
Corrigé du DS 4

Problème
Q1. ∀n ∈ N, Sn+1 − Sn = f(n + 1) ⩾ 0 et d’après la relation de Chasles :
Jn+1 − Jn =

∫ n+1
n

f(t) dt ⩾ 0 par positivité de l’intégrale. Donc :

les suites (Sn)n∈N et (Jn)n∈N sont croissantes.

Soit k ∈ N∗, on sait que f est décroissante sur R, donc pour tout t ∈ [k − 1 ; k], f(k) ⩽
f(t) ⩽ f(k − 1), donc par croissance de l’intégrale (avec les bornes k − 1 ⩽ k) :∫ k

k−1
f(k) dt ⩽

∫ k

k−1
f(t) dt ⩽

∫ k

k−1
f(k − 1) dt

Donc :

∀k ∈ N∗, f(k) ⩽
∫ k

k−1 f(t) dt ⩽ f(k − 1).

Q2. Soit n ∈ N∗, d’après Q1 et par somme d’inégalités,
n∑

k=1
f(k) ⩽

n∑
k=1

(∫ k

k−1
f(t) dt

)
⩽

n∑
k=1

f(k − 1)

or, d’après la relation de Chasles :
n∑

k=1

(∫ k

k−1
f(t) dt

)
=
∫ n

0
f(t) dt = Sn

donc par décalage d’indice dans la dernière somme :

∀n ∈ N∗, Sn − f(0) ⩽ Jn ⩽ Sn−1.

Q3. • Supposons f intégrable sur R+, donc
∫ x

0 f(t) dt −−−−−→
x→+∞

∫ +∞
0 f(t) dt,

donc (Jn)n∈N est bornée, soit M un majorant de (Jn)n∈N
donc, d’après la question Q2, ∀n ∈ N, Sn ⩽ f(0)+Jn ⩽ f(0)+M , donc (Sn)n∈N est
majorée, or elle est croissante (Q1), donc d’après le théorème de la limite monotone,
(Sn)n∈N converge, c’est à dire

∑
f(n) converge.

• Réciproquement, supposons (Sn)n∈N convergente. Donc (Sn)n∈N est bornée, soit M
un majorant de (Sn)n∈N.
Donc, ∀n ∈ N∗,

∫ n

0 f(t) dt ⩽ Sn − 1 ⩽ M
or f est positive sur R+, donc :

∀x ∈ R+,

∫ x

0
f(t) dt ⩽

∫ ⌊x⌋+1

0
f(t) dt ⩽ M

or f est positive, donc : f ∈ L1(R+).
Donc :

f est intégrable sur R+ si et seulement si la série
∑

f(n) converge.

• d’après la question Q1, ∀n ∈ N∗ :

0 ⩽

(∫ n

n−1
f(t) dt

)
− f(n) ⩽ f(n − 1) − f(n)

donc la série
∑[(∫ n

n−1 f(t) dt
)

− f(n)
]

est à termes positifs. De plus, ∀N ∈ N∗ :

N∑
n=1

(f(n − 1) − f(n)) = f(0) − f(N) ⩽ f(0)

donc la série
∑

(f(n − 1) − f(n)) est majorée et à termes positifs, donc convergente,
donc par comparaison de séries à termes positifs :

la série
∑

n⩾1

[(∫ n

n−1 f(t) dt
)

− f(n)
]

converge.

Remarque : on peut commencer par démontrer le (2) et en déduire l’équivalence car d’après (2)
(Sn − Jn)n∈N converge.

Q4. a) la fonction f est strictement positive sur [2 ; +∞[ et dérivable sur [2 ; +∞[
d’après les théorèmes d’opérations sur les fonctions dérivables et ∀x ⩾ 2 :

f ′(t) =
−
(
(ln x)α + α(ln x)α−1)

(x(ln x)α)2 < 0

donc :
f est décroissante sur [2 ; +∞[.

Soit x ∈ [2 ; +∞[, par changement de variable de classe C1 : u = ln x,∫ x

2
f(t) dt =

∫ x

2

1
(ln x)α

ln′(x) dx =
∫ ln x

ln 2

1
uα

du.

