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Problème n°1 : CCINP PSI 2025 PhCh (extrait) (à faire sans calculatrice, 

comme au concours) 

 
Le schéma de principe ci-dessus reprend ceux de l’énoncé (en corrigeant une erreur de la figure 5 : le bac à sel est 

en réalité ouvert sur l’air libre, de façon à ce que la pression à la surface libre de la saumure soit bien 𝑃𝑎𝑡𝑚, en 

permanence). 

On peut se placer en régime d’écoulement quasi-stationnaire.  

En faisant l’approximation qu’il est aussi parfait, homogène et incompressible, et utiliser la relation de Bernoulli le 

longe de la ligne de courant ABC : avec des notations évidentes, 𝑃𝐵 = 𝑃𝐴 +
1

2
𝜌𝑏(𝑣𝐴

2 − 𝑣𝐵
2), c’est-à-dire : 

𝑃𝐵 = 𝑃𝑟𝑒𝑠 +
1

2
𝜌𝑏(𝑣𝐴

2 − 𝑣𝐵
2) 

De même, le long de la ligne 𝐴1𝐵1𝐶1, 𝑃𝐵1
= 𝑃𝐴1

− 𝜌𝑠𝑔ℎ +
1

2
𝜌𝑆(𝑣𝐴1

2 − 𝑣𝐵1

2 ),  

c’est-à-dire 𝑃𝐵1
= 𝑃𝐴𝑡𝑚 − 𝜌𝑠𝑔ℎ −

1

2
𝜌𝑆𝑣𝐵1

2 . 

Par continuité de la pression (en l’absence de membrane ou de paroi) : 𝑃𝐵 = 𝑃𝐵1
, d’où : 

𝑃𝑟𝑒𝑠 +
1

2
𝜌𝑏(𝑣𝐴

2 − 𝑣𝐵
2) =  𝑃𝐴𝑡𝑚  − 𝜌𝑠𝑔ℎ −

1

2
𝜌𝑆𝑣𝐵1

2 . 

Or, dans le cadre de l’écoulement parfait (on ne peut pas faire mieux ici, faute d’informations), le débit volumique 

d’eau brute est : 

𝐷𝑣 =
𝜋𝐷2

4
𝑣𝐴 =

𝜋𝑑2

4
𝑣𝐵 

D’où 𝑃𝑟𝑒𝑠 − 𝑃𝐴𝑡𝑚 + 𝜌𝑠𝑔ℎ +
1

2
𝜌𝑆𝑣𝐵1

2 =
1

2
𝜌𝑏 (

16𝐷𝑣
2

𝜋2𝑑4 −
16𝐷𝑣

2

𝜋2𝐷4)  

Ou encore 𝑃𝑟𝑒𝑠 − 𝑃𝐴𝑡𝑚 + 𝜌𝑠𝑔ℎ +
1

2
𝜌𝑆𝑣𝐵1

2 =
8𝐷𝑣

2

𝜋2𝑑4𝐷4 𝜌𝑏(𝐷4 − 𝑑4) . 

On en déduit 𝐷𝑣 =
𝜋𝑑2𝐷2

√8𝜌𝑏(𝐷4−𝑑4)
√𝑃𝑟𝑒𝑠 − 𝑃𝐴𝑡𝑚 + 𝜌𝑠𝑔ℎ +

1

2
𝜌𝑆𝑣𝐵1

2 . 

Et donc 𝐷𝑣 ≥
𝜋𝑑2𝐷2

√8𝜌𝑏(𝐷4−𝑑4)
√𝑃𝑟𝑒𝑠 − 𝑃𝐴𝑡𝑚 + 𝜌𝑠𝑔ℎ . 

Le débit volumique minimal est donc : 𝐷𝑣 𝑚𝑖𝑛 =
𝜋𝑑2𝐷2

√8𝜌𝑏(𝐷4−𝑑4)
√𝑃𝑟𝑒𝑠 − 𝑃𝐴𝑡𝑚 + 𝜌𝑠𝑔ℎ  

_____________________________________________________________________________ 
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Problème n°2 : e3a PSI 2025 PhCh (extrait) (à faire sans calculatrice, comme au concours) 

Q24. Commençons par choisir des notations : notons 𝑁 le rythme cardiaque (𝑁 =
70

60
= 1,2 s−1, (en pulsations par 

seconde). 

