Enoncer le théoréme de Cayley-Hamilton.

REDUCTION

A quelle condition nécessaire et suffisante une matrice
(respectivement un endormorphisme) est-elle (respectivement
est-il) trigonalisable 7

REDUCTION

Concernant ce chapitre, que peut-on dire des matrices
triangulaires 7 des matrices symétriques ?

REDUCTION




Le polynome caractéristique d’une matrice A (respectivement d’un endomor-
phisme u) est annulateur de A (respectivement de u) c’est-a-dire :

xA(A) =0, (respectivement x,(u) =0z(g)).

Une matrice (respectivement un endomorphisme) est trigonalisable si et seule-
ment si son polynéme caractéristique est scindé.

* On calcule facilement le polynéme caractéristique d’une matrice triangulaire
T=(ti;):

XT = H(X —tii).
k=1

Par conséquent, les valeurs propres de T sont ses ccefficients diagonaux, elles
apparaissent autant de fois que leur multiplicité.

N

» Une matrice symétrique a coefficients réels est toujours diagonali-
sable dans M, (R).

Attention, ce n’est plus vrai pour les matrices symétriques a coefficients
complexes.




Les assertions suivantes sont-elles vraies ou fausses 7 Si elles sont
fausses, les corriger.

» Une matrice est diagonalisable si et seulement si son polynéme
caractéristique est scindé a racines simples.

» Une matrice est diagonalisable si et seulement si son polynéme
caractéristique est scindé.

REDUCTION

Montrer que A et AT ont les mémes valeurs propres.

REDUCTION

Que peut-on dire sur le nombre de valeurs propres d’une matrice
A de M,,(C) ? sur les valeurs propres d’une matrice A de

M, (R)?

REDUCTION




Ces deux assertions sont fausses!

Voici des énoncés corrects :
— Si le polynome caractéristique est scindé a racines simples alors la
matrice est diagonalisable.

— Une matrice est diagonalisable si et seulement si son polynoéme
caractéristique est scindé et pour toute valeur propre, la dimension du
sous-espace propre est égale a la multiplicité.

— Une matrice est trigonalisable si et seulement si son polynéme carac-
téristique est scindé.

Pour tout A e K :
xat(A) =det(A, — AT) = det((A, — A)T) = det(Al, — A) = xa(N).

Comme A et AT ont le méme polynome caractéristique, elles ont les mémes
valeurs propres, avec les mémes multiplicités.

x Comme x4 est scindé sur C, la matrice A posséde n valeurs propres
complexes, comptées avec leurs multiplicités (et donc en particulier, au moins
une).

+ La matrice A posséde au plus n valeurs propres réelles, comptées
avec leurs multiplicités. Ses valeurs propres complexes non réelles sont
conjuguées deux a deux et ont méme multiplicité.




Quel est le résultat permettant de relier la trace, le déterminant
et les valeurs propres d’une matrice ?

Application : Soit A € M,,(R). On suppose que I'on a déja trouvé
n — 1 valeurs propres réelles de A (comptées avec leurs
multiplicités). Comment peut-on conclure sur les valeurs propres

de A?

REDUCTION

Quelle est la définition d’un endomorphisme diagonalisable ?
d’une matrice diagonalisable ?

REDUCTION

Soit A€ M, (K).

Donner la définition du sous-espace propre associé a une valeur
propre X. Que sait-on sur sa dimension ?

Que sait-on sur les sous-espaces propres associés a des valeurs
propres distinctes 7 Dans quel cas sont-ils supplémentaires ?

Que sait-on sur les sous-espaces propres de deux
endomorphismes qui commutent ?

REDUCTION




* Sous I’hypothése que x 4 est scindé sur K (& ne pas oublier!) :

— la trace est la somme des valeurs propres, répétées autant de fois que
leurs multiplicités,

— le déterminant est le produit des valeurs propres, répétées autant de
fois que leurs multiplicités.

* Le polynome x4 est scindé sur C (c’est toujours le cas!) donc la derniére
valeur propre complexe est obtenue en faisant la différence entre la trace de
A et la somme des n — 1 valeurs propres déja obtenues. Comme c’est un réel,
il s’agit en fait de la derniére valeur propre réelle.

% Un endomorphisme de E est dit diagonalisable lorsqu’il existe une base de
FE dans laquelle sa matrice est diagonale.

* Une matrice est dite diagonalisable lorsqu’elle est semblable & une
matrice diagonale.

*» On a E\(A) ={X e M,, 1(K), AX =2X} =Ker(A-\,).
Par le théoréme du rang, on a :

dim(Ey(A)) = dim(M,, 1(K)) —rg(A - AL,) =n-rg(A-A,).

On a aussi 1 < dim(Ex(A4)) < ma.
Cas particulier : Si my =1 alors dim(Ey(A)) = 1.

