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Centrale PSI 2025 PhCh (extrait)  

Q1. On écrit la réaction : CH4(𝑔) +  2O2(𝑔) =  CO2(𝑔) +  2 H2O(𝑔)  

Avec la loi de Hess, on calcule : Δ𝑟𝐻
0 = −Δ𝑓𝐻

0(CH4, 𝑔) − 2Δ𝑓𝐻
0(O2, 𝑔) + Δ𝑓𝐻

0(CO2, 𝑔) +  2Δ𝑓𝐻
0(H2O, 𝑔). 

Numériquement, Δ𝑟𝐻
0 = 74,9 − 0 − 393,5 − 2 ∗ 241,8 =  −802,2 kJ ⋅ mol−1 . 

Puis Δ𝑟𝑆
0 = −𝑆0(CH4, 𝑔) − 2𝑆0(O2, 𝑔) + 𝑆0(CO2, 𝑔) +  2𝑆0(H2O, 𝑔). 

Numériquement, Δ𝑟𝑆
0 = −186.2 − 2 ∗ 205 + 213,8 + 2 ∗ 188,7 =  −5 J ⋅ K−1 ⋅ mol−1 . 

On obtient ensuite Δ𝑟𝐺
0 = Δ𝑟𝐻

0 − 𝑇 Δ𝑟𝑆
0  puis 𝐾0  = exp (−

Δ𝑟𝐺
0

𝑅𝑇
) . 

Numériquement, à 𝑇 = 298 K, le calcul donne 𝐾0 = 2,6 . 10140 . C’est très très grand devant 1, donc la réaction 

peut bien être considérée comme quasi-quantitative à 298K. 

Pour déterminer le PCI, on prend comme système une masse 𝑚0 de gaz naturel, donc un nombre de moles 𝑛0 de 

gaz naturel, et un nombre de moles 2𝑛0 de dioxygène, de sorte que les proportions soient stoechiométriques. 

On applique le premier principe à ce système sur une durée correspondant à la consommation totale des deux 

réactifs, et en supposant que toute l’énergie thermique dégagée par la réaction est fournie à l’extérieur. Puisque la 

transformation est isobare, cela donne : Δ𝐻 = 𝑄𝑟𝑒ç𝑢𝑒 = −𝑄𝑑é𝑔𝑎𝑔é𝑒. 

D’où Δ𝑟𝐻
0(𝜉𝑓 − 𝜉𝑖) =  −𝑄𝑑é𝑔𝑎𝑔é𝑒, c’est-à-dire Δ𝑟𝐻

0(𝑛0 − 0) =  −𝑄𝑑é𝑔𝑎𝑔é𝑒, puisque la réaction est quasi-

quantitative. 

On en déduit 𝑞𝑔𝑛 =
𝑄𝑑é𝑔𝑎𝑔é𝑒

𝑚0
= −

Δ𝑟𝐻
0𝑛0

𝑚0
= −

Δ𝑟𝐻
0

𝑀𝐶𝐻4

 . D’où 𝑃𝐶𝐼 = 𝑞𝑔𝑛 = −
Δ𝑟𝐻

0

𝑀𝐶𝐻4

 . 

Numériquement, 𝑞𝑔𝑛 = 50,1 MJ. kg−1 . 

Q2. Le débit molaire de gaz naturel est 𝐷𝑛,𝑔𝑛 =
𝐷𝑚,𝑔𝑛

𝑀𝐶𝐻4

 . Et, compte tenu de l’écriture de la réaction, le débit molaire 

de dioxygène, en proportions stoechiométriques doit être 𝐷𝑛,𝑂2
= 2𝐷𝑛,𝑔𝑛.  

Le débit massique d’air pour les proportions stoechiométriques doit donc être 𝐷𝑚0 = (𝑀𝑂2
+ 4𝑀𝑁2

) × 2𝐷𝑛,𝑔𝑛. 

Il vient donc 𝐷𝑚0 =
𝑀𝑂2+4𝑀𝑁2

𝑀𝐶𝐻4

× 2𝐷𝑚,𝑔𝑛 .  

Numériquement, 𝐷𝑚0 =
32+4×28

16
× 2 × 9,66 = 18 × 9,66 = 174 kg. s−1 . 

Dans ces conditions, la puissance thermique dégagée par la réaction est ℘𝑡ℎ0 = 𝐷𝑚,𝑔𝑛 × 𝑞𝑔,𝑛 = 484 MW . 

Q3. On effectue un bilan classique d’enthalpie. 

Soit le système constitué initialement de 𝑛0 moles de CH4 (g), 2𝑛0 moles de O2 (g), 8𝑛0 moles de N2 (g),  

à 𝑇𝑒 = 298 K. 

