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Q1. La série entière

∑
n⩾0

xn est la série géométrique. D’après le cours :

R

∑
n⩾0

xn

 = 1 et pour tout x ∈] − 1, 1[,
+∞∑
n=0

xn = 1
1 − x

.

Q2. Par le cours, on a :

R

∑
n⩾0

nxn

 = R

∑
n⩾0

xn

 = 1.

Notons S : x 7→ 1
1 − x

.
D’après le théorème de dérivation terme à terme sur l’intervalle ouvert de convergence,
S ∈ C∞(]−1 ; 1[) et :

∀x ∈] − 1, 1[,
+∞∑
n=1

nxn−1 = S′(x) = 1
(1 − x)2 .

On en déduit que :

∀x ∈] − 1, 1[,
+∞∑
n=0

nxn = 0 +
+∞∑
n=1

nxn = x

+∞∑
n=1

nxn−1 = x

(1 − x)2 .

Ainsi :

R

∑
n⩾0

nxn

 = 1 et pour tout x ∈] − 1, 1[,
+∞∑
n=0

nxn = x

(1 − x)2 .

Q3. Soit k ∈ N. On a :

R

∑
n⩾0

(
n

k

)
xn


= R

∑
n⩾k

n!
k!(n − k)!x

n


= R

∑
n⩾k

n!
(n − k)!x

n

 ( 1
k! est une constante multiplicative non nulle)

= R

∑
n⩾0

nkxn

 ( n!
(n − k)! = n(n − 1) . . . (n − k + 1) ∼

n→+∞
nk

car produit de k termes équivalents à n)

= 1.

autre solution : on peut montrer que le rayon de convergence est 1 à l’aide du critère
de d’Alembert.
On note toujours S : x 7→ 1

1 − x
.

Par k dérivations terme à terme sur l’intervalle ouvert de convergence, on obtient :

∀x ∈] − 1, 1[,
+∞∑
n=k

n!
(n − k)!x

n−k = S(k)(x) = k!
(1 − x)k+1 ,

cette dernière égalité se prouvant par récurrence (initialisation vérifiée pour k = 0
et pour l’hérédité, on notera que x 7→ 1

(1 − x)k+1 = (1 − x)−k−1 a pour dérivée

x 7→ (−1) × (−k − 1) × (1 − x)−k−2 = k + 1
(1 − x)k+2 sur ] − 1, 1[).

On en déduit que pour tout x ∈] − 1, 1[ :
+∞∑
n=0

(
n

k

)
xn = 0 +

+∞∑
n=k

n!
k!(n − k)!x

n

= xk

k!

+∞∑
n=k

n!
(n − k)!x

n−k

= xk

k!
k!

(1 − x)k+1

= xk

(1 − x)k+1 .

Ainsi :

R

∑
n⩾0

(
n

k

)
xn

 = 1 et pour tout x ∈] − 1, 1[,
+∞∑
n=0

(
n

k

)
xn = xk

(1 − x)k+1 .

Q4. Soit k ∈ N. D’après le cours :

R

∑
n⩾0

nkxn

 = R

∑
n⩾0

xn

 = 1.
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On en déduit que la somme de cette série entière est définie (au moins) sur ] − 1, 1[.

La fonction fk est définie sur ] − 1, 1[.

Q5. On a deg(H0) = 0 et pour tout j ∈ N∗, deg(Hj) = j (produit de j polynômes de
degré 1).
Ainsi, pour tout j ∈ N, deg(Hj) = j.
La famille (H0, . . . , Hk) est donc une famille constituée de k + 1 polynômes de Rk[X],
espace vectoriel de dimension k + 1, et cette famille est libre car ces polynômes sont
non nuls et de degrés deux à deux distincts.
Ainsi :

(H0, . . . , Hk) est une base de Rk[X].

Comme Xk ∈ Rk[X], on peut écrire Xk de façon unique à l’aide de ses coordonnées
dans cette base.

Il existe une unique famille (αk,0, . . . , αk,k) dans Rk+1 telle que Xk =
k∑

j=0
αk,jHj .

Q6. Soit k ∈ N. En évaluant la relation précédente en 0, on obtient

0k =
k∑

j=0
αk,jHj(0) = αk,0 car pour tout j ⩾ 1, Hj(0) = 0.

On en déduit que :

α0,0 = 1 et pour tout k ∈ N∗, αk,0 = 0.

Pour tout j ∈ N, Hj est de degré j et a pour cœfficient dominant 1
j! .

