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ESPACES PRÉHILBERTIENS RÉELS
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Dans tout ce chapitre, E désigne un R-espace vectoriel.

I. Espaces préhilbertiens

A. Définitions

▸ Une forme bilinéaire sur E est une application Φ de E ×E dans R qui vérifie :

∀(u, v,w) ∈ E3, ∀(λ,µ) ∈ R2,
Φ(λu + µv,w) = λΦ(u,w) + µΦ(v,w) (linéarité à gauche)
Φ(u,λv + µw) = λΦ(u, v) + µΦ(u,w) (linéarité à droite)

▸ Φ est dite symétrique lorsque ∀(u, v) ∈ E2, Φ(u, v) = Φ(v, u)

▸ Φ est dite positive lorsque ∀u ∈ E, Φ(u,u) ⩾ 0

▸ Φ est dite définie lorsque ∀u ∈ E, [Φ(u,u) = 0 ⇒ u = 0E]

Définition 1

Notons que la linéarité à gauche et la symétrie impliquent la bilinéarité.

▸ On appelle produit scalaire sur E toute forme bilinéaire sur E, symétrique et définie
positive.

▸ Un espace vectoriel muni d’un produit scalaire est appelé espace préhilbertien.

Définition 2

Lorsque Φ est un produit scalaire sur E, on note habituellement ⟨u, v⟩ le réel Φ(u, v).
On rencontre également les notations (u ∣ v) ou u ⋅ v

Soit ⟨ , ⟩ un produit scalaire sur E.

L’application
E Ð→ R+
u z→

√
⟨u,u⟩

est une norme sur E appelée la norme euclidienne.

On note alors pour tout u ∈ E, ∥u∥ =
√
⟨u,u⟩.

Définition 3
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Exemples fondamentaux :

Espace vectoriel Produit scalaire Norme euclidienne

E = Rn ⟨x, y⟩ =
n

∑
i=1

xiyi
∥x∥ =

¿
ÁÁÀ

n

∑
i=1

x2
i(n ∈ N∗) où x = (x1, . . . , xn), y = (y1, . . . , yn)

E =Mn,1(R)
(n ∈ N∗)

⟨X,Y ⟩ =
n

∑
i=1

xiyi =XT Y

∥X∥ =

¿
ÁÁÀ

n

∑
i=1

x2
i =
√
XTX

où X =
⎛
⎜
⎝

x1

⋮
xn

⎞
⎟
⎠

, Y =
⎛
⎜
⎝

y1
⋮
yn

⎞
⎟
⎠

E = C ([a, b],R)
⟨f, g⟩ = ∫

b

a
f(t)g(t)dt ∥f∥ =

√

∫
b

a
f 2(t)dt(a et b réels tels que a < b)

Le premier/second produit scalaire est appelé produit scalaire canonique sur Rn/Mn,1(R).
Pour n = 2, c’est celui que vous avez étudié au lycée dans le plan.

↪ Exercice 1

Dans toute la suite, ⟨ , ⟩ désigne un produit scalaire sur E et ∥.∥ la norme euclidienne associée.

B. Propriétés calculatoires

▸ Généralisation de la bilinéarité :
Pour tout (u1, . . . , up, v1, . . . , vq) ∈ Ep+q et tout (λ1, . . . , λp, µ1, . . . , µq) ∈ Rp+q, on a :

⟨
p

∑
i=1

λiui,
q

∑
j=1

µjvj⟩ =
p

∑
i=1

q

∑
j=1

λiµj⟨ui, vj⟩

▸ On a pour tout u ∈ E, ⟨u,0E⟩ = ⟨0E, u⟩ = 0.
Par suite :

∥u∥ = 0⇔ u = 0E.

▸ Calculs avec la norme :
Pour tout (u, v) ∈ E2, on a : ∥λu∥ = ∣λ∣ ⋅ ∥u∥

∥u + v∥2 = ∥u∥2 + ∥v∥2 + 2 ⟨u, v⟩ et ∥u − v∥2 = ∥u∥2 + ∥v∥2 − 2 ⟨u, v⟩

▸ Formules de polarisation :
Pour tout (u, v) ∈ E2, on a :

⟨u, v⟩ = 1

2
(∥u + v∥2 − ∥u∥2 − ∥v∥2) et ⟨u, v⟩ = 1

4
(∥u + v∥2 − ∥u − v∥2)

Proposition 4

Les formules de polarisation permettent de trouver le produit scalaire dont provient une norme
euclidienne.
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▸ Pour tout (u, v) ∈ E2, on a :
∣⟨u, v⟩∣ ⩽ ∥u∥ ⋅ ∥v∥.

▸ De plus, l’égalité ∣⟨u, v⟩∣ = ∥u∥⋅∥v∥ est vérifiée si et seulement si u et v sont colinéaires.

Théorème 5 (Inégalité de Cauchy-Schwarz)

▸ On rappelle que deux vecteurs u et v sont colinéaires lorsque ∃λ ∈ R tel que u = λv ou v = λu
ou de manière équivalente lorsque u = 0E ou ∃λ ∈ R tel que v = λu.

▸ L’inégalité de Cauchy-Schwarz dans le cas des exemples fondamentaux 1 et 3 s’écrit :

∀(x1, . . . , xn, y1, . . . , yn) ∈ R2n, ∣
n

∑
i=1

xiyi∣ ⩽

¿
ÁÁÀ

n

∑
i=1

x2
i

¿
ÁÁÀ

n

∑
i=1

y2i

∀(f, g) ∈ (C ([a, b],R)2, ∣∫
b

a
fg∣ ⩽

√

∫
b

a
f 2

√

∫
b

a
g2.