On imagine un état intermédiaire fictif pour lequel le système est constitué de 𝑛0 moles de CO2(𝑔), 2𝑛0 moles de 

H2O(𝑔), 8𝑛0 moles de N2 (g), à 𝑇𝑒 = 298 K. 

Et dans l’état final, il y a 𝑛0 moles de CO2(𝑔), 2𝑛0 moles de H2O(𝑔), 8𝑛0 moles de N2 (g), à 𝑇𝑠, que l’on cherche. 

En appliquant le premier principe à ce système, en évolution isobare et adiabatique, on peut écrire : 

Δ𝐻 = 𝑄 = 0, d’où Δ𝑟𝐻
0(𝑛0 − 0) + 𝑛0 × (𝐶𝑝𝑚(CO2(𝑔)) + 2𝐶𝑝𝑚(H2O(𝑔)) + 8𝐶𝑝𝑚(N2 (g))) × (𝑇𝑠 − 𝑇𝑒) = 0 . 

Il vient 𝑇𝑠 = 𝑇𝑒 −
Δ𝑟𝐻

0

𝐶𝑝𝑚(CO2(𝑔))+2𝐶𝑝𝑚(H2O(𝑔))+8𝐶𝑝𝑚(N2 (g))
,  

ou encore 𝑇𝑠 = 𝑇𝑒 +
𝑞𝑔𝑛 𝑀𝐶𝐻4

𝐶𝑝𝑚(CO2(𝑔))+2𝐶𝑝𝑚(H2O(𝑔))+8𝐶𝑝𝑚(N2 (g))
. Numériquement, 𝑇𝑠 = 2405°C = 2678 K . 
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C’est une température très élevée, le modèle est à revoir. 

Q4. Dans le bilan d’enthalpie de la question précédente, si on ne se place pas dans les conditions 

stoechiométriques, on fait diminuer la température de sortie : si la quantité d’air est insuffisante, l’avancement final 

est plus faible (𝜉𝑓 < 𝑛0), et si la quantité d’air est trop importante, on augmente la quantité de spectateurs à 

réchauffer entre l’état fictif intermédiaire et l’état final. C’est ce qui se passe si 𝐷𝑚,𝑎𝑖𝑟 > 𝐷𝑚0. 

Q5. Adoptons les notations de l’énoncé. 

Tout d’abord, explicitons le lien général entre un débit massique et un débit molaire : 𝐷𝑚,𝑖 = 𝑀𝑖 × 𝐹𝑖. 

On ajoutera des indices « e » en entrée et « s » en sortie. 

Pour faire le tableau ci-dessous, on raisonne comme quand on fait un bilan de matière pour une réaction chimique, 

la différence étant qu’on utilise un avancement par unité de temps 
𝑑𝜉

𝑑𝑡
 plutôt qu’un avancement 𝜉. Et, comme on l’a 

vu dans Q2, le débit massique d’air est égal à (𝑀𝑂2
+ 4𝑀𝑁2

) fois le débit molaire de dioxygène. 

 

Espèce CH4(𝑔) O2(𝑔) CO2(𝑔) H2O(𝑔) N2(𝑔) 

Débit molaire en 

entrée 
𝐹𝑔𝑛,𝑒 =

𝐷𝑚,𝑔𝑛

𝑀𝐶𝐻4

 
𝐹𝑂2,𝑒

=
𝐷𝑚,𝑎𝑖𝑟

𝑀𝑂2
+ 4𝑀𝑁2

 

0 0 𝐹𝑁2,𝑒

=
4𝐷𝑚,𝑎𝑖𝑟

𝑀𝑂2
+ 4𝑀𝑁2

 

Débit molaire en 

sortie 
0=𝐹𝑔𝑛,𝑒 −

𝑑𝜉

𝑑𝑡
 𝐹𝑂2,𝑒 −

2𝑑𝜉

𝑑𝑡
 

𝑑𝜉

𝑑𝑡
 

2𝑑𝜉

𝑑𝑡
 

𝐹𝑁2,𝑒 

Débit molaire en 

sortie 
0 𝐷𝑚,𝑎𝑖𝑟

𝑀𝑂2
+ 4𝑀𝑁2

− 2
𝐷𝑚,𝑔𝑛

𝑀𝐶𝐻4

 

𝐷𝑚,𝑔𝑛

𝑀𝐶𝐻4

 2
𝐷𝑚,𝑔𝑛

𝑀𝐶𝐻4

 
4𝐷𝑚,𝑎𝑖𝑟

𝑀𝑂2
+ 4𝑀𝑁2

 

Débit molaire en 

sortie 
𝐹𝑔𝑛,𝑠 = 0 𝐹𝑂2,𝑠

=
𝐷𝑚,𝑎𝑖𝑟 − 𝐷𝑚0

𝑀𝑂2
+ 4𝑀𝑁2

 

