de limites finies : hn − h2n −−−−→n→∞
ℓ− ℓ= 0.

Mais puisque pour tout n ⩾ 1, hn − h2n ⩾
1
2 , par passage à la limite dans

les inégalités larges : 0⩾ 1
2 , qui est une contradiction.

Conclusion : La suite (hn)n⩾1 tend vers +∞.

3) ∗ En x = 1, la série
∑

n⩾1
hn 1n est grossièrement divergente car son terme gé-

néral tend vers +∞ ; donc RH ⩾ 1.

∗ En outre : 0 ⩽ hn =
n
∑

k=1

1
k ⩽

n
∑

k=1
1 = n donc hn = O(n). Le rayon de

convergence cherché est au moins égal à celui de
∑

n⩾1
n xn, qui vaut 1 (série

entière usuelle pour α= −1). Ainsi RH ⩾ 1.

Conclusion : La série
∑

n⩾1
hn xn a pour rayon de convergence RH = 1.

Son intervalle ouvert de convergence est I = ]−1,1[.

Remarque. La règle de d’Alembert fonctionne également pour obtenir ce rayon de
convergence, à condition de justifier sérieusement la limite obtenue.

4) • La série entière
∑

n⩾1

1
n2 xn est une série entière de référence : RS = 1.

Remarque. On peut aussi refaire la preuve par échantillonage ; en x = 1, le terme
général tend vers 0 ; en x > 1, il tend vers +∞ par croissances comparées.

• La série entière
∑

n⩾1

hn
n xn a même rayon de convergence que

∑

n⩾1
hn xn, car

multiplier par n les coefficients ne modifie pas le rayon de convergence :
RT = RH = 1.

5) Soit g(x) = ln(1− x) pour tout réel x < 1.

On sait que : ∀u ∈ ]−1, 1[ , ln(1+ u) =
∞
∑

n=1

(−1)n−1

n
un.

Comme pour tout x ∈ ]−1, 1[, −x ∈ ]−1, 1[, par changement de variable :

∀ x ∈ ]−1,1[ , ln(1− x) =
∞
∑

n=1

(−1)n−1

n
(−x)n =

∞
∑

n=1

(−1)2n−1

n
xn

= −
∞
∑

n=1

xn

n
.

La série entière ci-dessus a même rayon de convergence que
∑

n⩾1

xn

n , série en-
tière usuelle : Rg = 1.

6) Pour tout x ∈ ]−1, 1[, soit G(x) =
ln(1− x)

1− x
= ln(1− x)×

1
1− x

. Ainsi :

G(x) =

�

−
∞
∑

n=1

1
n

xn

�

×

�∞
∑

n=0

xn

�

= −

�∞
∑

n=0

an xn

�

×

�∞
∑

n=0

bn xn

�

,

en posant a0 = 1 et an = 1/n pour tout n⩾ 1, et bn = 1 pour tout n ∈N.
Comme ces deux dernières séries entières sont de rayon de convergence 1, sur
l’intervalle ]−1,1[, le produit des sommes est aussi la somme du produit de
Cauchy
∑

n⩾0
cn xn de ces deux séries entières. Calculons ses coefficients :

c0 = a0 b0 = 0 et ∀n⩾ 1, cn =
n
∑

k=0

ak bn−k =
n
∑

k=1

1
k
= hn.

On obtient alors :

∀ x ∈ ]−1, 1[ , G(x) = −
∞
∑

n=0

cn xn = −
∞
∑

n=1

hn xn = −H(x).
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7) Soit L l’unique primitive de H sur I qui s’annule en 0.
Fixons x ∈ I et intégrons le résultat de la question précédente entre 0 et x :

∫ x

0

H(t)dt = −
∫ x

0

G(t)dt donc :

L(x)− L(0) = −
∫ x

0

ln(1− t)
1− t

dt =

∫ x

0

ln(1− t)×
d
dt

�

ln(1− t)
�

dt

=
�

1
2

�

ln(1− t)
�2 �x

0
=

1
2

ln2(1− x).