« Les sous-espaces propres associés a des valeurs propres distinctes
sont en somme directe. Par conséquent, la somme de leurs dimensions est
inférieure ou égale a n.

Ils sont supplémentaires si et seulement si la matrice A est diagonalisable.

= Tout sous-espace propre de 'un est stable par 'autre.




Soit A € M,,(K).
Donner autant d’assertions que possibles équivalentes a
Passertion \ est une valeur propre de A.

Application : On suppose que A € M,(K) vérifie rg(A) = 1. Que
peut-on en déduire sur les éléments propres de A ?

REDUCTION

Soit A € M,,(K).
On suppose la diagonalisabilité de A prouvée, comment peut-on
diagonaliser la matrice A7

REDUCTION

Soit A € M, (K).
On suppose que 'on dispose d’un polynéme P annulateur de A.

Quel résultat de cours peut-on utiliser pour déterminer les
éléments propres de A ? pour prouver la diagonalisabilité de A ?

Peut-on utiliser P pour déterminer les multiplicités des valeurs
propres de A7

REDUCTION




Les assertions suivantes sont équivalentes :
i. A est une valeur propre de A

ii. L’équation AX = AX d’inconnue X € M,, 1(K) admet des solutions
non nulles

iii. Ker(A-AL,) #{0,1}

iv. rig(A-\I,) #n

v. A -\, n’est pas inversible
vi. xa(A) =0

Application : On a rg(A - 01I,) # 4 donc 0 est une valeur propre de A.
N.B. : Par le théoréme du rang, on a de plus dim(FEy(A4)) =4-rg(A) =3 et
donc mg > 3.

* On détermine toutes les valeurs propres de A et une base de chaque sous-
espace propre associé. On concaténe les bases obtenues : on obtient ainsi une
base B de M,, 1(K) (car les sous-espaces propres sont supplémentaires dans
M.,,.1(K) puisque A est diagonalisable).

» On note C la base canonique de M, 1(K) et ¢4 l'endomorphisme de
M,,.1(K) canoniquement associé & A c’est-a-dire p4: X — AX.

Par les relations de changement de base, on obtient :

Matc(pa) = Pe sMatg(pa)Psc

c’est-a-dire A= PDP™! en notant P = Pz g et D = Matg(pa).

P est la matrice qui contient en colonne les vecteurs de la base B, elle est bien
inversible en tant que matrice de passage, d’inverse Pgc.

D est diagonale (car B est une base de vecteurs propres de p4), elle contient
sur sa diagonale les valeurs propres de A répétées selon leurs multiplicités
(Pordre est défini par B).

*x On sait que les valeurs propres de A sont DES racines de P. En d’autres
termes, en notant Rp I’ensemble des racines de P, on a :

Sp(A) C Rp.
Attention, il n’y a pas égalité en général.

* On sait qu'une matrice est diagonalisable si et seulement si elle ad-
met un polyndéme annulateur scindé a racines simples.

Ainsi, si P est scindé sur K & racines simples alors on pourra conclure que A
est diagonalisable.

* Les mulplicités des valeurs propres de A sont définies comme les
multiplicités des racines du polynoéme caractéristique x 4. On ne peut rien
déduire des multiplicités des racines d’'un polyndme annulateur quelconque
de A.




Soit A € M,,(K).
Quelle est la définition du polynéme caractéristique x 4 7 Quel
est son degré ? Que savez sur ses ceefficients 7 ses racines ?
Précisez son expression dans le cas oti n = 2.

REDUCTION

Soit A une matrice de M,,(K).
Que signifie :

1. X\ est une valeur propre de A7
2. X est un vecteur propre de A7
3. X est un vecteur propre de A associé a la valeur propre \ 7

4. X appartient au sous-espace propre E\(A) ?

REDUCTION

Soit u e L(E) avec dim(E) = n.
Donner tous les critéres de diagonalisabilité que vous connaissez.

REDUCTION




x A est le polynome défini par :
xa(X)=det(XI, - A).

Il est unitaire et de degré n. Son ccefficient devant X"~ est —tr(A4) et son
ceefficient constant est (—1)"det(A).
Ainsi, dans le cas particulier n =2, on a x4 = X2 - tr(A)X +det(A).

Ses racines sont exactement les valeurs propres de A et les multiplici-
tés de ses racines sont par définition les multiplicités des valeurs propres de

A.

[t

. Cela signifie que A est un élément de K qui vérifie :

IX e Mp1(K), X #0,1, tel que AX = \X.

[\

. Cela signifie que X est un élément de M,, 1(K) qui vérifie :

X #0,,1 et INeK tel que AX = \X.

w

. Cela signifie que X est un élément de M,, 1 (K) qui vérifie :

X #0, et AX = AX.