Donc :
si α ̸= 1,∫ x

2
f(t) dt = 1

1 − α

(
1

(ln x)α−1 − 1
(ln 2)α−1

)
si α = 1,∫ x

2
f(t) dt = ln(ln x) − ln(ln 2).
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Donc, si α = 1,
∫ x

2 f(t) dt −−−−−→
x→+∞

+∞, donc f n’est pas intégrable sur [2 ; +∞[.
Si α ∈ ]0 ; 1[, ∫ x

2
f(t) dt = 1

1 − α

(
(ln x)1−α − (ln 2)1−α

)
−−−−−→
x→+∞

+∞,

donc f n’est pas intégrable sur [2 ; +∞[.
Si α > 1,∫ x

2
f(t) dt = 1

1 − α

(
1

(ln x)α−1 − 1
(ln 2)α−1

)
−−−−−→
x→+∞

1
(α − 1)(ln 2)α−1 ,

or f est positive, donc f ∈ L1([2 ; +∞[).
De plus f est une fonction continue, positive et décroissante sur [2 ; +∞[, donc d’après
la question Q3,

la série
∑ 1

n(ln n)α converge si et seulement si α > 1.

b) D’après Q2, ∀n ⩾ 3 :

Sn ⩽ f(2) + Jn

⩽ f(2) +
∫ +∞

2
f(t) dt

⩽
1

2(ln 2)2 + 1
ln 2

et
Sn ⩾ Jn+1

et les suites (Sn)n∈N et (Jn)n∈N convergent, donc par passage à la limite des inégalités
larges :

1
ln 2 ⩽

+∞∑
n=2

1
n(ln n)2 ⩽ 1

2(ln 2)2 + 1
ln 2 .

Q5. a) Soit f : t 7→ 1
t , donc f est continue, positive et décroissante sur [1 ; +∞[,

donc d’après la question Q3 (on décale l’intervalle de définition de f), la série∑
n⩾2

[(∫
n−1 nf(t) dt

)
− f(n)

]
converge. Or, ∀n ⩾ 1 :

n∑
k=2

[(∫
k−1

kf(t) dt

)
− f(k)

]

=
∫ n

1

1
t

dt −
n∑

k=2

1
k

= ln n −
n∑

k=2

1
k

= 1 − Tn.

Donc la suite (1 − Tn)n∈N converge, donc

la suite (Tn)n∈N converge.

b) On sait que limn→+∞ Tn = γ, donc : Tn =
n→+∞

γ + o(1),

donc :
n∑

k=1

1
k − ln n =

n→+∞
γ + o(1)

donc :
n∑

k=1

1
k =

n→+∞
ln n + γ + o(1).

Or ln n −−−−−→
n→+∞

+∞, donc γ + o(1) =
n→+∞

o(ln n), donc :

n∑
k=1

1
k ∼

n→+∞
ln n.

Q6. a) Soit n ∈ N∗, gn(n) = 1
2n , donc ∥gn∥∞,R∗

+
⩾ |gn(n)| = 1

2n ; or
∑ 1

n est
divergente (série harmonique), donc par comparaison de séries à termes positifs,∑

∥gn∥∞,R∗
+

diverge, donc :

la série
∑

gn ne converge pas normalement sur ]0 ; +∞[.

b) f est une fonction rationnelle dont le dénominateur ne s’annule pas sur R+ (x ̸= 0),
donc f ∈ C1(R+) et

∀t ∈ R+, f ′(t) = −2tx

(t2 + x2)2 ⩽ 0

donc f est décroissante sur R+, de plus f est positive et continue sur R+ donc, d’après
Q1 : ∀k ∈ N∗,

f(k) ⩽
∫ k

k−1
f(t) dt ⩽ f(k − 1)

donc (au rang k + 1) :

f(k + 1) ⩽
∫ k+1

k

f(t) dt ⩽ f(k)

donc : ∫ k+1

k

f(t) dt ⩽ f(k) ⩽
∫ k

k−1
f(t) dt

et par somme d’inégalités pour k de 1 à n et d’après la relation de Chasles :
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∀n ∈ N∗,
∫ n+1

1 f(t) dt ⩽
n∑

k=1
f(k) ⩽

∫ n

0 f(t) dt.

c) On remarque que : f(k) = gk(x) et∫ n

0
f(t) dt =

∫ n

0

x

t2 + x2 dt

=
[
Arctan( t

x
)
]n

0

= Arctan(n

x
) ⩽ π

2 .

