
⋆ Citer la règle de d’Alembert pour les séries entières.

⋆ Citer la règle de d’Alembert pour les séries numériques (qui
pourra être utile pour déterminer le rayon de convergence d’une

série lacunaire, comme ∑anz2n par exemple).

Séries entières

⋆ Donner la définition du produit de Cauchy de deux séries
entières.

⋆ Que peut-on dire de son rayon de convergence et de sa somme ?

Séries entières

Énoncer la formule Taylor avec reste intégral puis l’inégalité de
Taylor-Lagrange.

Séries entières



⋆ Règle de d’Alembert pour les séries entières
Hyp. On suppose que :

1 à partir d’un certain rang, an ≠ 0 2 lim
n→+∞

∣an+1∣
∣an∣

= ℓ (finie ou infinie).

Alors R (∑anz
n) = 1

ℓ
en posant par convention 1

0
= +∞ et 1

+∞ = 0.

⋆ Règle de d’Alembert pour les séries numériques
Hyp. On suppose que :
1 à partir d’un certain rang, un > 0 2 on a lim

n→+∞
un+1
un
= ℓ (finie ou infinie).

Si ℓ < 1 alors la série ∑un converge et si ℓ > 1 alors la série ∑un diverge
grossièrement.
Exemple d’utilisation pour les séries entières : Pour déterminer R (∑anz

2n),
on fixe r ∈ R∗+ et on pose un = ∣an∣r2n pour tout n ∈ N. On utilise la règle de
d’Alembert pour les séries numériques pour étudier la convergence de la série
∑un. Cela permet de déterminer sup{r ∈ R+, ∑anr

2n converge absolument}.

⋆ On appelle produit de Cauchy des séries entières ∑anz
n et ∑ bnz

n la série

entière ∑ cnz
n où pour tout n ∈ N, cn =

n

∑
k=0

akbn−k = ∑
(p,q)∈[[0,n]]2

p+q=n

apbq.

⋆ Le rayon de convergence du produit de Cauchy de deux séries en-
tières vérifie :

R (∑ cnz
n) ⩾min (R (∑anz

n) ,R (∑ bnz
n)) .

De plus, pour tout z ∈ C tel que ∣z∣ <min (R (∑anz
n) ,R (∑ bnz

n)), on a :

+∞
∑
n=0

cnz
n = (

+∞
∑
n=0

anz
n)(

+∞
∑
n=0

bnz
n) .

⋆ Formule de Taylor avec reste intégral
Soit n ∈ N. On suppose que f est de classe Cn+1 sur l’intervalle I.
Pour tout (a, b) ∈ I2, on a :

f(b) =
n

∑
k=0

f (k)(a)
k!

(b − a)k + ∫
b

a

(b − t)n

n!
f (n+1)(t)dt.

⋆ Inégalité de Taylor-Lagrange
Soit n ∈ N. On suppose que f est de classe Cn+1 sur l’intervalle I et f (n+1) est
bornée sur I. Alors pour tout (a, b) ∈ I2, on a :

∣f(b) −
n

∑
k=0

f (k)(a)
k!

(b − a)k∣ ⩽ Sup
t∈I
∣f (n+1)(t)∣ × ∣b − a∣

n+1

(n + 1)!
.



Donner la définition du rayon de convergence R d’une série
entière ∑anz

n.

De quels ensembles le rayon de convergence R est-il la borne
supérieure ?

Séries entières

Donner les développements en série entière usuels, avec leur
domaine de validité.

Séries entières

On souhaite déterminer le rayon de convergence R d’une série
entière ∑anz

n.

Étape 1 : simplification du problème

Quels résultats peut-on utiliser pour se ramener à l’étude du
rayon de convergence d’une série entière plus simple ?

Séries entières



⋆ Par définition, le rayon de convergence est l’élément de [0,+∞[∪{+∞} défini
par :

R = sup{r ∈ R+ tel que la suite (anrn)n∈N est bornée}.

⋆ On a également :

R = sup{r ∈ R+ tel que la suite (anrn)n∈N converge vers 0},

R = sup{r ∈ R+ tel que la série ∑anr
n converge},

R = sup{r ∈ R+ tel que la série ∑anr
n converge absolument}.