𝐹𝐶𝑂2,𝑠

=
𝐷𝑚0

2(𝑀𝑂2
+ 4𝑀𝑁2

)
 

𝐹𝐻2𝑂,𝑠

=
𝐷𝑚0

𝑀𝑂2
+ 4𝑀𝑁2

 

𝐹𝑁2,𝑠

=
4𝐷𝑚,𝑎𝑖𝑟

𝑀𝑂2
+ 4𝑀𝑁2

 

Q6. Reprenons la démarche de Q3, en raisonnant sur une durée 𝑑𝑡 : 

Δ𝑟𝐻
0(𝐹𝑔𝑛,𝑒 𝑑𝑡 − 0) + (𝐹𝑂2,𝑠

𝑑𝑡 𝐶𝑝𝑚(O2(𝑔)) + 𝐹𝐶𝑂2,𝑠
𝑑𝑡 𝐶𝑝𝑚(CO2(𝑔)) + 𝐹𝐻2𝑂,𝑠𝑑𝑡𝐶𝑝𝑚(H2O(𝑔)) + 𝐹𝑁2,𝑠𝑑𝑡 𝐶𝑝𝑚(N2 (g))) × (𝑇′𝑠 − 𝑇𝑒) = 0 

C’est-à-dire, après simplification par 𝑑𝑡 : : 

Δ𝑟𝐻
0𝐹𝑔𝑛,𝑒 + (𝐹𝑂2,𝑠

𝐶𝑝𝑚(O2(𝑔)) + 𝐹𝐶𝑂2,𝑠
 𝐶𝑝𝑚(CO2(𝑔)) + 𝐹𝐻2𝑂,𝑠𝐶𝑝𝑚(H2O(𝑔)) + 𝐹𝑁2,𝑠 𝐶𝑝𝑚(N2 (g))) × (𝑇′𝑠 − 𝑇𝑒) = 0 

Et remplaçant les débits molaires en sortie, puis en multipliant par 𝑀𝑂2
+ 4𝑀𝑁2

 : 

Δ𝑟𝐻
0 𝐷𝑚0

2
+ ((𝐷𝑚1 − 𝐷𝑚0)𝐶𝑝𝑚(O2(𝑔)) +

𝐷𝑚0

2
 𝐶𝑝𝑚(CO2(𝑔)) + 𝐷𝑚0𝐶𝑝𝑚(H2O(𝑔)) + 4𝐷𝑚1 𝐶𝑝𝑚(N2 (g))) × (𝑇′𝑠 − 𝑇𝑒) = 0, 

Ou Δ𝑟𝐻
0 𝐷𝑚0

2(𝑇′𝑠−𝑇𝑒)
+ ((𝐷𝑚1 − 𝐷𝑚0)𝐶𝑝𝑚(O2(𝑔)) +

𝐷𝑚0

2
 𝐶𝑝𝑚(CO2(𝑔)) + 𝐷𝑚0𝐶𝑝𝑚(H2O(𝑔)) + 4𝐷𝑚1 𝐶𝑝𝑚(N2 (g))) = 0, 

Ou encore : 𝐷𝑚1 (𝐶𝑝𝑚(O2(𝑔)) + 4𝐶𝑝𝑚(N2 (g))) = 𝐷𝑚0 (𝐶𝑝𝑚(O2(𝑔)) −
1

2
𝐶𝑝𝑚(CO2(𝑔)) − 𝐶𝑝𝑚(H2O(𝑔)) −

Δ𝑟𝐻
0

2(𝑇′𝑠−𝑇𝑒)
) 

Il vient 𝐷𝑚1 = 𝐷𝑚0

𝐶𝑝𝑚(O2(𝑔))−
1
2
𝐶𝑝𝑚(CO2(𝑔))−𝐶𝑝𝑚(H2O(𝑔))−

Δ𝑟𝐻
0

2(𝑇′𝑠−𝑇𝑒)

𝐶𝑝𝑚(O2(𝑔))+4𝐶𝑝𝑚(N2 (g))
. 