Notons 𝑉1 le volume de sang expulsé à chaque pulsation du cœur : 𝑉1 = 75.10−6 m3. 

Le débit volumique moyen du cœur est donc : 𝐷 = 𝑁𝑉1 , d’où 𝐷 =
7∗75

6
. 10−6 =

7∗25

2
. 10−6 = 7 ∗ 12,5.10−6, soit 

𝐷 = 87. 10−6m3s−1  . 

La « vitesse » demandée dans l’aorte semble être la vitesse débitante, donc 𝑣𝑠 =
𝐷

𝑆
=

7∗12,5.10−6

3,0.10−4 = 0,29 m. s−1  

Q25. On utilise le premier principe industriel de la thermodynamique entre l’entrée et la sortie du cœur, en indiçant 

avec un « e » les variables d’entrée et un « s » celles de sortie, et en notant 𝜌 la masse volumique du sang, comme 

dans l’énoncé au II.2 : 

(𝑢𝑠 +
𝑃𝑠

𝜌
+

1

2
𝑣𝑠

2 + 𝑔𝑧𝑠) − (𝑢𝑒 +
𝑃𝑒

𝜌
+

1

2
𝑣𝑒

2 + 𝑔𝑧𝑒) = 𝑤𝑢 + 𝑞 

Avec les hypothèses de l’énoncé, 𝑢𝑠 = 𝑢𝑒, 𝑞 = 0, et il est légitime de poser 𝑧𝑠 = 𝑧𝑒. 

Il vient 𝑤𝑢 =
𝑃𝑠−𝑃𝑒

𝜌
+

1

2
(𝑣𝑠

2 −
𝑣𝑠

2

4
) . 

Numériquement, 𝑤𝑢 =
1,0.104

1,1.103 +
3

8
(7 ∗

0,125

3
)

2
=

100

11
+

49∗
1

64

3∗8
≃ 9,1 J. kg−1 . 

La puissance fournie par le cœur est donc ℘ = 𝜌𝐷𝑤𝑢 , d’où ℘ = (1,0.104 + 1,1.103 ∗
49∗

1

64

3∗8
) ∗ 7 ∗ 12,5.10−6, ce 

qui donne, sans calculatrice, ℘ ≃ 1,0.104 ∗ 7 ∗ 12,5.10−6 ≃ 0,87 W . 

Q26. Ecoulement laminaire pour 𝑅𝑒 < 2.103  

Q27. Puisque la pesanteur est négligée, que la pression ne dépend que de 𝑥, donc pas de 𝜃, et vu que les conditions 

aux limites imposées par la conduite sont indépendantes de 𝜃 et de 𝑥, 𝑣(𝑟, 𝜃, 𝑥) n’est en fait une fonction que de 𝑟 : 

𝑣(𝑟). 

La condition d’adhérence est 𝑣(𝑅) = 0 . 

Q28. Les forces de viscosité exercées sur la portion de fluide considéré ont pour expression : 

𝐹⃗𝑣𝑖𝑠𝑐 = 𝜂
𝑑𝑣

𝑑𝑟
2𝜋𝑟𝐿 𝑢𝑥⃗⃗⃗⃗⃗  

Q29. La résultante des forces de pression en amont a pour expression 𝐹𝑎𝑚
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑃1𝜋𝑟2 𝑢𝑥⃗⃗⃗⃗⃗  

La résultante des forces de pression en aval a pour expression 𝐹𝑎𝑣
⃗⃗ ⃗⃗ ⃗⃗ = −𝑃2𝜋𝑟2 𝑢𝑥⃗⃗⃗⃗⃗  

Q30. La quantité de mouvement du système considéré dans l’énoncé (qui est fermé) ne varie pas au cours du 

temps. En effet, chaque particule de fluide qui en fait partie garde toujours la même vitesse, puisque l’écoulement 

est stationnaire, et en plus, chaque particule de fluide se déplace selon 𝑢𝑥⃗⃗⃗⃗⃗, donc sa coordonnée 𝑟 ne varie pas, donc 

sa vitesse non plus.  

On applique le théorème de la résultante dynamique au système de l’énoncé, dans le référentiel terrestre, considéré 

galiléen : 𝜂
𝑑𝑣

𝑑𝑟
2𝜋𝑟𝐿 𝑢𝑥⃗⃗⃗⃗⃗ + (𝑃1 − 𝑃2)𝜋𝑟2 𝑢𝑥⃗⃗⃗⃗⃗ =  0⃗⃗ . 