∀x ∈] − 1,1[, 1

1 − x
=
+∞

∑
n=0

xn ∀z ∈ C tel que ∣z∣ < 1, 1

1 − z
=
+∞

∑
n=0

zn

∀x ∈] − 1,1[, (1 + x)α = 1 +
+∞

∑
n=1

α(α − 1)⋯(α − n + 1)
n!

xn(Connaître les cas α = 1

2
et α = −1

2
)

∀x ∈] − 1,1[, ln(1 + x) =
+∞

∑
n=1

(−1)n+1

n
xn ∀x ∈] − 1,1[, arctan(x) =

+∞

∑
n=0

(−1)n

2n + 1
x2n+1

∀x ∈ R, ex =
+∞

∑
n=0

1

n!
xn ∀z ∈ C, ez =

+∞

∑
n=0

1

n!
zn

∀x ∈ R, ch(x) =
+∞

∑
n=0

1

(2n)!
x2n ∀x ∈ R, sh(x) =

+∞

∑
n=0

1

(2n + 1)!
x2n+1

∀x ∈ R, cos(x) =
+∞

∑
n=0

(−1)n

(2n)!
x2n ∀x ∈ R, sin(x) =

+∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1

Étape 1 : simplification du problème

Le rayon de convergence est inchangé lorsqu’on :
— élimine les constantes multiplicatives non nulles,
— prend un équivalent du coefficient an,
— multiplie ou divise par n un nombre fixé de fois,
— dérive terme à terme ou primitive terme à terme.



On souhaite déterminer le rayon de convergence R d’une série
entière ∑anz

n.

Étape 2 : après simplification du problème

⋆ Cas particulier : Que vaut R(∑
n⩾1

nαzn) pour α ∈ R ?

⋆ Donner deux méthodes pour déterminer R dans le cas général.

⋆ Comment peut-on exploiter la connaissance d’inégalités sur
an ?

Séries entières

Que sait-on sur la régularité (continuité, dérivabilité, classe Ck...)
d’une somme de série entière ? Comment obtient-on ses dérivées

successives ?

Que sait-on sur l’intégration d’une somme de série entière ?

Séries entières

Soit ∑anxn une série entière de rayon de convergence R > 0.

Que peut-on dire de sa convergence en tant que série de
fonctions de la variable réelle ?

Que sait-on sur l’ensemble de définition de sa somme ?

Séries entières



⋆ On sait que R(∑
n≥1

nαzn) = 1.

⋆ Méthode 1 : On peut utiliser la règle de d’Alembert pour les séries
entières non lacunaires (pour les séries lacunaires, on peut revenir à l’étude
de la nature de la série numérique pour r ∈ R+ fixé, éventuellement en
utilisant le théorème de d’Alembert pour les séries numériques).

⋆ Méthode 2 : On peut revenir à la définition du rayon de conver-
gence, ou à une de ses caractérisations, en tant que borne supérieure d’un
ensemble que l’on cherche à déterminer.

⋆ Les inégalités à partir d’un certain rang permettent d’obtenir des re-
lations de domination. Si an = O(bn) alors R (∑anz

n) ⩾ R (∑ bnz
n).

Soit ∑anx
n une série entière de rayon de convergence R > 0. On note S sa

somme.

⋆ La fonction S est de classe C∞ sur ] − R,R[ et ses dérivées succes-
sives s’obtiennent sur ] −R,R[ par dérivation terme à terme :

∀k ∈ N,∀x ∈] −R,R[,

S(k)(x) =
+∞
∑
n=k

n(n − 1)...(n − k + 1)anxn−k =
+∞
∑
n=k

n!

(n − k)!
anx

n−k.

⋆ On peut intégrer la somme terme à terme sur tout segment inclus dans
] −R,R[ :

∀(α,β) ∈] −R,R[2, ∫
β

α
(
+∞
∑
n=0

ant
n)dt =

+∞
∑
n=0
(∫

β

α
ant

ndt) .

Cas particulier : Avec α = 0 et β = x ∈] −R,R[, on obtient ainsi l’expression
de l’unique primitive de S sur ] −R,R[ qui s’annule en 0.

⋆ La série de fonctions ∑anx
n converge simplement sur l’intervalle ouvert de

convergence ] −R,R[.
En notant D l’ensemble de définition de sa somme, on a :

] −R,R[⊂ D ⊂ [−R,R].

Pour déterminer complètement D, il faudrait étudier la convergence des
séries numériques ∑anR

n et ∑an(−R)n.