Donc
∑

gn(x) =
∑

f(n) est une série à termes positifs et majorée par π
2 , donc elle

converge. De plus ∫ n

0
f(t) dt = Arctan(n

x
) −−−−−→

n→+∞

π

2 .

et ∫ n+1

1
f(t) dt = Arctan(n + 1

x
) − Arctan( 1

x
) −−−−−→

n→+∞

π

2 − Arctan( 1
x

).

Donc, par passage à la limite des inégalités larges,

π
2 − Arctan( 1

x ) ⩽
+∞∑
n=1

gn(x) ⩽ π
2 .

d) La fonction Arctan est continue en 0, donc Arctan( 1
x ) −−−−−→

x→+∞
0, donc d’après le

théorème des gendarmes,

limx→+∞
+∞∑
n=1

gn(x) = π
2 .

Supposons par l’absurde :
∑

gn converge uniformément sur ]0 ; +∞[.
Or : ∀n ∈ N∗, gn(x) = x

n2+x2 −−−−−→
n→+∞

0 donc, d’après le théorème de la double limite :

lim
x→+∞

(+∞∑
n=1

gn(x)
)

=
+∞∑
n=1

(
lim

x→+∞
gn(x)

)
=

+∞∑
n=1

0 = 0

donc : π
2 = 0, d’où la contradiction.

Donc :
la série

∑
gn ne converge pas uniformément sur ]0 ; +∞[.

Q7. a) Soit n ∈ N∗∫ n+1

n

=
∫ n+ 1

2

n

sin(2πt) dt −
∫ n+1

n+ 1
2

sin(2πt) dt

=
[

− cos(2πt)
2π

]n+ 1
2

n

+
[

cos(2πt)
2π

]n+1

n+ 1
2

= 2
π

donc :

∀n ∈ N∗,
∫ n+1

n
f(t) dt = 2

π .

b) Soit x ∈ [1 ; +∞[, on pose n = ⌊x⌋, donc x ⩾ n et par positivité de l’intégrale :∫ x

1
f(t) dt =

∫ n

1
f(t) dt +

∫ x

n

f(t) dt

⩾
∫ n

1
f(t) dt

⩾
n−1∑
k=1

(∫ k+1

k

f(t) dt

)

⩾
n−1∑
k=1

2
π

⩾
2(n − 1)

π

Donc :

∀x ∈ [1 ; +∞[,
∫ x

1 |sin(2πt) dt| ⩾ 2
π (⌊x⌋ − 1).

Or : 2
π (⌊x⌋ − 1) −−−−−→

x→+∞
+∞, donc par comparaison,

∫ x

1
|sin(2πt| dt −−−−−→

x→+∞
+∞.

Donc :

f n’est pas intégrable sur [1 ; +∞[.

Et, ∀n ∈ N∗, f(n) = |sin(2πn)| = 0, donc∑
f(n) est convergente (de somme nulle).

Cette fonction fournit donc un contre exemple à Q3 sans l’hypothèse de monotonie avec l’intégrale
divergente et la série convergente.

Q8. L’aire du triangle est 2an×1
2 = an, donc
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si an = 1
n2 , alors l’aire du triangle est 1

n2 .

Dessiner l’allure de la courbe.
Pour que les triangles soient disjoints, on ne considère les triangles qu’à partir de
n = 2.
La fonction f est affine apar morceaux, donc continue par morceaux sur [1 ; +∞[ et
positive sur [1 ; +∞[.
On effectue les calculs dans [0 ; +∞] :∫ +∞

1
f(t) dt =

+∞∑
n=2

1
n2 < +∞

car
∑ 1

n2 est une série de Riemann convergente (2 > 1). Donc f ∈ L2([1 ; +∞[). Or
∀n ⩾ 2, f(n) = 1, donc la série

∑
f(n) diverge grossièrement.