On a Xk = αk,kHk +
k−1∑
j=0

αk,jHj︸ ︷︷ ︸
degré <k

. Par identification du cœfficient de Xk , on obtient

1 = αk,k
1
k! .

Ainsi :
pour tout k ∈ N, αk,k = k! .

Q7. Soit (j, k) ∈ N2 tel que 1 ⩽ j ⩽ k.

En évaluant l’égalité Xk =
k∑

i=0
αk,iHi en j, on obtient jk =

k∑
i=0

αk,iHi(j).

Soit i ∈ N. Calculons Hi(j).

Pour i = 0, on a Hi(j) = 1 =
(

j

0

)
.

Si 1 ⩽ i ⩽ j alors Hi(j) = 1
i!

i−1∏
ℓ=0

(j − ℓ) = 1
i!

j!
(j − i)! =

(
j

i

)
.

Si i > j alors Hi(j) = 1
i!

i−1∏
ℓ=0

(j − ℓ) = 0 car l’un des facteurs du produit est nul.

On en déduit que :

jk =
j∑

i=0
αk,i

(
j

i

)
= αk,j +

j−1∑
i=0

(
j

i

)
αk,i.

Ainsi :

pour tout couple (j, k) ∈ N2 tel que 1 ⩽ j ⩽ k, αk,j = jk −
j−1∑
i=0

(
j

i

)
αk,i.

Q8. Soit k ∈ N.
Notons que par les calculs effectués à la question précédente, on a pour tout (j, n) ∈ N2,

Hj(n) =
(

n

j

)
.

Soit x ∈] − 1, 1[. On a :

fk(x) =
+∞∑
n=0

nkxk

=
+∞∑
n=0

 k∑
j=0

αk,jHj(n)

xn

=
+∞∑
n=0

k∑
j=0

αk,j

(
n

j

)
xn

=
k∑

j=0
αk,j

+∞∑
n=0

(
n

j

)
xn

par linéarité car pour tout j ∈ J0, kK, la série
∑
n⩾0

(
n

j

)
xn converge d’après Q3.

Par Q3, on obtient également :

fk(x) =
k∑

j=0
αk,j

xj

(1 − x)j+1 =
k∑

j=0
αk,j

xj(1 − x)k−j

(1 − x)k+1 = Pk(x)
(1 − x)k+1

par mise sur même dénominateur, en posant Pk =
k∑

j=0
αk,jXj(1 − X)k−j .

Montrons l’unicité.
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Si Q ∈ R[X] vérifie pour tout x ∈] − 1, 1[, fk(x) = Q(x)
(1 − x)k+1 alors pour tout

x ∈] − 1, 1[, Pk(x) = Q(x).
Le polynôme Pk − Q a donc une infinité de racines donc c’est le polynôme nul. D’où
Q = Pk.
On a donc prouvé :

pour tout k ∈ N, il existe un unique polynôme réel Pk tel que, pour
tout x ∈] − 1, 1[, fk(x) = Pk(x)

(1 − x)k+1 et ce polynôme vérifie la relation

Pk =
k∑

j=0
αk,jXj(1 − X)k−j .

Q9. Par dérivation terme à terme sur l’intervalle ouvert de convergence, on a pour
tout x ∈] − 1, 1[ :

f ′
k(x) =

+∞∑
n=1

nknxn−1 donc xf ′
k(x) =

+∞∑
n=1

nk+1xn =
+∞∑
n=0

nk+1xn = fk+1(x).

Comme pour tout x ∈] − 1, 1[, fk(x) = Pk(x)
(1 − x)k+1 , on obtient également en dérivant :

f ′
k(x) = P ′

k(x)(1 − x)k+1 + Pk(x)(k + 1)(1 − x)k

(1 − x)2(k+1) = (1 − x)P ′
k(x) + (k + 1)Pk(x)
(1 − x)k+2 .

On a donc pour tout x ∈] − 1, 1[ :

fk+1(x) = x(1 − x)P ′
k(x) + (k + 1)xPk(x)
(1 − x)k+2 .

Par unicité établie en Q8, on en déduit :

pour tout k ∈ N, Pk+1 = X(1 − X)P ′
k + (k + 1)XPk.

Q10. Pour tout x ∈] − 1, 1[, f0(x) =
+∞∑
n=0

xn = 1
1 − x

donc par l’unicité établie en Q8,

P0 = 1.
D’après la question précédente :

P1 = X(1 − X)P ′
0 + XP0 = X

puis
P2 = X(1 − X)P ′

1 + 2XP1 = X(1 − X) + 2X2 = X2 + X

puis
P3 = X(1 − X)P ′

2 + 3XP2 = X(1 − X)(2X + 1) + 3X(X2 + X) = X3 + 4X2 + X.

