Corrigé du DS 4

Probléme

Ql. vn € N;S,11 — S, = f(n+1) > 0 et d’aprés la relation de Chasles :
Jnt1 — JIp = f:“ f(t)dt > 0 par positivité de Pintégrale. Donc :

‘ les suites (Sy)nen et (Jn)nen sont croissantes. ‘

Soit k € N*, on sait que f est décroissante sur R, donc pour tout t € [k —1; k|, f(k) <
f(t) < f(k—1), donc par croissance de I'intégrale (avec les bornes k — 1 < k) :

k k k
f(k)dt < f(t)dt < f(k—1)dt

k—1 k—1 k—1

Donc :

Wk e N*, f(k) < [y f(0)dt < f(k = 1),

Q2. Soit n € N*, d’apres Q1 et par somme d’inégalités,

n n k n
NIOEDS ( £ dt) <D fk—1)
k

k=1 k=1 \Vk-1 =1

or, d’apres la relation de Chasles :

n k n
Z( klf(t)dt) :/0 f)dt =S,

k=1

donc par décalage d’indice dans la derniére somme :

| VneN*, 8, — f(0) < Ju < Sp |

Q3. « Supposons f intégrable sur R*, donc fox ft)dt - f0+°° f(®)dt,
T—+00
donc (J,)nen est bornée, soit M un majorant de (J,)nen
donc, d’apres la question Q2,Vn € N;S,, < f(0)+J,, < f(0)+ M, donc (Sp,)nen est
majorée, or elle est croissante (Q1), donc d’apres le théoréme de la limite monotone,
(Sn)nen converge, c’est a dire Y f(n) converge.
o Réciproquement, supposons (S, )nen convergente. Donc (S, )nen est bornée, soit M
un majorant de (Sp)nen-
Donc, Vn € N*, [ f(t)dt < S, — 1< M
or f est positive sur RT, donc :

T lz|+1
v € R+,/ () dt </ £t dt < M
0 0

or f est positive, donc : f € L(RY).
Donc :

f est intégrable sur RT si et seulement si la série Y f(n) converge. ‘

o d’apres la question Q1, Vn € N* :
o< ([ 0at) = s < la =1 - 100
n—1

donc la série > [(fil f@) dt) - f(n)} est & termes positifs. De plus, VN € N* :

n

N
> (fln=1) = f(n)) = f(0) = F(N) < £(0)
n=1

donc la série > (f(n — 1) — f(n)) est majorée et & termes positifs, donc convergente,
donc par comparaison de séries & termes positifs :

la série nz>:1 Kf:_l f(t) dt) - f(n)} converge.

Remarque : on peut commencer par démontrer le (2) et en déduire I'équivalence car d’aprés (2)
(Sn — Jn)nen converge.

Q4. a) la fonction f est strictement positive sur [2;+oo[ et dérivable sur [2;+oo[
d’apres les théoremes d’opérations sur les fonctions dérivables et Vo > 2 :

— ((Inz)* + a(lnz)*1)

; <0
(z(Inz)*)

f'@) =

donc :

’ f est décroissante sur [2;+o0]. ‘

Soit @ € [2; +00[, par changement de variable de classe C! : u = Inx,

T T 1 Inz 1
f(t dt:/ ——In'(z dx:/ — du.
/2 Q > (Inz)> (=) In2 U<
sia#1,

[ rwar= <<lnx1>a—1 - <1n21>a—1>

sia=1,

Donc :

/x f@)dt =In(Inz) — In(In 2).
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Donc, si a =1, f; flt)de —+> +00, done f n’est pas intégrable sur [2;4o00].
r—r+00
Siael0;1],

[ e = 1 () 2 ) o v,

r—r+00

donc f n’est pas intégrable sur [2; +oo].
Sia>1,

@ 1 1 1 1
/2 f(t)dt = I—a <(lnx)a1 - (hlg)al) z—+o00 (a—1)(In2)e—1’

or f est positive, donc f € L1([2;+oc]).
De plus f est une fonction continue, positive et décroissante sur [2; +oo[, donc d’aprés
la question Q3,

la série > m converge si et seulement si o > 1.

b) D’apres Q2, Vn > 3 :

