
Énoncer le théorème de Cayley-Hamilton.

Réduction

À quelle condition nécessaire et suffisante une matrice
(respectivement un endormorphisme) est-elle (respectivement

est-il) trigonalisable ?

Réduction

Concernant ce chapitre, que peut-on dire des matrices
triangulaires ? des matrices symétriques ?

Réduction



Le polynôme caractéristique d’une matrice A (respectivement d’un endomor-
phisme u) est annulateur de A (respectivement de u) c’est-à-dire :

χA(A) = 0n (respectivement χu(u) = 0L(E)).

Une matrice (respectivement un endomorphisme) est trigonalisable si et seule-
ment si son polynôme caractéristique est scindé.

⋆ On calcule facilement le polynôme caractéristique d’une matrice triangulaire
T = (ti,j) :

χT =
n

∏
k=1

(X − ti,i).

Par conséquent, les valeurs propres de T sont ses cœfficients diagonaux, elles
apparaissent autant de fois que leur multiplicité.

⋆ Une matrice symétrique à cœfficients réels est toujours diagonali-
sable dans Mn(R).
Attention, ce n’est plus vrai pour les matrices symétriques à cœfficients
complexes.



Les assertions suivantes sont-elles vraies ou fausses ? Si elles sont
fausses, les corriger.

⋆ Une matrice est diagonalisable si et seulement si son polynôme
caractéristique est scindé à racines simples.

⋆ Une matrice est diagonalisable si et seulement si son polynôme
caractéristique est scindé.

Réduction

Montrer que A et AT ont les mêmes valeurs propres.

Réduction

Que peut-on dire sur le nombre de valeurs propres d’une matrice
A deMn(C) ? sur les valeurs propres d’une matrice A de

Mn(R) ?

Réduction



Ces deux assertions sont fausses !

Voici des énoncés corrects :

— Si le polynôme caractéristique est scindé à racines simples alors la
matrice est diagonalisable.

— Une matrice est diagonalisable si et seulement si son polynôme
caractéristique est scindé et pour toute valeur propre, la dimension du
sous-espace propre est égale à la multiplicité.

— Une matrice est trigonalisable si et seulement si son polynôme carac-
téristique est scindé.

Pour tout λ ∈ K :

χAT(λ) = det(λIn −AT
) = det((λIn −A)T) = det(λIn −A) = χA(λ).

Comme A et AT ont le même polynôme caractéristique, elles ont les mêmes
valeurs propres, avec les mêmes multiplicités.

⋆ Comme χA est scindé sur C, la matrice A possède n valeurs propres
complexes, comptées avec leurs multiplicités (et donc en particulier, au moins
une).

⋆ La matrice A possède au plus n valeurs propres réelles, comptées
avec leurs multiplicités. Ses valeurs propres complexes non réelles sont
conjuguées deux à deux et ont même multiplicité.



Quel est le résultat permettant de relier la trace, le déterminant
et les valeurs propres d’une matrice ?

Application : Soit A ∈ Mn(R). On suppose que l’on a déjà trouvé
n − 1 valeurs propres réelles de A (comptées avec leurs

multiplicités). Comment peut-on conclure sur les valeurs propres
de A ?

Réduction

Quelle est la définition d’un endomorphisme diagonalisable ?
d’une matrice diagonalisable ?

Réduction

Soit A ∈ Mn(K).

Donner la définition du sous-espace propre associé à une valeur
propre λ. Que sait-on sur sa dimension ?

Que sait-on sur les sous-espaces propres associés à des valeurs
propres distinctes ? Dans quel cas sont-ils supplémentaires ?

Que sait-on sur les sous-espaces propres de deux
endomorphismes qui commutent ?

Réduction



⋆ Sous l’hypothèse que χA est scindé sur K (à ne pas oublier !) :

— la trace est la somme des valeurs propres, répétées autant de fois que
leurs multiplicités,

— le déterminant est le produit des valeurs propres, répétées autant de
fois que leurs multiplicités.

⋆ Le polynôme χA est scindé sur C (c’est toujours le cas !) donc la dernière
valeur propre complexe est obtenue en faisant la différence entre la trace de
A et la somme des n − 1 valeurs propres déjà obtenues. Comme c’est un réel,
il s’agit en fait de la dernière valeur propre réelle.

⋆ Un endomorphisme de E est dit diagonalisable lorsqu’il existe une base de
E dans laquelle sa matrice est diagonale.

⋆ Une matrice est dite diagonalisable lorsqu’elle est semblable à une
matrice diagonale.

⋆ On a Eλ(A) = {X ∈ Mn,1(K), AX = λX} = Ker(A − λIn).
Par le théorème du rang, on a :

dim(Eλ(A)) = dim(Mn,1(K)) − rg(A − λIn) = n − rg(A − λIn).

On a aussi 1 ⩽ dim(Eλ(A)) ⩽mλ.
Cas particulier : Si mλ = 1 alors dim(Eλ(A)) = 1.