P2 = X2 + X et P3 = X3 + 4X2 + X.
Q11. Montrons par récurrence que pour tout k ∈ N, Pk est un polynôme unitaire de
degré k.
Initialisation : P0 = 1 est bien un polynôme unitaire de degré 0.
Pour plus de commodité dans l’hérédité, vérifions aussi pour k = 1 : P1 = X est bien
un polynôme unitaire de degré 1.
Hérédité : Soit k ∈ N∗. On suppose que Pk est un polynôme unitaire de degré k.
On a Pk+1 = X(1 − X)P ′

k + (k + 1)XPk.
Comme k ⩾ 1, on sait que P ′

k est un polynôme de degré k−1 et de cœfficient dominant
k.
Ainsi, X(1−X)P ′

k est un polynôme de degré k−1+2 = k+1 et de cœfficient dominant
−k.
Par ailleurs, (k + 1)XPk est un polynôme de degré k + 1 et de cœfficient dominant
k + 1.
Par somme, comme −k + k + 1 = 1 ̸= 0, on en déduit que Pk+1 est un polynôme
unitaire de degré k + 1.
Ainsi :

pour tout k ∈ N, le degré de Pk est k son cœfficient dominant est 1.

Q12. Montrons par récurrence que pour tout k ∈ N∗ et pour tout x ∈]0, 1[,
xk+1Pk( 1

x ) = Pk(x).
Initialisation : Pour k = 1, comme P1 = X, on a pour tout x ∈]0, 1[, x2P1( 1

x ) =
x2 × 1

x = x = P1(x).
Hérédité : Soit k ∈ N∗. On suppose que pour tout x ∈]0, 1[, xk+1Pk( 1

x ) = Pk(x).
Par dérivation, on obtient pour tout x ∈]0, 1[ :

(k + 1)xkPk( 1
x

) − xk−1P ′
k( 1

x
) = P ′

k(x).

Par évaluation de la relation obtenue à la question Q9 en 1
x , on obtient pour tout

x ∈]0, 1[ :

xk+2Pk+1( 1
x

) = xk+1(1 − 1
x

)P ′
k( 1

x
) + (k + 1)xk+1Pk( 1

x
)

= x2(1 − 1
x

)xk−1P ′
k( 1

x
) + (k + 1)Pk(x)

= x2(1 − 1
x

)((k + 1)xkPk( 1
x

) − P ′
k(x)) + (k + 1)Pk(x)

= (x − 1)(k + 1)xk+1Pk( 1
x

) + x(1 − x)P ′
k(x) + (k + 1)Pk(x)

= x(k + 1)Pk(x) + x(1 − x)P ′
k(x)

= Pk+1(x).
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On en déduit que :

pour tout k ∈ N∗ et pour tout x ∈]0, 1[, xk+1Pk

(
1
x

)
= Pk(x).

Q13. Soit k ∈ N∗.
On sait que Pk est un polynôme de degré k donc il existe (a0, . . . , ak) ∈ Rk+1 tels que

Pk =
k∑

j=0
ajXj .

D’après la question précédente, pour tout x ∈]0, 1[ :

Pk(x) = xk+1
k∑

j=0
ajx−j =

k∑
j=0

ajxk+1−j =
k+1∑
i=1

ak+1−ix
i.

Comme le polynôme Pk −
k+1∑
i=1

ak+1−ix
i a une infinité de racines, il est nul.

On a donc Pk =
k+1∑
j=1

ak+1−jxj et par unicité des coefficients, on obtient :

pour tout j ∈ J0, kK, les coefficients de degré j et k + 1 − j de Pk sont égaux.

Q14. Pour tout n ∈ N,
(

2n

n

)
̸= 0 (car n ⩽ 2n) et on a :

∣∣∣∣∣
(2n+2

n+1
)(2n

n

) ∣∣∣∣∣ = (2n + 2)!
(n + 1)!2

n!2

(2n)! = (2n + 2)(2n + 1)
(n + 1)2 ∼ 4n2

n2 = 4 −→
n→+∞

4.

Par la règle de d’Alembert pour les séries entières, on en déduit que :

R = 1
4.

On sait que pour tout x ∈] − 1, 1[, on a :

(1 + u)−1/2 = 1 +
+∞∑
n=1

− 1
2 (− 1

2 − 1) . . . (− 1
2 − n + 1)

n! un.