Après projection selon l’axe (𝑂𝑥) puis simplification, on obtient : 𝜂
𝑑𝑣

𝑑𝑟
2𝐿 + (𝑃1 − 𝑃2)𝑟 = 0, ce qui donne bien la 

relation de l’énoncé : 
𝑑𝑣

𝑑𝑟
 = −

𝑃1−𝑃2

2𝜂𝐿
𝑟. 

On primitive : 𝑣(𝑟) = −
𝑃1−𝑃2

4𝜂𝐿
𝑟2 + 𝐾. 
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En utilisant la condition d’adhérence, on obtient l’expression de la constante 𝐾, puis 𝑣(𝑟) =
𝑃1−𝑃2

4𝜂𝐿
(𝑅2 − 𝑟2) .  

Q31. Le débit volumique est le flux du champ des vitesses à travers la section de la conduite : 

𝐷𝑣 = ∬ 𝑣⃗(𝑟) ⋅  𝑟 𝑑𝑟 𝑑𝜃 𝑢𝑥⃗⃗⃗⃗⃗
𝑠𝑒𝑐𝑡𝑖𝑜𝑛

= ∫ ∫
𝑃1 − 𝑃2

4𝜂𝐿
(𝑅2 − 𝑟2)

𝑅

0

2𝜋

0

𝑟 𝑑𝑟 𝑑𝜃 = 𝜋
𝑃1 − 𝑃2

2𝜂𝐿
∫ (𝑅2 − 𝑟2)

𝑅

0

 𝑟 𝑑𝑟 

D’où 𝐷𝑣 = 𝜋
𝑃1−𝑃2

2𝜂𝐿
(

𝑅4

2
−

𝑅4

4
), puis finalement l’expression fournie dans l’énoncé : 𝐷𝑣 = 𝜋𝑅4 𝑃1−𝑃2

8𝜂𝐿
. 

La vitesse moyenne, c’est-à-dire la vitesse débitante est 𝑣𝑚 =
𝐷𝑣

𝜋𝑅2, d’où 𝑣𝑚 = 𝑅2 𝑃1−𝑃2

8𝜂𝐿
 . 

Q32. On calcule la vitesse débitante : 𝑣𝑚 = 25.10−12 ×
104

8×4.10−3×10−2 =
25

32
× 10−3. 

On en déduit 𝑅𝑒 =
𝜌𝑣𝑚×2𝑅

𝜂
=

1,1.103×
25

32
×10−3×10−5

4.10−3 =
1,1×

25

32
×10−2

4
, donc inférieur à 10−2 . C’est largement inférieur à 

2000, l’écoulement est bien laminaire. 

Q33. Notons 𝑁𝑐 le nombre de capillaires en dérivation. On a donc 𝐷 = 𝑁𝑐𝐷𝑣 = 𝑁𝑐𝜋𝑅2𝑣𝑚. 

Il vient 𝑁𝑐 =
𝐷

𝜋𝑅2𝑣𝑚
≃

87.10−6

𝜋×25.10−12×10−3 

10−6

10−12×10−3 
, d’où 𝑁𝑐 ≃ 109 . 

Q36. On commence par dénombrer les électrons de valence :  

L’oxygène en compte 6 (atome bien connu, situé dans la colonne juste avant les halogènes),  

le chlore 7 (c’est un halogène),  

et pour le titane, comme on nous dit que la valence est la même que pour le carbone, il compte 4 électrons de 

valence (on peut le retrouver car on nous donne Z=22, donc la configuration électronique est 1𝑠22𝑠22𝑝63𝑠23𝑝64𝑠23𝑑2). 

Pour TiCl4, le nombre d’électrons de valence est 4 + 4 × 7 = 32, soit 16 doublets, d’où le schéma de Lewis ci-

dessous à gauche). 

Pour TiO2, le nombre d’électrons de valence est 4 + 2 × 6 = 16, soit 8 doublets, d’où le schéma de Lewis ci-

dessous à droite). 