Conclusion : ∀ x ∈ I , L(x) =
1
2

ln2(1− x).

8) La fonction H est développable en série entière et l’on a :

∀ x ∈ ]−1,1[ , H(x) =
∞
∑

n=1

hn xn.

Ses primitives sur ]−1,1[ sont développables en série entière et se calculent
terme à terme ; en particulier pour L :

∀ x ∈ ]−1,1[ , L(x) = L(0) +
∞
∑

n=1

hn
xn+1

n+ 1
=
∞
∑

n=2

hn−1

n
xn.

On a prouvé que la fonction L est développable en série entière.

Remarque. Ne pas dire : « on peut intégrer terme à terme sur l’ouvert de convergence »
car c’est imprécis ; il n’est pas possible d’intégrer sur ]−R, R[ tout entier. Dire plutôt :
« on peut intégrer terme à terme sur un segment inclus dans l’ouvert de convergence ».

9) Calculons l’expression de T − S ; pour tout réel x de ]−1, 1[ :

T (x)− S(x) =
∞
∑

n=1

hn

n
xn −

∞
∑

n=1

1
n2

xn =
∞
∑

n=1

1
n

�

hn −
1
n

�

xn.

Or : hn −
1
n =

�

0 si n= 1,

hn−1 si n⩾ 2,
donc : T (x)− S(x) =

∞
∑

n=2

hn−1

n
xn = L(x)

d’après la question précédente.

Conclusion : ∀ x ∈ ]−1,1[ , T (x)− S(x) = L(x).

Exercice 2
E3A MP 2023, un exerice sur les 4

1) Question préliminaire
Par l’absurde : supposons que cos(n) −−−−→

n→∞
0.

Par le théorème des suites extraites, on aurait également cos(2 n) −−−−→
n→∞

0.

Toutefois, on aurait aussi :

∀n ∈N, cos(2 n) = 2 cos2(n)− 1 −−−−→
n→∞

2× 02 − 1= −1,

donc par unicité de la limite de la suite
�

cos(2 n)
�

n⩾0, 0= −1 : contradiction.

Conclusion : La suite
�

cos(n)
�

n∈N ne converge pas vers 0.

Soit R le rayon de convergence de la série entière
∑

n⩾1
an xn pour an =

cos(n)
n .

2) En x = 1, on a : an . 1n =
cos(n)

n
−−−−→
n→∞

0,

car
�

cos(n)
�

n⩾1 est bornée et n tend vers l’infini.
Par conséquent, R⩾ 1.

3) La suite
�

cos(n)
�

n⩾0 ne tend pas vers 0 d’après Q1,
donc la série
∑

n⩾0
cos(n) est grossièrement divergente.

4) On a en vu en Q2 que R⩾ 1 ; prouvons que R⩽ 1. Pour cela :

R= R

�

∑

n⩾1
an xn

�

= R

�

∑

n⩾1

cos(n)
n

xn

�

= R

�

∑

n⩾1
cos(n) xn

�

.

Or en x = 1, la dernière série entière diverge grossièrement d’après la question
précédente. R est donc au plus égal à 1.

Conclusion : R= 1.

On note f la somme de la série entière
∑

n⩾1
an xn.

5) Fixons x ∈ R quelconque. La série numérique
∑

n⩾0
ei n xn =
∑

n⩾0

�

ei x
�n

est une

série géométrique de raison ei x : elle converge si et seulement si
�

�ei x
�

�< 1,
c.à.d. | x |< 1.
Le rayon de convergence de la série entière est donc égal à 1, et sa somme
s’exprime :

∀ x ∈ ]−1, 1[ , S(x) :=
∞
∑

n=0

ei n xn =
∞
∑

n=0

�

ei x
�n
=

1
1− ei x

.

Remarque.
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∗ Le rayon de convergence appartient toujours à [0,+∞] : c’est un réel positif,
ou +∞. Le rayon de convergence n’est jamais un nombre complexe.
∗ Sur cet exemple, on pouvait aussi trouver le rayon de convergence à l’aide de la règle

de d’Alembert.