⋆ Les sous-espaces propres associés à des valeurs propres distinctes
sont en somme directe. Par conséquent, la somme de leurs dimensions est
inférieure ou égale à n.
Ils sont supplémentaires si et seulement si la matrice A est diagonalisable.

⋆ Tout sous-espace propre de l’un est stable par l’autre.



Soit A ∈ Mn(K).
Donner autant d’assertions que possibles équivalentes à

l’assertion λ est une valeur propre de A.

Application : On suppose que A ∈ M4(K) vérifie rg(A) = 1. Que
peut-on en déduire sur les éléments propres de A ?

Réduction

Soit A ∈ Mn(K).
On suppose la diagonalisabilité de A prouvée, comment peut-on

diagonaliser la matrice A ?

Réduction

Soit A ∈ Mn(K).
On suppose que l’on dispose d’un polynôme P annulateur de A.

Quel résultat de cours peut-on utiliser pour déterminer les
éléments propres de A ? pour prouver la diagonalisabilité de A ?

Peut-on utiliser P pour déterminer les multiplicités des valeurs
propres de A ?

Réduction



Les assertions suivantes sont équivalentes :
i. λ est une valeur propre de A

ii. L’équation AX = λX d’inconnue X ∈ Mn,1(K) admet des solutions
non nulles

iii. Ker(A − λIn) ≠ {0n,1}
iv. rg(A − λIn) ≠ n
v. A − λIn n’est pas inversible
vi. χA(λ) = 0

Application : On a rg(A − 0In) ≠ 4 donc 0 est une valeur propre de A.
N.B. : Par le théorème du rang, on a de plus dim(E0(A)) = 4 − rg(A) = 3 et
donc m0 ⩾ 3.

⋆ On détermine toutes les valeurs propres de A et une base de chaque sous-
espace propre associé. On concatène les bases obtenues : on obtient ainsi une
base B de Mn,1(K) (car les sous-espaces propres sont supplémentaires dans
Mn,1(K) puisque A est diagonalisable).
⋆ On note C la base canonique de Mn,1(K) et φA l’endomorphisme de
Mn,1(K) canoniquement associé à A c’est-à-dire φA ∶X ↦ AX.
Par les relations de changement de base, on obtient :

MatC(φA) = PC,BMatB(φA)PB,C

c’est-à-dire A = PDP −1 en notant P = PC,B et D =MatB(φA).
P est la matrice qui contient en colonne les vecteurs de la base B, elle est bien
inversible en tant que matrice de passage, d’inverse PB,C .
D est diagonale (car B est une base de vecteurs propres de φA), elle contient
sur sa diagonale les valeurs propres de A répétées selon leurs multiplicités
(l’ordre est défini par B).

⋆ On sait que les valeurs propres de A sont DES racines de P . En d’autres
termes, en notant RP l’ensemble des racines de P , on a :

Sp(A) ⊂ RP .

Attention, il n’y a pas égalité en général.

⋆ On sait qu’une matrice est diagonalisable si et seulement si elle ad-
met un polynôme annulateur scindé à racines simples.
Ainsi, si P est scindé sur K à racines simples alors on pourra conclure que A
est diagonalisable.

⋆ Les mulplicités des valeurs propres de A sont définies comme les
multiplicités des racines du polynôme caractéristique χA. On ne peut rien
déduire des multiplicités des racines d’un polynôme annulateur quelconque
de A.



Soit A ∈ Mn(K).
Quelle est la définition du polynôme caractéristique χA ? Quel

est son degré ? Que savez sur ses cœfficients ? ses racines ?
Précisez son expression dans le cas où n = 2.

Réduction

Soit A une matrice deMn(K).
Que signifie :

1. λ est une valeur propre de A ?
2. X est un vecteur propre de A ?
3. X est un vecteur propre de A associé à la valeur propre λ ?
4. X appartient au sous-espace propre Eλ(A) ?

Réduction

Soit u ∈ L(E) avec dim(E) = n.
Donner tous les critères de diagonalisabilité que vous connaissez.

Réduction



χA est le polynôme défini par :

χA(X) = det(XIn −A).

Il est unitaire et de degré n. Son cœfficient devant Xn−1 est −tr(A) et son
cœfficient constant est (−1)ndet(A).
Ainsi, dans le cas particulier n = 2, on a χA =X

2 − tr(A)X + det(A).

Ses racines sont exactement les valeurs propres de A et les multiplici-
tés de ses racines sont par définition les multiplicités des valeurs propres de
A.

1. Cela signifie que λ est un élément de K qui vérifie :

∃X ∈ Mn,1(K), X ≠ 0n,1, tel que AX = λX.

2. Cela signifie que X est un élément deMn,1(K) qui vérifie :

X ≠ 0n,1 et ∃λ ∈ K tel que AX = λX.