 

Q37. Avec la loi de Hess, on obtient : 

Δ𝑟𝐻1
0 =  −Δ𝑓𝐻0(TiO2, 𝑠) − 2Δ𝑓𝐻0(C, 𝑠) − 2Δ𝑓𝐻0(Cl2, 𝑔) + Δ𝑓𝐻0(TiCl4, 𝑔) + 2Δ𝑓𝐻0(CO, 𝑔)  

D’où Δ𝑟𝐻1
0 =  +945 − 2 × 0 − 2 × 0 − 763 − 2 × 110 =  −38 kJ ⋅ mol−1  

Puis Δ𝑟𝑆1
0 =  −𝑆0(TiO2, 𝑠) − 2𝑆0(C, 𝑠) − 2𝑆0(Cl2, 𝑔) + 𝑆0(TiCl4, 𝑔) + 2𝑆0(CO, 𝑔)  

D’où Δ𝑟𝑆1
0 =  −50 − 2 × 6 − 2 × 223 + 355 + 2 × 198 =  +243 J ⋅ K−1 ⋅ mol−1 . 

Pour le carbone et le dichlore, les enthalpies standard de formation ne sont pas indiquées dans le tableau car ce sont 

des corps simples dans leur état standard de référence.  

On trouve Δ𝑟𝐻1
0 < 0, donc la réaction est exothermique.  

Et on trouve Δ𝑟𝑆1
0 > 0, ce qui pouvait se prévoir car la somme des coefficients stœchiométriques algébriques pour 

les gaz est : −2 + 1 + 2 =  +1 > 0 . 
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Q38. La loi de Van’t Hoff 
𝑑(ln(𝐾0))

𝑑𝑇
=

Δ𝑟𝐻0

𝑅𝑇2 , permet d’affirmer que pour la réaction (1), la constante d’équilibre 𝐾1
0 

est une fonction décroissante de la température. Donc si on part d’un état d’équilibre et si on augmente la 

température, 𝐾1
0 diminue, et devient inférieure au quotient de réaction. En conséquence, la réaction se déplace dans 

le sens indirect. 

Inversement, si on diminue la température, 𝐾1
0 augmente, et devient supérieure au quotient de réaction. En 

conséquence, la réaction se déplace dans le sens direct, qui est le sens exothermique. 

En notant 𝑛𝑡𝑜𝑡𝑔𝑎𝑧 le nombre total de moles de gaz, le quotient de réaction s’écrit ici : 𝑄𝑟1 =
(

𝑃𝐶𝑂
𝑃0 )

2
(

𝑃𝑇𝑖𝐶𝑙4
𝑃0 )

(
𝑃𝐶𝑙2

𝑃0 )
2  , ou 

encore 𝑄𝑟1 =
𝑛𝐶𝑂

2  𝑛𝑇𝑖𝑐𝑙4

𝑛𝐶𝑙2
2  𝑛𝑡𝑜𝑡𝑔𝑎𝑧

𝑃

𝑃0. 

Donc si on part d’un état d’équilibre et si on augmente la pression totale 𝑃, 𝑄𝑟1 augmente, et devient supérieur à 

𝐾1
0. En conséquence, la réaction se déplace dans le sens indirect, c’est-à-dire le sens qui fait décroître le nombre 

total de moles de gaz. 

Inversement, si on diminue la pression totale 𝑃, 𝑄𝑟1 diminue, et devient inférieur à 𝐾1
0. En conséquence, la réaction 

se déplace dans le sens direct, c’est-à-dire le sens qui fait croître le nombre total de moles de gaz. 

Q39. Réduction du tétrachlorure de titane par le magnésium liquide (que l’on note réaction 3) : 

TiCl4(g) + 2Mg(l) = 2MgCl2(l) + Ti(s)    (3) 

Q40. Pour trouver sa constante d’équilibre, on peut utiliser la réaction ci-dessous, qu’on nommera réaction 2, 

donnée à la fin de l’énoncé : Mg(l) + Cl2(g) = MgCl2(l)    (2). 

Pour cette réaction, Δ𝑟𝐻2
0 =  −Δ𝑓𝐻0(Mg, 𝑙) − Δ𝑓𝐻0(Cl2, 𝑔) + Δ𝑓𝐻0(MgCl2, 𝑙) =  −Δ𝑓𝐻0(Mg, 𝑙) − Δ𝑓𝐻0(MgCl2, 𝑙)  

et Δ𝑟𝑆2
0 =  −𝑆0(Mg, 𝑙) − 𝑆0(Cl2, 𝑔) + 𝑆0(MgCl2, 𝑙). 