6) • La somme d’une série entière est dérivable terme à terme sur son ouvert de
convergence. Ainsi, pour tout réel x ∈ ]−1, 1[ :

f ′(x) =
d

dx

�∞
∑

n=1

cos(n)
n

xn

�

=
∞
∑

n=1

cos(n)
n

. n xn−1

=
∞
∑

n=1

cos(n) xn−1.

Si l’on suppose de plus x ̸= 0, on peut écrire :

f ′(x) =
1
x

∞
∑

n=1

cos(n) xn =
1
x

∞
∑

n=1

Re
�

ei n
�

xn

=
1
x

∞
∑

n=1

Re
�

ei n xn
�

car x ∈ R,

=
1
x

h

Re
�

S(x)
�

− 1
i

.

• Mettons S(x) sous forme algébrique :

S(x) =
1

1− ei x
=

1
(1− cos(1) x)− i sin(1) x

=
(1− cos(1) x) + i sin(1) x
�

� (1− cos(1) x)− i sin(1) x
�

�

2 =
(1− cos(1) x) + i sin(1) x
(1− cos(1) x)2 + sin2(1) x2

=
(1− cos(1) x) + i sin(1) x

1− 2 cos(1) x + x2
.

• On revient à f ′(x) :

f ′(x) =
1
x

h

Re
�

S(x)
�

− 1
i

=
1
x

�

1− cos(1) x
1− 2 cos(1) x + x2

− 1
�

=
1
x
×

cos(1) x − x2

1− 2 cos(1) x + x2

=
cos(1)− x

1− 2 cos(1) x + x2
.

• Enfin, on constate que cette formule reste valable pour x = 0 :

f ′(0) =
∞
∑

n=1

cos(n) . 0n−1 = cos(1) =
cos(1)− 0

1− 2 cos(1) . 0+ 02
.

Conclusion : Pour tout x ∈ ]−1, 1[, f ′(x) =
cos(1)− x

1− 2 cos(1) x + x2
.

7) Pour trouver une expression de f , on cherche les primitives de f ′, qui est une
fonction rationnelle. Pour simplifier les écritures, notons α := cos(1), de sorte
que :

∀ x ∈ ]−1,1[ , f ′(x) =
α− x

1− 2α x + x2
.

La dérivée du dénominateur est−2α+2 x ; on la fait apparaître au numérateur :

∀ x ∈ ]−1, 1[ , f (x) = f (0) +

∫ x

0

f ′(t)dt = 0−
1
2

∫ x

0

−2α+ 2 t
1− 2α t + t2

dt

= −
1
2

�

ln
�

�

�1− 2α t + t2
︸ ︷︷ ︸

>0

�

�

�

�x

0

= −
1
2

ln
�

1− 2α x + x2
�

= −
1
2

ln
�

1− 2 cos(1) x + x2
�

.

8) Étudions la série entière
∑

n⩾1

bn xn :=
∑

n⩾1

cos2 (n/2)
n

xn et R′′ son rayon de
convergence.

• En utilisant la formule de linéarisation cos2(θ ) = 1+cos(2θ )
2 , on réécrit la

série entière :
∑

n⩾1

bn xn =
∑

n⩾1

1+ cos(n)
2 n

xn =
∑

n⩾1

1
2

�

1
n
+ an

�

xn.

La série entière
∑

n⩾1
bn xn est combinaison linéaire des séries entières

∑

n⩾1

xn

n

et
∑

n⩾1
an xn, qui ont toutes les deux un rayon de convergence égal à 1.