Pour que la turbine fonctionne à sa température maximale sans produire de 𝑁𝑂𝑥, on choisit  

𝑇𝑠
′ = 1300°C = 1573 K, d’où : 𝐷𝑚1 = 18 × 9,66 ×

29,4−14,55−33,6+
802,2.103

2×1275

29,4+4×29,1
= 353 kg. s−1 . 
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Q7. En prenant en compte la dépendance des capacités thermiques massiques avec la température, le calcul de Q6 

devient :  

Δ𝑟𝐻
0 𝐷𝑚0

2
+ (𝐷𝑚,𝑎𝑖𝑟 − 𝐷𝑚0) ∫ 𝐶𝑝𝑚𝑂2

(𝑇) 𝑑𝑇
𝑇𝑠

𝑇𝑒
+

𝐷𝑚0

2
∫ 𝐶𝑝𝑚𝐶𝑂2

(𝑇) 𝑑𝑇
𝑇𝑠

𝑇𝑒
+ 𝐷𝑚0 ∫ 𝐶𝑝𝑚𝐻2O(𝑇) 𝑑𝑇

𝑇𝑠

𝑇𝑒
+ 4𝐷𝑚,𝑎𝑖𝑟 ∫ 𝐶𝑝𝑚𝑁2

(𝑇) 𝑑𝑇
𝑇𝑠

𝑇𝑒
= 0, 

Il vient 𝐷𝑚,𝑎𝑖𝑟 = 𝐷𝑚0

∫ 𝐶𝑝𝑚𝑂2
(𝑇) 𝑑𝑇

𝑇𝑠

𝑇𝑒
 − 

1
2∫ 𝐶𝑝𝑚𝐶𝑂2

(𝑇) 𝑑𝑇
𝑇𝑠

𝑇𝑒
 − ∫ 𝐶𝑝𝑚𝐻2O(𝑇) 𝑑𝑇

𝑇𝑠

𝑇𝑒
 − 

Δ𝑟𝐻
0

2

∫ 𝐶𝑝𝑚𝑂2
(𝑇) 𝑑𝑇

𝑇𝑠

𝑇𝑒
+4∫ 𝐶𝑝𝑚𝑁2

(𝑇) 𝑑𝑇
𝑇𝑠

𝑇𝑒

. 

Q8. Unités : [𝐴] = J ⋅ K−1 ⋅ mol−1  ; 

[𝐵] = J ⋅ K−2 ⋅ mol−1  ; [𝐶] = J ⋅ K−3 ⋅ mol−1  ; 

[𝐷] = J ⋅ K−4 ⋅ mol−1  ; [𝐸] = J ⋅ K ⋅ mol−1 . 

Voici ci-contre une proposition de programme python 

pour l’intégrale :  

Q9. Le graphe de la figure 3 montre, comme prévu, que 

la température de sortie est maximale lorsque le 

dioxygène est introduit en proportions stoechiométriques. La figure donne un 𝐷𝑚0 assez voisin de la valeur 

174 kg. s−1 trouvé en Q2. En revanche, pour ce débit d’air, la température de sortie est d’environ 2250 K, alors que 

le modèle simplifié donnait 2678 K. 

Pour obtenir une température de sortie de 1573K, avec un débit d’air supérieur à celui des conditions 

stoechiométriques, il faut, d’après la courbe, choisir 𝐷𝑚,𝑎𝑖𝑟 = 305 kg. s−1, alors qu’on avait trouvé 353 en Q6. 

Cela s’explique par le fait qu’aux hautes températures, les capacités thermiques molaires qui augmentent beaucoup 

sont celles de CO2  et de H2O, c’est-à-dire les deux espèces qui étaient affectées d’un signe moins dans l’expression 

de 𝐷𝑚1. 

Comme la masse se conserve, on a 𝐷𝑚,𝑠 = 𝐷𝑚,𝑒, c’est-à-dire  

𝐷𝑚,𝑠 = 𝐷𝑚,𝑎𝑖𝑟 + 𝐷𝑚,𝑔𝑛 = 305 + 9,66 = 315 kg. s−1 . 

On peut le vérifier : d’après le tableau de Q5, le débit massique de gaz en sortie de la turbine est : 

𝐷𝑚,𝑠 = 𝑀𝑂2
𝐹𝑂2,𝑠

+ 𝑀𝐶𝑂2
𝐹𝐶𝑂2,𝑠

+ 𝑀𝐻2𝑂
 𝐹𝐻2𝑂,𝑠  + 𝑀𝑁2

𝐹𝑁2,𝑠
 

C’est-à-dire : 𝐷𝑚,𝑠 = 𝑀𝑂2

𝐷𝑚,𝑎𝑖𝑟−𝐷𝑚0

𝑀𝑂2
+4𝑀𝑁2

+ 𝑀𝐶𝑂2

𝐷𝑚0

2(𝑀𝑂2
+4𝑀𝑁2

)
+ 𝑀𝐻2𝑂

 
𝐷𝑚0

𝑀𝑂2
+4𝑀𝑁2

 + 𝑀𝑁2

4𝐷𝑚,𝑎𝑖𝑟

𝑀𝑂2
+4𝑀𝑁2

 

Ou encore 𝐷𝑚,𝑠 =
2(𝐷𝑚,𝑎𝑖𝑟−𝐷𝑚0)𝑀𝑂2

+𝐷𝑚0(𝑀𝐶𝑂2
+2𝑀𝐻2𝑂)+8 𝐷𝑚,𝑎𝑖𝑟𝑀𝑁2

 

2(𝑀𝑂2
+4𝑀𝑁2

)
 . 