Pour la réaction (3), on peut donc écrire :  

Δ𝑟𝐻3
0 =  Δ𝑓𝐻0(Ti, 𝑠) − Δ𝑓𝐻0(TiCl4, 𝑔) + 2Δ𝑟𝐻2

0. 

Et Δ𝑟𝑆3
0 =  𝑆0(Ti, 𝑠) − 𝑆0(TiCl4, 𝑔) + 2Δ𝑟𝑆2

0 + 2𝑆0(Cl2, 𝑔). 

Numériquement, Δ𝑟𝐻3
0 = 0 + 763 − 2 ∗ 608 = 763 − 1216 =  −453 kJ. mol−1 

Et Δ𝑟𝑆3
0 = 31 − 355 + 2 ∗ 132 + 2 ∗ 223 =  −324 + 264 + 446 = −324 + 710 = 386 J. K−1. mol−1. 

Ainsi, Δ𝑟𝐺3
0 =  −453.103 − 386𝑇, donc Δ𝑟𝐺3

0 toujours très négatif, à toute température,  

et donc 𝐾3
0 = exp (−

Δ𝑟𝐺3
0

𝑅𝑇
) est toujours nettement supérieur à 1. Il n’est donc pas nécessaire d’imposer une 

condition sur la température pour que la réaction (3) se fasse. 

A 1100 K, Δ𝑟𝐺3
0 = −453.103 − 424600 = −877600 J. mol−1 , donc 𝐾3

0 = exp (−
Δ𝑟𝐺3

0

𝑅𝑇
) ≃ exp(102) ≫≫ 1. 

Et 𝑄𝑟3 =
𝑃0

𝑃𝑇𝑖𝐶𝑙4

= 10. On a donc nécessairement 𝑄𝑟3 < 𝐾3
0, donc la réaction (3) se déplace dans le sens direct. 

 

Q41.  

Espèce TiO2(𝑠) Ti2O3(𝑠) Ti(𝑎𝑞)
2+  TiO(𝑠) Ti 

n. o. du Titane +IV +III +II +II 0 

 

Q42. Quand on se déplace vers le haut, le nombre d’oxydation du titane augmente, et lorsqu’il y a une frontière 

verticale, les espèces de part et d’autre ont même nombre d’oxydation. De plus, entre Ti(𝑎𝑞)
2+  et TiO(𝑠) , la forme 

acide est Ti(𝑎𝑞)
2+ . En effet, TiO(𝑠) est la forme déshydratée (avec perte d’une molécule d’eau de l’hydroxyde 

Ti(OH)2(𝑠). 
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Compte tenu de tout cela, on trouve facilement que : 

Espèce TiO2(𝑠) Ti2O3(𝑠) Ti(𝑎𝑞)
2+  TiO(𝑠) Ti 

Zone du diagramme C E B D A 

 

Q43. On rajoute les deux droites (du moins leur 

allure car on manque d’informations sur les 

échelles du tracé) de l’eau sur le diagramme 

potentiel-pH : voir ci-contre. 

Il n’y a pas de recouvrement entre le domaine 

de l’eau et celui du titane, donc le titane n’est 

pas stable dans l’eau. Et le pH ne change 

quasiment rien à la question. 

Q44. On voit que l’espèce E, donc Ti2O3(𝑠) , 

n’apparait sur le diagramme qu’à partir d’un 

certain pH, donc il se dismute en milieu acide, 

en C et B, donc en TiO2(𝑠) et Ti(𝑎𝑞)
2+ .  

La réaction de dismutation est : 

Ti2O3(𝑠)  + 2H(𝑎𝑞)
+ =  Ti(𝑎𝑞)

2+ +  TiO2(𝑠) + H2O  

Q45. Entre B et D : 

TiO(𝑠) + 2H(𝑎𝑞)
+ =  Ti(𝑎𝑞)

2+ +  H2O . 

Sur la frontière le solide TiO(𝑠) est présent, mais très peu, d’où : 

𝐾 =
𝑐𝑡𝑟𝑎

𝑐0 ×1

1×
ℎ2

(𝑐0)
2

 

. Il vient ℎ2 =
𝑐0 𝑐𝑡𝑟𝑎

𝐾
=

10−3

1011 , puis ℎ = 10−7, et donc 𝑝𝐻1 = 7 . 

 