Pour cette raison, R′′ ⩾ 1 et :

∀ x ∈ ]−1,1[ , g(x) =
∞
∑

n=1

1
2

�

1
n
+ an

�

xn =
1
2

�∞
∑

n=1

xn

n
+
∞
∑

n=1

an xn

�

=
1
2

�

−
∞
∑

n=1

(−1)n−1 (−x)n

n
+
∞
∑

n=1

an xn

�

=
1
2

�

− ln(1− x)− ln
�

1− 2 cos(1) x + x2
��

= −
1
2

ln
h

(1− x)
�

1− 2 cos(1) x + x2
�

i

.
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• Reste à voir que R′′ = 1 ; par l’absurde, supposons que R′′ > 1.
Le réel 1 se trouverait dans l’ouvert de convergence, donc la somme g de la
série entière serait continue en 1. En particulier, la limite de g(x) quand
x → 1− serait finie. Toutefois :

(1− x)
�

1− 2 cos(1) x + x2
�

−−−−→
x→1−

0+ ×
�

2− 2 cos(1)
�

= 0+,

donc g(x) = −
1
2

ln
h

(1− x)
�

1− 2 cos(1) x + x2
�

i

−−−−→
x→1−

+∞ :

il y a une contradiction, donc R′′ = 1.

Conclusion : R

�

∑

n⩾1
bn xn

�

= 1 et :

∀ x ∈ ]−1, 1[ ,
∞
∑

n=1

cos2 (n/2)
n

xn = −
1
2

ln
h

(1− x)
�

1− 2 cos(1) x + x2
�

i

.

Problème
d’après INP PC 2024

Racine cubique d’une matrice

Dans tout l’exercice, on considère un entier n ∈N∗.
On dit qu’une matrice A ∈ Mn(R) admet une racine cubique s’il existe B ∈ Mn(R)
telle que A= B3. Dans ce cas, on dit que B est une racine cubique de A.

I — Étude d’un exemple

Soit A=
�

4 −12
−1 5

�

∈M2(R).

1) Montrons que A est diagonalisable, et plus précisément qu’elle est semblable à
la matrice D = diag(1 ; 8). On a :

χA = X 2 − tr(A)X + det(A) = X 2 − 9 X + 8= (X − 1) (X − 8).

Le polynôme caractéristique de A est scindé à racines simples sur R, condition
suffisante pour que A soit diagonalisable sur R.
La matrice A est donc semblable à une matrice diagonale dont la diagonale
comporte les valeurs propres de A répétées selon leur multiplicité : la matrice D
convient.

Conclusion : Il existe une matrice P ∈ GL2(R) telle que A= P D P−1, en no-
tant D =
�

1 0
0 8

�

.

2) Soit B ∈M2(R) quelconque.
Posons ∆ := P−1 B P, de sorte que B = P∆ P−1. Ainsi :

B est une racine cubique de A

⇐⇒ B3 = A ⇐⇒ (P∆ P−1)3 = P D P−1 ⇐⇒ P∆3 P−1 = P D P−1

(∗)
⇐⇒ ∆3 = D ⇐⇒ ∆ est une racine cubique de D.

(L’équivalence
(∗)
⇐⇒ se montre, dans le sens direct, en multipliant par P−1 à gauche, et

par P à droite ; et dans le sens réciproque, en multipliant par P à gauche et par P−1 à
droite.)

Conclusion : Si ∆ = P−1 B P, alors : B est une racine cubique de A si et
seulement si ∆ est une racine cubique de D.

3) Supposons que ∆ soit une racine cubique de D.
Alors ∆ et D commutent car :

∆× D =∆×∆3 =∆4 =∆3 ×∆= D×∆.
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Écrivons ∆=
�

a b
c d

�

. L’égalité ∆× D = D×∆ donne :

�

a 8 b
c 8 d

�

=
�

a b
8 c 8 d

�

donc

�

8 b = b

c = 8 c
d’où b = c = 0.

La matrice ∆ est donc elle aussi diagonale.

Conclusion : Si ∆ est une racine cubique de D, alors ∆ est diagonale.

4) • Cherchons les racines cubiques de D.
Par analyse-synthèse : si ∆ est une racine cubique de D, nécessairement
∆ est diagonale. Réciproquement : prenons ∆ = diag(α,β) ∈M2(R) une
matrice diagonale quelconque. Alors :

∆ est racine cubique de D

⇐⇒ ∆3 = D ⇐⇒
�

α3 0
0 β3

�

=
�

1 0
0 8

�

⇐⇒
�

α3 = 1

β3 = 8

α,β∈R
⇐⇒
�

α= 1

β = 2
⇐⇒ ∆=
�

1 0
0 2

�

.