Numériquement, 𝐷𝑚,𝑠 =
2×(305−174)×32+174×(44+36)+8×305×28 

2×(32+112)
=

2×131×32+174×80+8×305×28 

2×144
= 315 kg. s−1. 

Q10. Question pas claire, car on nous parle de la centrale électrique DK6, donc globale, alors qu’on n’a étudié que 

la partie turbine à gaz. Si on considère que l’énergie des fumées sidérurgique est gratuite, alors, 

𝜂 =
℘𝑒𝑙𝑒𝑐 𝑡𝑜𝑡

℘𝑡ℎ0
=

165+230

484
= 82% . 
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Q11. Le point E est sur la courbe de saturation. 

 

Q12. Entre les points A et B, l’entropie massique passe de 6,6 à 6,7 kJ. K−1. kg−1, ce qui fait une variation de 

moins de 2%. On peut donc en effet négliger cette variation. 

Avec le modèle du gaz parfait, la loi de Laplace s’écrit : 𝑇𝐴
𝛾
𝑃𝐴

(1−𝛾)
= 𝑇𝐵

𝛾
𝑃𝐵

(1−𝛾)
, d’où 𝑇𝐵 = 𝑇𝐴  (

𝑃𝐵

𝑃𝐴
)
(
𝛾−1

𝛾
)

. 

Numériquement, 𝑇𝐵 = 838 × (
30

144
)
(
0,30

1,30
)
= 583K = 310°C  . 

Le modèle du gaz parfait donne une valeur pas très éloignée, mais l’erreur est tout de même d’un peu plus de 3%. 

 

Q13. D’après le document 1, la section à travers laquelle passe la vapeur à l’entrée de323 la turbine haute pression 

est 𝑆𝐴 = 𝜋((𝑅0 + 𝑎)2 − 𝑅0
2),  

et donc la vitesse débitante est 𝑣𝐴 =
𝐷𝑚

𝜌𝐴𝑆𝐴
=

534.103

𝟑𝟔𝟎𝟎×𝟑𝟑×𝝅×(𝟎,𝟑𝟑𝟕𝟐−𝟎,𝟐𝟗𝟔𝟐)
= 55,1 m. s−1 . 

Si la section de sortie était de même dimension que celle d’entrée, on aurait 𝑣𝐵 =
𝐷𝑚

𝜌𝐵𝑆𝐴
= 𝑣𝐴

𝜌𝐴

𝜌𝐵
= 165 m. s−1  . 

L’intérêt d’avoir une vitesse débitante à peu près constante dans la turbine est de pouvoir utiliser des aubes de 

mêmes formes, et d’avoir des interactions aérodynamiques similaires dans tous les étages. 

Pour avoir 𝑣𝐵 proche de 𝑣𝐴, il suffit de rendre la section 𝑆𝐵 plus grande que 𝑆𝐴 , ce qui est confirmé par le 

document 1, puisque 𝑎′ > 𝑎 . 

 

Q14. La version puissance du premier principe industriel de la thermodynamique permet d’écrire, en s’intéressant à 

l’entrée et à la sortie de la turbine haute pression, considérée parfaitement calorifugée :  
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𝐷𝑚 (ℎ𝐵 − ℎ𝐴 +
𝑣𝐵

2 − 𝑣𝐴
2

2
) = − ℘𝑇𝐻𝑃   

C’est-à-dire, puisqu’on nous dit que 𝑣𝐵 ≃ 𝑣𝐴, ℘𝑇𝐻𝑃 ≃ 𝐷𝑚(ℎ𝐴 − ℎ𝐵) . 

On lit sur le diagramme de Mollier que ℎ𝐵 = 3085 kJ. kg−1 et ℎ𝐴 = 3500 kJ. kg−1. 

Il vient ℘𝑇𝐻𝑃 ≃
534.103

3600
× 415.103 = 61,6 MW . 

Q15. Avec une unique turbine isentropique faisant passer de A à E’ (point de vapeur saturante sur la même 

isentrope que A), on aurait ℘𝑡𝑜𝑡 ≃
534.103

3600
× (3500 − 2780). 103 = 107 MW . 

Q16. Le premier principe industriel entre l’entrée et la sortie du surchauffeur, dans lequel il n’y a pas de pièce 

mécanique mobile, conduit à : ℘𝑆𝐶 = 𝐷𝑚(ℎ𝐶 − ℎ𝐵) =
534.103

3600
× (3600 − 3085). 103 = 76,4 MW . 