⋆ La série de fonctions ∑anx
n converge normalement (et donc unifor-

mément) sur tout segment inclus dans l’intervalle ouvert de convergence
] −R,R[.
Attention, il n’y a pas convergence normale sur ] −R,R[ en général !



Soit ∑anzn une série entière et R son rayon de convergence.
Soit z ∈ C. Que peut-on dire du module de z dans chacun des cas

suivants ?
1. On sait que la série ∑anzn converge.
2. On sait que la série ∑anzn diverge grossièrement.
3. On sait que la série ∑anzn converge mais ne converge pas

absolument.
4. On sait que la suite (anzn) diverge mais elle est bornée.
5. On sait que la suite (anzn) converge vers un complexe non

nul.

Séries entières

Soit S la somme d’une série entière ∑anxn. On suppose que l’on
connaît la fonction S explicitement sur un intervalle du type

] − r, r[ avec r > 0.

Comment peut-on déterminer les cœfficients an pour tout n ∈ N ?
(Proposer deux méthodes.)

Séries entières

Soit ∑anxn une série entière de rayon de convergence R > 0.
On note S sa somme.

Exprimer (2 − x)S′(x) − S(x) comme une somme de série entière
pour x ∈] −R,R[.

Séries entières



1. On a ∣z∣ ⩽ R (car si ∣z∣ > R alors la série ∑anz
n diverge).

2. On a ∣z∣ ⩾ R (car si ∣z∣ < R alors la série converge).

3. Comme ∑anz
n converge, on a ∣z∣ ⩽ R et comme ∑anz

n ne converge
pas absolument, on a ∣z∣ ⩾ R d’où ∣z∣ = R.

4. Comme (anzn) diverge, on a ∣z∣ ⩾ R et comme (anzn) est bornée, on
a ∣z∣ ⩽ R d’où ∣z∣ = R.

5. Comme (anzn) converge, on a ∣z∣ ⩽ R et comme (anzn) ne converge
pas vers 0, on a ∣z∣ ⩾ R d’où ∣z∣ = R.

⋆ On sait que S est de classe C∞ sur ] − r, r[ et on a :

∀n ∈ N, an =
S(n)(0)

n!
.

⋆ On peut développer la fonction obtenue en série entière et identifier les
cœfficients par unicité.

En tant que somme de série entière, S est dérivable terme à terme sur son
intervalle ouvert de convergence. On a donc pour tout x ∈] −R,R[ :

(2 − x)S′(x) − S(x) = 2
+∞
∑
n=1

nanx
n−1 − x

+∞
∑
n=1

nanx
n−1 −

+∞
∑
n=0

anx
n

= 2
+∞
∑
n=0
(n + 1)an+1xn −

+∞
∑
n=1

nanx
n −

+∞
∑
n=0

anx
n

par glissement d’indice dans la première somme, puis en ajoutant un terme
nul à la deuxième somme :

(2 − x)S′(x) − S(x) = 2
+∞
∑
n=0
(n + 1)an+1xn −

+∞
∑
n=0

nanx
n −

+∞
∑
n=0

anx
n

=
+∞
∑
n=0
(n + 1)(2an+1 − an)xn.



Que sait-on sur les fonctions développables en série entière ?

Séries entières

Séries géométriques dérivées :
Rappeler leur rayon de convergence et leur somme.

Séries entières



Si f est développable en série entière sur ] − r, r[ avec r > 0 alors f est de
classe C∞ sur ] − r, r[ et on a :

∀x ∈] − r, r[, f(x) =
+∞
∑
n=0

f (n)(0)
n!

xn.

⋆ Comme le rayon de convergence est invariant par dérivation terme à terme,
on a pour tout p ∈ N :

R (∑xn) = R(∑
n⩾1

nxn−1) = R(∑
n⩾2

n(n − 1)xn−2) = ... = R
⎛
⎝∑n⩾p

n!

(n − p)!
xn−p⎞
⎠

= 1

⋆ Par dérivation terme à terme sur l’intervalle ouvert de convergence, on a
pour tout x ∈] − 1,1[ :

+∞
∑
n=0

xn = 1

1 − x
,
+∞
∑
n=1

nxn−1 = 1

(1 − x)2
,

+∞
∑
n=2

n(n − 1)xn−2 = 2

(1 − x)3
, ...,

+∞
∑
n=p

n!

(n − p)!
xn−p = p!

(1 − x)p+1
.