Conclusion : D admet une unique racine cubique ∆1 := diag(1 ; 2).

• On en déduit les racines cubiques de A.
D’après Q2, les racines cubiques de A s’écrivent P∆ P−1, où ∆ est une ra-
cine cubique de D.
Conclusion : La matrice A admet une unique racine cubique :

P∆1 P−1 = P diag(1 ; 2) P−1.

II — Dans un plan euclidien

Dans cette partie, on considère un plan euclidien orienté E muni d’une base ortho-
normée directeB = (ex , ey).
Pour tout θ ∈ R, on pose :

M(θ ) =
�

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

�

et N(θ ) =
�

cos(θ ) sin(θ )
sin(θ ) − cos(θ )

�

.

On note uθ et vθ les endomorphismes de E dont les matrices dans la base B sont
M(θ ) et N(θ ).

5) a. En lisant les colonnes de la matrice M(θ ) de uθ , on constate que :

uθ (ex) = cos(θ ) ex + sin(θ ) ey et uθ (ey) = − sin(θ ) ex + cos(θ ) ey .

Graphiquement, ces deux vecteurs se représentent ainsi :

ex

ey

uθ (ex)

uθ (ey)

cos(θ )

sin(θ )

− sin(θ )

cos(θ )

θ

θ

L’endomorphisme uθ fait tourner d’un angle θ autour de l’origine les deux
vecteurs de la base orthonormée ; uθ est la rotation d’angle θ du plan
orienté E.

b. Pour deviner une racine cubique de M(θ ), on utilise le miroir de l’algèbre
linéaire. Élever une matrice au cube revient à appliquer 3 fois successive-
ment l’endomorphisme correspondant. À la matrice M(θ ) correspond la
rotation d’angle θ ; appliquer 3 fois la rotation d’angle θ/3 revient à effec-
tuer une seule rotation d’angle θ .
On conjecture donc que M (θ/3) est une racine cubique de M(θ ).

c. • Soit θ ,θ ′ ∈ R quelconques. Par le calcul du produit matriciel et grâce
aux formules d’addition de trigonométrie :

M(θ )×M(θ ′) =
�

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

�

×
�

cos(θ ′) − sin(θ ′)
sin(θ ′) cos(θ ′)

�

=









cos(θ ) cos(θ ′)
− sin(θ ) sin(θ ′)

− cos(θ ) sin(θ ′)
− sin(θ ) cos(θ ′)

sin(θ ) cos(θ ′)
+ cos(θ ) sin(θ ′)

− sin(θ ) sin(θ ′)
+ cos(θ ) cos(θ ′)









=

�

cos(θ + θ ′) − sin(θ + θ ′)
sin(θ + θ ′) cos(θ + θ ′)

�

= M(θ + θ ′).

• Montrons maintenant que M (θ/3)3 = M(θ ) :

M (θ/3)3 =
�

M (θ/3)×M (θ/3)
�

×M (θ/3)

= M (2θ/3)×M (θ/3)
= M (2θ/3+ θ/3)
= M(θ ).

Conclusion : M (θ/3) est bien une racine cubique de M(θ ).
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6) a. Calculons le polynôme caractéristique de N(θ ) :

χN(θ ) = X 2 − tr
�

N(θ )
�

X + det
�

N(θ )
�

= X 2 − 0 . X +
�

− cos2(θ )− sin2(θ )
�

= X 2 − 1= (X − 1) (X + 1).

b. • La matrice N(θ ) est diagonalisable sur R car son polynôme caracté-
ristique est scindé à racines simples sur R (on peut aussi remarquer que
N(θ ) ∈ S2(R)).