Pour la puissance mécanique totale, transmise à l’arbre,  

℘𝑚 𝑡𝑜𝑡 = 𝐷𝑚(ℎ𝐴 − ℎ𝐵 + ℎ𝐶 − ℎ𝐸) =
534.103

3600
× (3500 − 3085 + 3600 − 2550). 103 = 217 MW . 

C’est bien mieux qu’avec une unique turbine, même si on retire le coût énergétique du surchauffeur. 

Q17. Le point 𝐷’ sur le diagramme de Mollier correspond à une évolution adiabatique réversible depuis le point 𝐶, 

𝐷′ et 𝐷 étant à la même pression, 𝑝𝐷 = 4,0 bar. 

Si on allait de 𝐶 à 𝐷′, la puissance mécanique qui serait transmise à l’arbre à travers la turbine moyenne pression 

serait ℘𝑇𝑀𝑃 = 𝐷𝑚(ℎ𝐶 − ℎ𝐷′) =
534.103

3600
× (3600 − 2995). 103 = 90 MW .  

Les pertes adiabatiques valent ℘𝑝𝑒𝑟𝑡𝑒𝑠 𝑎𝑑𝑖𝑎 = 𝐷𝑚(ℎ𝐷 − ℎ𝐷′) =
534.103

3600
× (3105 − 2995). 103 = 16 MW . 

 

Q18. Le premier principe industriel pour la vapeur entre l’entrée et la sortie du condenseur s’écrit, en notant 

℘𝑣𝑎𝑝→𝑚𝑒𝑟 la puissance thermique que reçoit l’eau de mer de la part de la vapeur qui se liquéfie : 

𝐷𝑚(ℎ𝑙𝑖𝑞 − ℎ𝑣𝑎𝑝) = −℘𝑣𝑎𝑝→𝑚𝑒𝑟 

Ou encore 𝐷𝑚𝑙𝑣𝑎𝑝 = ℘𝑣𝑎𝑝→𝑚𝑒𝑟. 

Et le principe industriel pour l’eau de mer entre l’entrée et la sortie du condenseur s’écrit (en assimilant l’eau de 

mer à de l’eau pure, puisque les caractéristiques de l’eau de mer ne sont pas fournies : 

𝑄𝜌𝑒𝑎𝑢(ℎ𝑠 − ℎ𝑒) = +℘𝑣𝑎𝑝→𝑚𝑒𝑟 

Ou encore 𝑄𝜌𝑒𝑎𝑢𝑐𝑒𝑎𝑢(𝜃𝑠 − 𝜃𝑒) = +℘𝑣𝑎𝑝→𝑚𝑒𝑟. 

Il vient donc 𝑄𝜌𝑒𝑎𝑢𝑐𝑒𝑎𝑢(𝜃𝑠 − 𝜃𝑒) = 𝐷𝑚𝑙𝑣𝑎𝑝 puis 𝜃𝑠 = 𝜃𝑒 +
𝐷𝑚𝑙𝑣𝑎𝑝

𝑄𝜌𝑒𝑎𝑢𝑐𝑒𝑎𝑢
 . 

Numériquement, 𝜃𝑠 = 15 +
534.103×2,3.106

33.103×1000×4180
= 15 +

534×2,3

33×4,18
= 23,9°C . 

Conclusion : la température de sortie est nettement en-dessous de la température maximale de 30°C tolérée par les 

écosystèmes. 

Q19. Le temps caractéristique de l’écoulement à travers le stator est 𝜏é𝑐 =
𝑏

𝑣𝐴
. Celui caractéristique de la diffusion 

thermique dans les aubes est 𝜏𝑑𝑖𝑓𝑓. La diffusion thermique étant un phénomène très lent, on peut supposer que 

𝜏𝑑𝑖𝑓𝑓 ≫ 𝜏é𝑐 . 

Q20. Puisque la vapeur est assimilée à un gaz parfait, en évolution isentropique, on peut utiliser une des lois de 

Laplace, ici, celle reliant température et pression : 𝑇𝛾𝑝(1−𝛾) = 𝐶𝑡𝑒. Donc en utilisant la différentielle 

logarithmique : 𝛾
𝑑𝑇

𝑇
+ (1 − 𝛾)

𝑑𝑝

𝑝
= 0, ou encore 𝑑𝑝 =

𝛾

𝛾−1

𝑝

𝑇
 𝑑𝑇. 𝑑𝑇 =

𝛾−1

𝛾

𝑇

𝑝
 𝑑𝑝  Et puisque les variations sont 

considérées petites, ici, en valeurs relatives, on peut remplacer les « d » par des « Δ » : Δ𝑇1 =
𝛾−1

𝛾

𝑇𝐴

𝑝𝐴
 Δp1 . 
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Le premier principe industriel (une fois de plus dans cette épreuve) appliqué à la vapeur d’eau entre l’entrée et la 

sortie du stator, s’écrit : 𝑐𝑝Δ𝑇1 +
1

2
(𝑣1

2 − 𝑣𝐴
2) = 0, puisqu’il n’y a pas de pièces mécaniques mobiles dans le stator. 