3. Cela signifie que X est un élément deMn,1(K) qui vérifie :

X ≠ 0n,1 et AX = λX.

4. Cela signifie que X est un élément deMn,1(K) qui vérifie :

AX = λX.

Les assertions suivantes sont équivalentes :
i. u est diagonalisable.
ii. Il existe une base de E formée de vecteurs propres de u.
iii. E = ⊕

λ∈Sp(u)
Eλ

iv. ∑
λ∈Sp(u)

dim(Eλ) = n

v. χu est scindé sur K et pour tout λ ∈ Sp(u), dim(Eλ) =mλ.
vi. ∏

λ∈Sp(u)
(X − λ) est un polynôme annulateur de u.

vii. u admet un polynôme annulateur scindé à racines simples.



Soit u ∈ L(E) et P un polynôme.
Montrer que si x est un vecteur propre de l’endomorphisme u

alors x est un vecteur propre de l’endomorphisme P (u).

Réduction

Soit u ∈ L(E). On note B une base de E et A =MatB(u).
Que peut-on dire sur les liens entre u et A concernant les

éléments propres ? le polynôme caractéristique ? la
diagonalisabilité ? la triagonalisabilité ?

Réduction

Soit u ∈ L(E).
Donner autant d’assertions que possibles équivalentes à

l’assertion λ est une valeur propre de u.

Application : On suppose que u est un endomorphisme de E avec
E de dimension finie et que l’on connaît Sp(u). Comment

peut-on savoir si u est un automorphisme de E ?

Réduction



On suppose que x est un vecteur propre de u.
Alors x ≠ 0E et il existe λ ∈ K tel que u(x) = λx.
On sait alors que P (u)(x) = P (λ)x.
Comme x ≠ 0E , on en déduit que x est un vecteur propre de P (u), associé à
la valeur propre P (λ).

⋆ L’endomorphisme u et la matrice A ont les mêmes valeurs propres et leurs
sous-espaces propres sont reliés par les relations vectoriel/matriciel dans la
base B.

⋆ L’endomorphisme u et la matrice A ont le même polynôme caracté-
ristique (donc les valeurs propres ont les mêmes multiplicités).

⋆ L’endomorphisme u est diagonalisable si et seulement si la matrice
A est diagonalisable.

⋆ L’endomorphisme u est trigonalisable si et seulement si la matrice A
est trigonalisable.

Les assertions suivantes sont équivalentes :
i. λ est une valeur propre de u

ii. L’équation u(x) = λx d’inconnue x ∈ E admet des solutions non nulles
iii. Ker(u − λIdE) ≠ {0E}

iv. u − λIdE n’est pas injective
v. rg(u − λIdE) ≠ n

vi. u − λIdE n’est pas surjective
vii. u − λIdE n’est pas bijective (c’est-à-dire n’est pas un automorphisme)
viii. χu(λ) = 0

Les assertions v., vi., vii. et viii. ne sont valables qu’avec un espace vectoriel
E de dimension finie, où n = dim(E).
Application : u est un automorphisme de E si et seulement si 0 n’est pas une
valeur propre de u c’est-à-dire si et seulement si 0 ∉ Sp(u).



Soit u un endomophisme d’un K-espace vectoriel E.
Quelles sont les droites vectorielles stables par u ?

Réduction

Soit u un endomorphisme d’un K-espace vectoriel E.
Que signifie :

1. λ est une valeur propre de u ?
2. x est un vecteur propre de u ?
3. x est un vecteur propre de u associé à la valeur propre λ ?
4. x appartient au sous-espace propre Eλ(u) ?

Réduction

Soit A = (
B C
(0) D

) avec A ∈ Mn(K) et B ∈ Mp(K).

On suppose que A est diagonalisable. Prouver que B est
diagonalisable.

Réduction



Ce sont les droites engendrées par un vecteur propre de u c’est-à-dire les sous-
espaces vectoriels du type Vect(x) où x est un vecteur propre de u.

1. Cela signifie que λ est un élément de K qui vérifie :

∃x ∈ E, x ≠ 0E , tel que u(x) = λx.

2. Cela signifie que x est un élément de E qui vérifie :

x ≠ 0E et ∃λ ∈ K tel que u(x) = λx.

3. Cela signifie que x est un élément de E qui vérifie :

x ≠ 0E et u(x) = λx.

4. Cela signifie que x est un élément de E qui vérifie :

u(x) = λx.

On note φ l’endomorphisme de Mn,1(K) canoniquement associé à A et
C = (e1, . . . , en) la base canonique deMn,1(K).

Comme la matrice A est triangulaire par blocs, on sait que
F

def
= Vect(e1, . . . , ep) est stable par φ. On peut donc considérer l’endo-

morphisme φF induit par φ sur F et B est sa matrice dans la base (e1, . . . , ep).

Comme A est diagonalisable, φ l’est aussi. En tant qu’endomorphisme
induit, φF est donc aussi diagonalisable et donc B est diagonalisable.