Sn < f(2)+ Jn

< -
2(In 2)? + In2

et
Sn > Jn+1

et les suites (Sy)nen et (J,)nen convergent, donc par passage a la limite des inégalités
larges :

L 1 1
2 < 22 n(lnn)? < 2(In2)2 + 2

n=

Q5. a) Soit f :t — % donc f est continue, positive et décroissante sur [1;-+o0],
donc d’apreés la question Q3 (on décale l'intervalle de définition de f), la série

Do [(fn,l nf(t) dt) - f(n)} converge. Or, ¥n > 1 :

3 ([ ) - w)

k=2

nq |
JEE
k=2

Donc la suite (1 — T}, )nen converge, donc

‘ la suite (T}, )nen converge. ‘

b) On sait que lim, 1, T,, = 7, donc : T, =7 +o(1),
n—-+oo

n
. 1 —
donc : g::l r—Inn il +o(1)

donc :
n 1 B
kz::1 Koo Inn+~+ o(1).
Or Inn ——— 400, donc y+0(1) = o(lnn), donc :
n—-4o0o n—+4o0o
1
L
kgl k n——+o0o nn

Q6. a) Soit n € N* g,(n) = %, donc ||9n||oo,1R*+ > |gn(n)| = Zin; or Z% est
divergente (série harmonique), donc par comparaison de séries & termes positifs,
> Hgn||oo7]R,K+ diverge, donc :

‘ la série > g, ne converge pas normalement sur ]0; +oo. ‘

b) f est une fonction rationnelle dont le dénominateur ne s’annule pas sur R* (z # 0),
donc f € CH(R™) et
—2tx

T3 o3 S
(2 + 22)2

donc f est décroissante sur RT, de plus f est positive et continue sur RT donc, d’aprés
Q1 : Vk € N*|

Vte RT, f'(t) =

k
flk) < f)dt < f(k—1)

k—1

donc (au rang k+ 1) :
k+1
fern < [ fod<
k

donc :
k

k+1
/k fde< < [ fde

k—1
et par somme d’inégalités pour k de 1 a n et d’apres la relation de Chasles :
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vne N, [T () dt < S (k) < [ f)dt.

¢) On remarque que : f(k) = Qk( ) et

us

Donc ) gn(z) = > f(n) est une série a termes positifs et majorée par 7, donc elle
converge. De plus

" n T
/o f@)dt = Arctan(;) 3
° et n+1 1 s 1
/1 f(t) dt = Arctan( ) — Arctan(;) — 3 Arctan(;).
Donc, par passage a la limite des inégalités larges,
+00
7 — Arctan(1) < nzlgn(x) < 3.

d) La fonction Arctan est continue en 0, donc Arctan(2) P 0, donc d’apres le

théoreme des gendarmes,

400
limg 400 Y, gn(z) = %

n=1

Supposons par labsurde : > g,, converge uniformément sur ]0; +oo[.
Or:Vn € N, g,(2) = ;275 P 0 donc, d’apres le théoreme de la double limite :
n—-+0oo

“+oo “+o0
zlygx><gg;gn(x)> ::gég <xgglogn ) zz:o‘i 0

donc : § =0, d’out la contradiction.

Donc :

‘ la série > g, ne converge pas uniformément sur ]0; +oo]. ‘

Q7. a) Soit n € N*

n+1 n+3 n+1
/ = / sin(27t) dt — / sin(27t) d¢
n n n+%

— cos(27t) nt3 cos(2mt) "t
= |— |
27 n 27 il

2

2
s

donc :

Ve N*, ["Th ) dt = 2

b) Soit = € [1;400[, on pose n = |z], donc x > n et par positivité de I'intégrale :

/jf(t)dt " dt+/ £(t)

f () dt

1 k+1
( / f(t)dt>
k
2

TH\H\

(]

1T
_

2
2
2

B
I

1
n—1)
77

[\~
—

=

Donec :

Va € [1; 400, [; [sin(2nt) dt| > 2(|z] — 1).