N

. Cela signifie que X est un élément de M,, 1 (K) qui vérifie :

AX = 2X.

Les assertions suivantes sont équivalentes :

i. u est diagonalisable.

ii. Il existe une base de E formée de vecteurs propres de wu.
iii. E= @ E\

AeSp(u)
iv. Y dim(E))=n
AeSp(u)
V. Xu est scindé sur K et pour tout A € Sp(u), dim(E)) = m.

vi. J] (X -2A) est un polynéme annulateur de u.
AeSp(u)

vii. v admet un polynoéme annulateur scindé a racines simples.




Soit u e L(E) et P un polynéme.
Montrer que si x est un vecteur propre de I’endomorphisme u
alors x est un vecteur propre de I'endomorphisme P(u).

REDUCTION

Soit u € L(E). On note B une base de E et A = Matg(u).
Que peut-on dire sur les liens entre u et A concernant les
éléments propres ? le polynéme caractéristique ? la
diagonalisabilité ? la triagonalisabilité ?

REDUCTION

Soit ue L(E).
Donner autant d’assertions que possibles équivalentes a
lassertion \ est une valeur propre de u.

Application : On suppose que u est un endomorphisme de E avec
E de dimension finie et que I'on connait Sp(u). Comment
peut-on savoir si u est un automorphisme de E 7

REDUCTION




On suppose que z est un vecteur propre de u.

Alors z # 0 et il existe A € K tel que u(z) = Ax.

On sait alors que P(u)(z) = P(\)z.

Comme z # Og, on en déduit que x est un vecteur propre de P(u), associé a
la valeur propre P()).

* L’endomorphisme u et la matrice A ont les mémes valeurs propres et leurs
sous-espaces propres sont reliés par les relations vectoriel/matriciel dans la
base B.

* L’endomorphisme u et la matrice A ont le méme polyndme caracté-
ristique (donc les valeurs propres ont les mémes multiplicités).

*x L’endomorphisme u est diagonalisable si et seulement si la matrice
A est diagonalisable.

* L’endomorphisme wu est trigonalisable si et seulement si la matrice A
est trigonalisable.

Les assertions suivantes sont équivalentes :
i. A est une valeur propre de u
ii. I’équation u(x) = Az d’inconnue x € E admet des solutions non nulles
ili. Ker(u—Aldg) #{0g}
iv. u— AIdg n’est pas injective
v. rg(u—Aldg) #n
vi. u— Aldg n’est pas surjective
vii. u— Aldg n’est pas bijective (c’est-a-dire n’est pas un automorphisme)
viii. x4 (M) =0
Les assertions v., vi., vii. et viii. ne sont valables qu’avec un espace vectoriel
E de dimension finie, ou n = dim(FE).
Application : u est un automorphisme de F si et seulement si 0 n’est pas une
valeur propre de u c’est-a-dire si et seulement si 0 ¢ Sp(u).




Soit u un endomophisme d’un K-espace vectoriel E.
Quelles sont les droites vectorielles stables par u ?

REDUCTION

Soit u un endomorphisme d’un K-espace vectoriel E.
Que signifie :

1. X est une valeur propre de u 7
2. x est un vecteur propre de u ?
3. x est un vecteur propre de u associé a la valeur propre A\ ?

4. x appartient au sous-espace propre Ey(u) ?

REDUCTION

Soit A = ( (ﬁ) g ) avec A e M, (K) et B e M,(K).
On suppose que A est diagonalisable. Prouver que B est

diagonalisable.

REDUCTION




Ce sont les droites engendrées par un vecteur propre de u c¢’est-a-dire les sous-
espaces vectoriels du type Vect(z) ou x est un vecteur propre de u.

[t

. Cela signifie que A est un élément de K qui vérifie :

dx e E, x #0g, tel que u(x) = A\x.

[\

. Cela signifie que x est un élément de E qui vérifie :

z#0g et IN e K tel que u(x) = Az.

w

. Cela signifie que x est un élément de E qui vérifie :

x+0p et u(z) = .

N

. Cela signifie que x est un élément de E qui vérifie :

u(z) = Az

On note ¢ l'endomorphisme de M, 1(K) canoniquement associé a A et
C=(e1,...,e,) la base canonique de M,, 1 (K).

Comme la matrice A est triangulaire par blocs, on sait que

d .
o<l Vect(eq,...,e,) est stable par ¢. On peut donc considérer 1’endo-
morphisme ¢ p induit par ¢ sur F et B est sa matrice dans la base (e1,...,ep).

Comme A est diagonalisable, ¢ 1’est aussi. En tant qu’endomorphisme
induit, pp est donc aussi diagonalisable et donc B est diagonalisable.