Pour tout x ∈] − 1
4 , 1

4 [, comme u = −4x ∈] − 1, 1[, on a :

1√
1 − 4x

= 1 +
+∞∑
n=1

− 1
2 (− 1

2 − 1) . . . (− 1
2 − n + 1)

n! (−1)n22nxn

= 1 +
+∞∑
n=1

(−1)n

2n

1 × 3 × · · · × (2n − 1)
n! (−1)n22nxn

= 1 +
+∞∑
n=1

2n

n!
1 × 2 × 3 × · · · × (2n − 1) × 2n

2 × 4 × · · · × 2n
xn

= 1 +
+∞∑
n=1

2n(2n)!
n! × 2nn!x

n

= 1 +
+∞∑
n=1

(2n)!
n!2 xn

= 1 +
+∞∑
n=1

(
2n

n

)
xn =

+∞∑
n=0

(
2n

n

)
xn.

Pour tout x ∈] − 1
4 , 1

4 [, 1√
1 − 4x

=
+∞∑
n=0

(
2n

n

)
xn.

Q15. On considère la série entière
∑
n⩾0

(
2n

n

)
xn+1

n + 1.

Par le théorème de dérivation des séries entières, son rayon de convergence est le même

que celui de la série entière
∑(

2n

n

)
xn (obtenue par dérivation terme à terme) donc

R

(∑(
2n

n

)
xn+1

n + 1

)
= R = 1

4, et en notant f sa somme, on a pour tout x ∈] − 1
4 , 1

4 [ :

f ′(x) =
+∞∑
n=0

(
2n

n

)
xn = 1√

1 − 4x
.

Soit x ∈] − 1
4 , 1

4 [. En intégrant entre 0 et x, on obtient :

f(x) − f(0) =
∫ x

0

1√
1 − 4t

dt =
[
−1

2
√

1 − 4t

]x

0
= 1 −

√
1 − 4x

2 .

Comme de plus f(0) = 0, on en déduit que
+∞∑
n=0

(
2n

n

)
xn+1

n + 1 = 1 −
√

1 − 4x

2 .
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Ainsi, en divisant par x, on obtient :

pour tout x ∈] − R, R[\{0},
+∞∑
n=0

(
2n

n

)
xn

n + 1 = 1 −
√

1 − 4x

2x
.

Q16. Par produit de Cauchy des séries entières
∑(

2n

n

)
xn et

∑(
2n

n

)
xn

n + 1 qui

ont toutes les deux pour rayon de convergence 1
4 , on a pour tout x ∈ R tel que

|x| < min( 1
4 , 1

4 ) = 1
4 :

+∞∑
n=0

n∑
k=0

1
k + 1

(
2k

k

)(
2(n − k)

n − k

)
xn =

(+∞∑
n=0

(
2n

n

)
xn

n + 1

)(+∞∑
n=0

(
2n

n

)
xn

)
.

On en déduit par les deux questions précédentes que pour tout x ∈] − R, R[\{0} :

+∞∑
n=0

n∑
k=0

1
k + 1

(
2k

k

)(
2(n − k)

n − k

)
xn = 1 −

√
1 − 4x

2x
× 1√

1 − 4x
= 1

2x

(
1√

1 − 4x
− 1
)

.

∀x ∈] − R, R[\{0},
+∞∑
n=0

n∑
k=0

1
k + 1

(
2k

k

)(
2n − 2k

n − k

)
xn = 1

2x

(
1√

1 − 4x
− 1
)

.

Q17. D’après Q14, on a pour tout x ∈] − R, R[\{0} :

1
2x

(
1√

1 − 4x
− 1
)

= 1
2x

+∞∑
n=1

(
2n

n

)
xn

= 1
2x

+∞∑
n=0

(
2(n + 1)

n + 1

)
xn+1

=
+∞∑
n=0

1
2

(
2n + 2
n + 1

)
xn.

Par Q16, on en déduit que pour tout x ∈] − R, R[ (vrai aussi en x = 0, les deux
membres valent 1) :

+∞∑
n=0

n∑
k=0

1
k + 1

(
2k

k

)(
2n − 2k

n − k

)
xn =

+∞∑
n=0

1
2

(
2n + 2
n + 1

)
xn.

Par unicité des cœfficients d’un développement en série entière, on en déduit que :

pour tout n ∈ N,
n∑

k=0

1
k + 1

(
2k

k

)(
2n − 2k

n − k

)
= 1

2

(
2n + 2
n + 1

)
.
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