Cette fonction f fournit un contre exemple avec à la comparaison série
intégrale (sans l’hypothèse de monotonie) avec f intégrable et la série

divergente.
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Exercice 1 : Théorème de décomposition de Dunford
Non continuité de l’application A 7→ D

Q9. Les matrices A =
(

1 0
0 0

)
et B =

(
0 1
0 1

)
sont diagonalisables, en effet A est

diagonale et χB = X(X − 1) est simplement scindé. Et A + B =
(

1 1
0 1

)
, donc

χA+B = (X − 1)2, supposons par l’absurde A + B diagonalisable, donc son polynôme
minimal est simplement scindé et a les mêmes racines que sont polynôme caractéris-
tique, donc µA+B = (X − 1), donc A + B − I2 = 0 : contradiction. Donc A, B ∈ D et
A + B /∈ D ; donc D n’est pas un espace vectoriel si n = 2.
Plus généralement, pour n ⩾ 2, quitte à compléter les matrices A et B avec des
coefficients nuls, on obtient

D n’est pas un espace vectoriel.

Soit P est une matrice inversible de Mn(C), l’application de Mn(C) vers Mn(C),
M 7→ PMP −1 est linéaire sur l’espace vectoriel Mn(C) qui est de dimension finie,
donc cette application est continue.

l’application de Mn(C) vers Mn(C), M 7→ PMP −1 est continue.

Q10. Soit A ∈ Mn(C), donc A est trigonalisable : il existe P ∈ GLn(C) et T ∈ Mn(C)
triangulaire supérieure telles que A = PTP −1. On note t1, . . . , tn les coefficients dia-
gonaux de T et on pose :

δ = min {|tk − tj |; k, j ∈ J1 ; nK, tk ̸= tj} et D = diag
(

1
n

,
2
n

, . . . , 1
)

Montrons que : ∀x ∈ ]0 ; δ[, T + xD ∈ D.
Soit x ∈ ]0 ; δ[, donc T +xD est triangulaire et ses coefficients diagonaux sont : tk + kx

n .
Soit j, k ∈ J1 ; nK avec j ̸= k

1er cas : tk = tj , donc (
tk + kx

n

)
−
(

tj + jx

n

)
= (k − j)x

n
̸= 0

car j ̸= k.
2e cas : tk ̸= tj , donc∣∣∣∣(tk + kx

n

)
−
(

tj + jx

n

)∣∣∣∣
⩾ |tk − tj | − |k − j| x

n

⩾ δ − |k − j| x

n
> 0 (car |k − j| < n et x < δ)

Donc T + xD est triangulaire supérieure et ses coefficients diagonaux sont 2 à deux
distincts ; donc son polynôme caractéristique est simplement scindé, donc T +xD ∈ D.
Donc : ∀k ⩾ 2, Tk = T + δ

k D ∈ D et Tk −−−−−→
k→+∞

T .

Donc : ∀k ⩾ 2, Ak = PTkP −1 ∈ D (car semblable à Tk diagonalisable) ; de plus
Tk −−−−−→

k→+∞
T et M 7→ PMP −1 est continue ; donc Ak = PTkP −1 −−−−−→

k→+∞
PTP −1 =

A.
Conclusion, d’après la caractérisation séquentielle de la densité,

D est dense dans Mn(C).

Q11. Soit A ∈ D, alors A = A + 0 avec A ∈ D, 0 nilpotente (car 01 = 0) et
A × 0 = 0 × A = 0 ; donc par unicité de la décomposition de Dunford, φ(A) = A.
Donc :

φ est l’application identité sur D.

Supposons par l’absurde que φ est continue sur Mn(C), or ∀A ∈ D, φ(A) = A et D
dense de Mn(C) d’après la question précédente ; donc : φ = idMn(C). Donc pour toute
matrice A ∈ Mn(C), φ(A) = A est diagonalisable, donc D = Mn(C) : absurde car
d’après la question Q9, D n’est pas un espace vectoriel.
Conclusion :

l’application φ n’est pas continue.
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Exercice 2
Q12. Pour tout k ∈ N∗, 1

k In ∈ GLn(R) et

1
k

In −→
k→+∞

0

car
∥∥ 1

k In − 0
∥∥ = 1

k ∥In∥ −→
k→+∞

0.