• Ses valeurs propres sont les racines de χN(θ ), soit 1 et −1.
Notons E1 et E−1 ses deux sous-espaces propres (SEP). Comme les
valeurs propres sont simples, ce sont des droites vectorielles, et il suf-
fit de trouver un vecteur propre pour chacune des valeurs propres pour
connaître ces SEP.

• Pour expliciter E1, examinons la matrice N(θ )− I2 :

N(θ )− I2 =
�

cos(θ )− 1 sin(θ )
sin(θ ) − cos(θ )− 1.

�

Pour éliminer les 1, on utilise les formules de duplication :

cos(θ ) = cos (2 · θ/2) = 2 cos2 (θ/2)− 1= 1− 2 sin2 (θ/2)
sin(θ ) = sin (2 · θ/2) = 2 sin (θ/2) cos (θ/2) .

En notant φ := θ/2 pour alléger, on obtient :

N(θ )− I2 =
�

−2 sin2(φ) 2 sin(φ) cos(φ)
2 sin(φ) cos(φ) −2 cos2(φ).

�

Il apparait maintenant que : cos(φ)C1 + sin(φ)C2 =
�

0
0

�

.

Le vecteur V1 :=
�

cos(ϕ)
sin(φ)

�

(toujours non nul car de norme 1) engendre
donc E1.

• On montre de même que E−1 est engendré par le vecteur
V2 :=
�

− sin(φ)
cos(φ)

�

.

Conclusion : La matrice N(θ ) est diagonalisable, de spectre {1 ; −1}.
Ses sous-espaces propres E1 et E−1 sont des droites, de bases (V1) et (V2)
pour les vecteurs V1 =

�

cos(θ/2)
sin(θ/2)

�

et V2 =
�

− sin(θ/2)
cos(θ/2)

�

.

c. Les sous-espaces propres E1 et E−1 de vθ sont supplémentaires dans E.
De plus, les vecteurs de E1 sont laissés invariants par vθ , tandis que les vec-
teurs de E−1 sont transformés en leur opposé.
On reconnait la symétrie par rapport à E1, parallèlement à E−1.
De plus, V2 étant orthogonal à V1, on a E−1 ⊥ E1.
Conclusion : L’endomorphisme vθ est la symétrie orthogonale par rapport
à la droite E1, engendrée par le vecteur V1 =

�

cos(θ/2)
sin(θ/2)

�

.

d. Puisque vθ est une symétrie, v2
θ
= idE et matriciellement, N(θ )2 = I2.

On en déduit que : N(θ )3 = I2 × N(θ ) = N(θ ).
Conclusion : La matrice N(θ ) est sa propre racine cubique.

III — Racines cubiques et diagonalisation

Soit A ∈ Mn(R) diagonalisable dont les valeurs propres distinctes sont
λ1, . . . ,λd ∈ R.

Existence d’une racine cubique polynomiale

7) Soit λ ∈ R, p ∈N∗ et Hp(λ) := λ Ip.
Tout nombre réel λ admet une racine cubique réelle.
En effet, l’applicationφ : x ∈ R 7→ x3 ∈ R est continue et strictement croissante
sur l’intervalleR, donc elle est bijective deR dansφ(R) =

�

lim
−∞
φ ; lim

+∞
φ
�

= R.
λ admet un unique antécédent par φ, que l’on note

3p
λ.

La matrice R := 3p
λ Ip est une racine cubique de Hp(λ) car :

R3 =
�

3
p

λ Ip

�3
=
�

3
p

λ
�3

Ip = λ Ip = Hp(λ).

Remarque. L’écriture λ1/3 n’est admise que si λ est un réel positif. Cette notation est
définie à l’aide de la fonction exponentielle :

∀λ ∈R+, λ1/3 =

�

exp
�

1
3 ln(λ)
�

si λ > 0,

0 si λ= 0.

8) Puisque A est diagonalisable, en notant p1, . . . , pd les ordres de multiplicités de
ses valeurs propres distinctes λ1, . . . ,λd , la matrice A est semblable à la matrice
D, diagonale par blocs, de blocs diagonaux Hp1

(λ1), . . . , Hpd
(λd).