Or :

3o

(lz] — 1) ——— 400, donc par comparaison,
r——+0o0

x
/ [sin(27t] dt ——— +o0.
1 T—>+00

Donc :

‘ f n’est pas intégrable sur [1;+oo]. ‘

Et, Vn € N*, f(n) = |sin(27n)| = 0, donc

‘ > f(n) est convergente (de somme nulle). ‘

Cette fonction fournit donc un contre exemple a Q3 sans |'hypothése de monotonie avec I'intégrale
divergente et la série convergente.

Q8. L’aire du triangle est % = a,, donc
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si a, = #, alors l'aire du triangle est n—lz

Dessiner 'allure de la courbe.

Pour que les triangles soient disjoints, on ne considere les triangles qu’a partir de
n=2.

La fonction f est affine apar morceaux, donc continue par morceaux sur [1;+oo| et
positive sur [1;40o0l.

On effectue les calculs dans [0; +o0] :

—+oo

+o0 1
/1 f(ﬁ)dtzz:ﬁ < 400

n=2

car Y 2 est une série de Riemann convergente (2 > 1). Donc f € L?([1;+oc]). Or
Vn > 2, f(n) = 1, donc la série Y f(n) diverge grossiérement.

Cette fonction f fournit un contre exemple avec & la comparaison série
intégrale (sans ’hypothése de monotonie) avec f intégrable et la série
divergente.

Lycée Victor Hugo, Besangon

2025/2026

Corrigé du DS 4

4/6



Exercice 1 : Théoreme de décomposition de Dunford

Non continuité de P’application A — D

1 0

Q9. Les matrices A = (O 0

) et B = (8 1) sont diagonalisables, en effet A est

X (X — 1) est simplement scindé. Et A+ B = ((1) 1), donc

diagonale et xp

XA+ = (X —1)2, supposons par I'absurde A + B diagonalisable, donc son polynome
minimal est simplement scindé et a les mémes racines que sont polynéme caractéris-
tique, donc pa1p = (X — 1), donc A+ B — I =0 : contradiction. Donc A, B € D et
A+ B ¢ D; donc D n’est pas un espace vectoriel si n = 2.

Plus généralement, pour n > 2, quitte a compléter les matrices A et B avec des
coefficients nuls, on obtient

D n’est pas un espace vectoriel. ‘

Soit P est une matrice inversible de M, (C), lapplication de M, (C) vers M, (C),
M +— PMP~! est linéaire sur I'espace vectoriel M, (C) qui est de dimension finie,
donc cette application est continue.

‘ I'application de M, (C) vers M,,(C), M ~ PMP~! est continue. ‘

Q10. Soit A € M,,(C), donc A est trigonalisable : il existe P € GL,(C) et T' € M,,(C)
triangulaire supérieure telles que A = PTP~!. On note ty,...,t, les coeflicients dia-

gonaux de T et on pose :

. 1)
Montrons que : Vz € ]0;0[,T + 2D € D.
Soit x € ]0; ¢, donc T+xD est triangulaire et ses coefficients diagonaux sont : ¢ + kn—x

Soit j, k € [1;n] avec j # k
ler cas : t;, =t;, donc

1 2
d=min{|ty —t;|;k,j € [1;n],tx #t;} et Ddiag(

Ty Ty
nn

k j k—3j
(tk+x>—(tj+”)=(j)x;éo
n n n
car j # k.
2e cas :t, #t;, donc
kx jx
ot — ) = (t;+=
n n
k—jlx
>‘tk_tj‘_| 7l
n
b
25—| ]|z>0 (car [k —jl <mnetxz <)
n

Donc T + zD est triangulaire supérieure et ses coefficients diagonaux sont 2 a deux
distincts ; donc son polynéme caractéristique est simplement scindé, donc T'+xzD € D.

Donc : Vk > 2,7, =T + 2D € D et Tj —— T.
k— o0

Donc : Vk > 2, Ay = PTyP~! € D (car semblable & T}, diagonalisable); de plus

T, —— T et M — PMP~! est continue; donc A, = PT,P~! —— PTP~!

k— 400 k——+oco

Conclusion, d’apres la caractérisation séquentielle de la densité,

D est dense dans M, (C). ‘

Q11. Soit A € D, alors A = A+ 0 avec A € D, 0 nilpotente (car 0 0) et
Ax0=0xA=0; donc par unicité de la décomposition de Dunford, ¢(A) = A.