De plus 0 /∈ GLn(R), donc par caractérisation séquentielle des fermés :

GLn(R) n’est pas un fermé de Mn(R).

Q13. GLn(R) = det−1(R∗), or det est continue de Mn(R) dans R et R∗ = ]−∞ ; 0[ ∪
]0 ; +∞[ est un ouvert de R ; donc :

l’ensemble GLn(R) est ouvert dans Mn(R).

Q14. Le spectre de M , Sp(M) est un ensemble fini (de cardinal inférieur à n), donc
Sp(M) ∩ ]0 ; +∞[ est fini.
1er cas : Sp(M) ∩ ]0 ; +∞[ = ∅,

on pose alors ρ = 1.
2ième cas : Sp(M) ∩ ]0 ; +∞[ ̸= ∅,

donc : Sp(M) ∩ ]0 ; +∞[ est une partie finie non vide de R, soit ρ son plus petit
élément.

Dans sous les cas, ρ ∈ ]0 ; +∞[ et pour tout λ ∈ ]0 ; ρ[, λ /∈ Sp(M), donc

∃ρ > 0, ∀λ ∈]0, ρ [, M − λIn ∈ GLn(R) .

Pour tout k ∈ N, on pose Mk = M − ρ
k+2 In ; donc : ∀k ∈ N, Mk ∈ GLn(R) et

Mk −−−−−→
k→+∞

M .

On a montré que pour tout M ∈ Mn(R), il existe (Mk)k∈N ∈ (GLn(R))N telle que
Mk −−−−−→

k→+∞
M . Donc, par caractéristion séquentielle :

l’ensemble GLn(R) est dense dans Mn(R).

Q15. D’après la question précédente, il existe (Ak)k∈N ∈ (GLn(R))N telle que
Ak −−−−−→

k→+∞
A.

Soit x ∈ R ; pour tout k ∈ N :

AkB − xIn = Ak(BAk − xIn)A −1
k

donc :

det(AkB − xIn) = det(Ak) det(BAk − xIn) det(Ak)−1 = det(BAk − xIn)

Or : Ak −−−−−→
k→+∞

A et M 7→ MB est un endomorphisme de Mn(R) qui est de dimen-
sion finie, donc M 7→ MB est continue ; donc AkB −−−−−→

k→+∞
AB. Puis par opération

sur les limites, AkB − xIn −−−−−→
k→+∞

AB − xInf . Enfin, par continuité de l’application
det de Mn(R) dans R,

det(AkB − xIn) −−−−−→
k→+∞

det(AB − xIn) = χAB(x).

De même :
det(BAk − xIn) −−−−−→

k→+∞
det(BA − xIn) = χBA(x);

et on sait que : ∀k ∈ N, det(AkB − xIn) = det(BAk − xIn).
Donc : χAB(x) = χBA(x) ; valable pour tout x ∈ R. Donc :

les matrices A.B et B.A ont le même polynôme caractéristique.

A =
(

1 0
0 0

)
et B =

(
0 0
1 0

)
, donc AB = 0, donc µAB = X et BA =

(
0 0
1 0

)
,

donc X(BA) ̸= 0 : µAB n’est pas un polynôme annulateur de BA.

les matrices AB et BA n’ont pas toujours le même polynôme annulateur.

Q16. On suppose par l’absurde que GLn(R) est connexe par arcs. Or la fonc-
tion det est continue de Mn(R) dans R, donc det(GLn(R)) est connexe par arcs
(car image directe d’une partie connexe par arcs par une fonction continue). Or
det(GLn(R)) = R∗ = ]−∞ ; 0[ ∪ ]0 ; +∞[ n’est pas un intervalle et les connexes par
arcs de R sont les intervalles ; d’où la contradiction.
Donc :

Démontrer que GLn(R) n’est pas connexe par arcs.
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