Considérons ∆ la matrice diagonale par blocs, de blocs diagonaux
3
p

λ1 Ip1
, . . . , 3
p

λd Ipd
. Elle vérifie ∆3 = D en calculant les produits par blocs :

c’est une racine cubique de D.
Soit P ∈ GLn(R) telle que A= P D P−1. Posons B := P∆ P−1 ; alors :

B3 =
�

P∆ P−1
�3
= P∆3 P−1 = P D P−1 = A ;

la matrice B est une racine cubique de A.

Réduction d’une racine cubique
Dans cette sous-partie, on suppose de plus que la matrice A est inversible et on
considère le polynôme :

Q(X ) =
d
∏

k=1

�

X 3 −λk

�

.
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9) La matrice A est inversible, donc 0 n’est pas valeur propre de A.
Les λk, qui sont les valeurs propres de A, sont donc tous non nuls.

10) Soit λ ∈ C∗ que l’on écrit sous forme exponentielle λ = ρ eiθ , où ρ > 0 et
θ ∈ R. Cherchons ses racines cubiques complexes.
Considérons z = r eiϕ, pour r > 0 et ϕ ∈ R quelconques. Alors :

z3 = λ ⇐⇒
�

r eiϕ
�3
= ρ eiθ ⇐⇒ r3 e3 iϕ = ρ eiθ .

On identifie modules et arguments :

z3 = λ ⇐⇒
�

r3 = ρ
3ϕ ≡ θ [2π]

⇐⇒
�

r = 3pρ (car r,ρ ∈R∗+)

ϕ ≡ θ/3 [2π/3]

⇐⇒ ∃ k ∈Z / z = 3pρ exp
�

i
�

θ
3 +

2kπ
3

��

.

θ

θ/3

2π/3

2π/3

λ= ρ eiθ

ρ

z0 =
3
p

ρ eiθ/3

z1

z2

3
p

ρ

Dans cette expression, lorsque l’entier k augmente de 3 unités, l’argument aug-
mente de 2π : l’expression est 3-périodique par rapport à k. De plus, les
trois solutions pour k = 0, 1,2 sont distinctes car leurs arguments ne sont pas
congrus modulo 2π.

Conclusion : Pour tout λ ∈ C∗, l’équation z3 = λ admet exactement 3 solu-
tions distinctes.

11) Pour chaque λk ∈ R∗, notons αk, βk et γk ses 3 racines complexes distinctes.
Alors :

∀ k ∈ J1, d K , X 3 −λk = (X −αk) (X − βk) (X − γk)

d’où : Q(X ) =
d
∏

k=1

(X −αk) (X − βk) (X − γk).

Les racines complexes de ce polynôme sont les αk,βk,γk, pour k ∈ J1, d K.
Remarquons qu’elles sont toutes distinctes ; prenons deux racines du poly-
nôme Q :

• si elles correspondent au même indice k ∈ J1, d K fixé, ce sont deux racines
distinctes complexes de λk ;

• si elle correspondent à deux indices k et k′ différents, leurs cubes respectifs,
λk et λk′ , sont différents, donc les deux racines ne peuvent pas être égales.

Conclusion : Le polynôme Q(X ) est scindé à racines simples sur C.

12) Supposons que B soit une racine cubique de A : B3 = A.
Comme A est diagonalisable et que ses valeurs propres distinctes sont
λ1, . . . ,λd , elle admet comme polynôme annulateur :

Z(X ) :=
d
∏

k=1

(X −λk).

On en déduit que Q est un polynôme annulateur de B :

Q(B) =
d
∏

k=1

(B3 −λk In) =
d
∏

k=1

(A−λk In) = Z(A) = 0n.

Puisque Q est un polynôme scindé à racines simples sur C, on en déduit que B
est diagonalisable sur C.

Conclusion : Si A est une matrice diagonalisable sur R et inversible, ses ra-
cines cubiques B sont nécessairement diagonalisables sur C.
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