D’où 𝑣1 = √𝑣𝐴
2 − 2𝑐𝑝Δ𝑇1 . 

Numériquement, Δ𝑇1 = −
0,3

1,3
×

838

144
×  7,3 = −9,8K = −9,8°C   et 𝑣1 = 206 m. s−1 . 

 

Q21. L’angle d’inclinaison de 15° choisi se justifie par la courbe du document 2 donnant le 𝐶𝐿 : Pour 𝑅𝑒 = 6.106 

(courbe en pointillés), c’est l’angle d’inclinaison qui rend 𝐶𝐿 maximum. Il vaut 𝐶𝐿 = 1,7. Et la seconde courbe 

donne le coefficient de trainée : 𝐶𝐷 = 0,054. 

La puissance mécanique transmise par le fluide au premier étage de la turbine est ℘1 =  Γ1 ⋅ Ω, Γ1 étant le moment 

des forces aérodynamiques du premier étage par rapport à l’axe de la turbine. 

Seules les forces de portances ont un moment non nul par rapport à l’axe de rotation, puisque les forces de trainée 

sont parallèles à l’axe. Le bras de levier étant 𝑅0, et compte tenu de la présence de 𝑁 aubes, et de la masse 

volumique 𝜌1 de la vapeur dans le premier étage : 

Γ1 = 𝑁𝑅0 ×
1

2
𝜌1𝑤1

2𝑎𝑏𝐶𝐿 

Soit Γ1 = 𝑁𝑅0 ×
1

2
𝜌1(𝑣1

2 − Ω2𝑅0
2)𝑎𝑏𝐶𝐿. 

Il vient ℘1 =
𝑁Ω𝑅0𝜌1(𝑣1

2−Ω2𝑅0
2)𝑎𝑏𝐶𝐿

𝟐
. 

La vapeur étant assimilée à un gaz parfait, sa masse volumique est donnée par : 𝜌 =
𝑝𝑀

𝑅𝑇
, donc 𝜌1 = 𝜌𝐴

𝑝1

𝑝𝐴

𝑇𝐴

𝑇1
. 

Numériquement, ℘1 =
80×3000×

𝜋

30
×0,296×33×

136,7

144
×

838

828,2
(2062−(100𝜋∗0,296)2)×0,041×0,032×1,7

𝟐
. 

℘1 = 8,8 MW. 

D’après la question Q14, il faudrait donc 8 étages (contrairement au second dessin de l’énoncé dans le document 1, mais en 

accord avec la dizaine d’étage indiquée au début du II, et à peu près en accord avec le premier dessin du document 1). 

En ce qui concerne la force axiale exercée sur le rotor, elle est due aux 𝑁 forces de trainée : 𝐹𝑎𝑥𝑒 =
𝑁

2
𝜌1𝑤1

2𝑎𝑏𝐶𝐷 . 

Numériquement, 𝐹𝑎𝑥𝑒 =
80

2
× 33× 136,7

144
× 838

828,2
(2062 − (100𝜋 ∗ 0,296)2) ×0,041× 0,032× 0,054 = 3,0.103N . 

Q22. On se place dans le référentiel du rotor, qui est quasiment galiléen, car quasiment en translation rectiligne de 

vitesse 𝑈⃗⃗  par rapport au référentiel du stator, supposé galiléen. 

Pour le système dessiné sur l’énoncé, en notant 𝛿Σ1 le fluide qui entre (en clair sur l’image de gauche) entre 𝑡 et 

𝑡 + 𝑑𝑡, 𝛿Σ2 le fluide qui sort (en clair sur l’image de droite) entre 𝑡 et 𝑡 + 𝑑𝑡, et Σ0 le fluide en foncé, commun aux 

deux images, et en notant Σ∗ le système fermé décomposé, le moment cinétique de Σ∗ à 𝑡 est, par rapport à un point 

O de l’axe :𝜎𝑂⃗⃗ ⃗⃗  (Σ
∗, 𝑡) =

𝐷𝑚

𝑁
 𝑑𝑡 𝑅0  𝑒𝑟⃗⃗  ⃗ ∧  𝑤1 ⃗⃗⃗⃗⃗⃗ + 𝜎𝑂⃗⃗ ⃗⃗  (Σ0, 𝑡). 