Donc :

‘ @ est 'application identité sur D. ‘

Supposons par 'absurde que ¢ est continue sur M,,(C), or VA € D, p(A) = A et D
dense de M,,(C) d’apres la question précédente ; donc : ¢ = id 4, (). Donc pour toute
matrice A € M, (C),p(A) = A est diagonalisable, donc D = M,,(C) : absurde car
d’apres la question Q9, D n’est pas un espace vectoriel.

Conclusion :

‘ I’application ¢ n’est pas continue. ‘

Lycée Victor Hugo, Besangon 2025/2026

Corrigé du DS 4 5 / 6



Exercice 2

Q12. Pour tout k € N*, %In € GL,(R) et

car H%In — OH = % 17|l k_>—+>oo 0.

De plus 0 ¢ GL,,(R), donc par caractérisation séquentielle des fermés :

‘ GL,(R) n’est pas un fermé de M, (R). ‘

Q13. GL,(R) = det™(R*), or det est continue de M,,(R) dans R et R* =]—o0;0[U
]0; +o0[ est un ouvert de R; donc :

‘ Pensemble GL,,(R) est ouvert dans M,,(R). ‘

Q14. Le spectre de M, Sp(M) est un ensemble fini (de cardinal inférieur & n), donc
Sp(M) N10; 400 est fini.
1°r cas : Sp(M) N]0;+o0[ = &,
on pose alors p = 1.
2iéme cag : Sp(M) N]0; +oo| # 2,
donc : Sp(M) N ]0;+oo[ est une partie finie non vide de R, soit p son plus petit
élément.

Dans sous les cas, p € ]0;+00[ et pour tout A € ]0; p[, A ¢ Sp(M), donc

| 3p>0, YAE0,p[, M -, € GL,(R). |

Pour tout £k € N, on pose My = M —

My — M.
k—+oo

On a montré que pour tout M € M, (R), il existe (My)ren € (GL,(R))N telle que

M;, k—) M. Dongc, par caractéristion séquentielle :
—+0o0

kL_?_QIn; donc : Vk € N, My € GL,(R) et

lensemble GL,,(R) est dense dans M,,(R). ‘

Q15. D’apreés la question précédente, il existe (Ap)ren € (GL,(R))N telle que

Ay —— A
k——+o00

Soit « € R; pour tout k € N :

ApB — zl, = Ag(BAg — z1,) A"

donc :
det(AxB — zI,,) = det(Ay) det(BAg — 21,,) det(Ay) ! = det(BAy, — =1,,)

Or: Ay ——— A et M — MB est un endomorphisme de M, (R) qui est de dimen-

k— oo

sion finie, donc M — M B est continue; donc ApB k—> AB. Puis par opération
—+00

sur les limites, Ay B — =l ﬁ AB — zl, f. Enfin, par continuité de ’application
— 00
det de M,,(R) dans R,

det(AyB — xI,) — det(AB — 21,,) = xap ().

k——+oo

De méme :
det(BAy, — 1) ﬁ det(BA — zI,,) = xpa(x);
—+oo

et on sait que : Vk € N, det(AxB — xI,,) = det(BAy — x1,).
Donc : xap(x) = xpa(z); valable pour tout = € R. Donc :

<

donc X

‘ les matrices A.B et B.A ont le méme polynome caractéristique. ‘

0 0 0 00
O)etB—<1 O),doncAB—O,doncuAB—XetBA—(1 0),

BA) #0 : uap n'est pas un polynéme annulateur de BA.

O =

—~

‘ les matrices AB et BA n’ont pas toujours le méme polynéme annulateur. ‘

Q16. On suppose par labsurde que GL,(R) est connexe par arcs. Or la fonc-
tion det est continue de M, (R) dans R, donc det(GL,(R)) est connexe par arcs
(car image directe d’une partie connexe par arcs par une fonction continue). Or
det(GL,(R)) = R* = ]—00;0[ U ]0;+00] n’est pas un intervalle et les connexes par
arcs de R sont les intervalles; d’ou la contradiction.

Donc :

‘ Démontrer que GL,,(R) n’est pas connexe par arcs. ‘

Lycée Victor Hugo, Besangon

Corrigé du DS 4 6 / 6