Et, à 𝑡 + 𝑑𝑡 : 𝜎𝑂⃗⃗ ⃗⃗  (Σ
∗, 𝑡 + 𝑑𝑡) = 𝜎𝑂⃗⃗ ⃗⃗  (Σ0, 𝑡 + 𝑑𝑡) +

𝐷𝑚

𝑁
 𝑑𝑡 𝑅0  𝑒𝑟⃗⃗  ⃗ ∧  𝑤2 ⃗⃗⃗⃗⃗⃗ . 

En régime stationnaire, 𝜎𝑂⃗⃗ ⃗⃗  (Σ0, 𝑡 + 𝑑𝑡) =  𝜎𝑂⃗⃗ ⃗⃗  (Σ0, 𝑡). 

On note Γ1′⃗⃗ ⃗⃗   le moment en 𝑂 des forces exercées par Σ∗ sur les deux aubes de part et d’autre, donc −Γ1′⃗⃗ ⃗⃗   le moment 

en 𝑂 des forces exercées par les deux aubes sur Σ∗. 

Le théorème du moment cinétique appliqué à Σ∗ dans le référentiel du rotor s’écrit : 

𝜎𝑂⃗⃗ ⃗⃗  ⃗(Σ∗,𝑡+𝑑𝑡)−𝜎𝑂⃗⃗ ⃗⃗  ⃗(Σ∗,𝑡)

𝑑𝑡
= −Γ1′⃗⃗ ⃗⃗  , d’où Γ1′

⃗⃗ ⃗⃗  = −
𝐷𝑚

𝑁
𝑅0 𝑒𝑟⃗⃗  ⃗ ∧ ( 𝑤2 ⃗⃗⃗⃗⃗⃗ − 𝑤1 ⃗⃗⃗⃗⃗⃗ ) = −

𝐷𝑚

𝑁
𝑅0 𝑒𝑟⃗⃗  ⃗ ∧ ( 𝑣2 ⃗⃗⃗⃗  ⃗ −  𝑈⃗⃗ − 𝑤1 ⃗⃗⃗⃗⃗⃗ ) . 

Le moment du couple par rapport à l’axe de rotation, exercé par Σ∗ sur les deux aubes est Γ1′ = Γ1′⃗⃗ ⃗⃗  ⋅  𝑒𝑧⃗⃗  ⃗ 
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Et pour l’ensemble des 𝑁 aubes, Γ𝑁 = 𝑁Γ1′ = 𝐷𝑚𝑅0 ( 𝑒𝑟⃗⃗  ⃗ ∧ (− 𝑣2 ⃗⃗⃗⃗  ⃗ +  𝑈⃗⃗ + 𝑤1 ⃗⃗⃗⃗⃗⃗ )) ⋅ 𝑒𝑧⃗⃗  ⃗. 

Or ( 𝑒𝑟⃗⃗  ⃗ ∧ 𝑣2 ⃗⃗⃗⃗  ⃗) ⋅ 𝑒𝑧⃗⃗  ⃗ = 0, ( 𝑒𝑟⃗⃗  ⃗ ∧ 𝑤1 ⃗⃗⃗⃗⃗⃗ ) ⋅ 𝑒𝑧⃗⃗  ⃗ = 0 et ( 𝑒𝑟⃗⃗  ⃗ ∧ 𝑈 ⃗⃗  ⃗) ⋅ 𝑒𝑧⃗⃗  ⃗ = 𝑈, d’où Γ𝑁 = 𝐷𝑚𝑅0𝑈. 

Enfin, la puissance mécanique transmise au rotor par un étage est ℘𝑚 = Γ𝑁Ω = Γ𝑁
𝑈

𝑅0
, ce qui donne bien 𝐷𝑚𝑈2. 

Numériquement, ℘𝑚 =
534.103

3600
× (100𝜋 ∗ 0,296)2 = 1,28 MW .  

Q23. Le premier principe industriel appliqué à la vapeur entre l’entrée et la sortie de la turbine haute pression 

s’écrit, en supposant encore qu’il n’y a quasiment pas de variation d’énergie cinétique massique :  

ℎ𝐵 − ℎ𝐴 = −2𝑛𝑈2, d’où 𝑛 =
ℎ𝐴−ℎ𝐵

2𝑈2 . Numériquement, 𝑛 =
415.103

2×(100𝜋∗0,296)2
= 24 . 

 

Q24. La puissance mécanique totale réellement transmise à l’arbre à travers les 𝑛 étages est :  

℘𝑚 = 2𝑛𝐷𝑚𝑈2. Numériquement, ℘𝑚 = 2 × 24 ×
534.103

3600
× (100𝜋 ∗ 0,296)2 = 61,6 MW . 

On retrouve la valeur de Q14. 