▸ Pour tout (u, v) ∈ E2, on a :

∥u + v∥ ⩽ ∥u∥ + ∥v∥.

▸ De plus, l’égalité ∥u+v∥ = ∥u∥+∥v∥ est vérifiée si et seulement si u et v sont colinéaires
et orientés dans le même sens c’est-à-dire il existe λ ∈ R+ tel que u = λv ou v = λu.

Théorème 6 (Inégalité triangulaire)

Illustration graphique dans le plan :
Le chemin direct est le plus court : OB ⩽ OA +AB.

u⃗

v⃗

u⃗ + v⃗

a
O

a
A

a
B

↪ Exercice 2
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C. Orthogonalité

1. Vecteurs orthogonaux

Soit u et v deux vecteurs de E.
On dit que u et v sont orthogonaux et on note u ⊥ v lorsque ⟨u, v⟩ = 0.

Définition 7

▸ Le vecteur nul est le seul vecteur orthogonal à lui-même.
Le vecteur nul est le seul vecteur orthogonal à tous les vecteurs de E.

▸ L’orthogonalité dépend du produit scalaire.

Soit u et v deux vecteurs de E.
On a :

u ⊥ v ⇔ ∥u + v∥2 = ∥u∥2 + ∥v∥2

Théorème 8 (Théorème de Pythagore)

Illustration graphique dans le plan :
Le triangle OAB est rectangle en A si et seulement si OB2 = OA2 +AB2.

2. Familles orthogonales / orthonormales

Soit (u1, u2, . . . , up) une famille de p vecteurs de E.
▸ La famille (u1, u2, . . . , up) est dite orthogonale lorsque les vecteurs u1, . . . , up sont

deux à deux orthogonaux c’est-à-dire lorsque :

∀ (i, j) ∈ J1, pK2 avec i ≠ j, ⟨ui, uj⟩ = 0

▸ La famille (u1, u2, . . . , up) est dite orthonormale ou orthonormée lorsqu’elle est or-
thogonale et composée de vecteurs de norme 1 c’est-à-dire lorsque :

∀ (i, j) ∈ J1, pK2, ⟨ui, uj⟩ = δi,j = {
0 si i ≠ j
1 si i = j.

Définition 9

Un vecteur u de E est dit unitaire ou normé lorsque ∥u∥ = 1.

Définition 10

▸ Si u un vecteur non nul de E alors le vecteur 1

∥u∥
u est normé.

▸ Si (u1, . . . , up) est une famille orthogonale ne contenant pas le vecteur nul alors ( 1

∥u1∥
u1, . . . ,

1

∥up∥
up)

est orthonormale.
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Si (u1, u2, . . . , up) est une famille orthogonale alors :

∥u1 + u2 +⋯ + up∥2 = ∥u1∥2 + ∥u2∥2 +⋯ + ∥up∥2.

Théorème 11 (Théorème de Pythagore)

La réciproque est fausse si p ⩾ 3.

Toute famille orthogonale de E ne contenant pas le vecteur nul est libre.

Proposition 12

▸ En particulier, toute famille orthonormale est libre.
▸ Si E est un espace vectoriel de dimension n alors toute famille libre possède au plus n vecteurs.

Par conséquent, toute famille orthogonale ne contenant pas le vecteur nul (en particulier toute
famille orthornormale) possède au plus n vecteurs.

Soit (u1, u2, . . . , up) une famille libre de E.
On calcule successivement les vecteurs (e1, e2, . . . , ep) de la manière suivante :

e1 =
u1

∥u1∥
et pour tout k ∈ J2, pK, u′k = uk −

k−1
∑
i=1
⟨uk, ei⟩ei puis ek =

u′k
∥u′k∥

.

Alors (e1, e2, . . . , ep) est une famille orthonormée de E telle que pour tout k ∈ J1, pK,
Vect(e1, e2, . . . , ek) = Vect(u1, u2, . . . , uk).

Théorème 13 (Procédé d’orthonormalisation de Schmidt)

▸ Pour p = 3, les formules précédentes donnent :

e1 =
u1

∥u1∥

u′2 = u2 − ⟨u2, e1⟩e1 puis e2 =
u′2
∥u′2∥

u′3 = u3 − ⟨u3, e1⟩e1 − ⟨u3, e2⟩e2 puis e3 =
u′3
∥u′3∥

▸ On part d’une famille libre de E et on obtient concrètement une famille orthonormée qui
possède le même nombre de vecteurs et qui engendre le même espace que la famille précédente.

▸ Notons que l’on applique ce procédé à une famille déjà orthonormée alors elle n’est pas modi-
fiée.

↪ Exercice 3
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3. Orthogonal d’un sous-espace

Soit X une partie de E.
On appelle orthogonal de X et on note X⊥ l’ensemble des vecteurs de E orthogonaux à
tous les vecteurs de X c’est-à-dire :

X⊥ = {u ∈ E/ ∀v ∈X, u ⊥ v}.

Définition 14

Exemples :
On a E⊥ = {0E}. En effet, le seul vecteur orthogonal à tous les vecteurs de E est le vecteur nul.
On a {0E}⊥ = E. En effet, tous les vecteurs de E sont orthogonaux au vecteur nul.

Soit X une partie de E.
▸ X⊥ est un sous-espace vectoriel de E.
▸ X⊥ = (Vect(X))⊥.

Proposition 15

▸ Pour deux vecteurs u et v de E, on a l’équivalence :
u ⊥ v ⇔ u ∈ {v}⊥ ⇔ u ∈ (Vect(v))⊥.

▸ On suppose que F = Vect(v1, . . . , vp). Soit u ∈ E.
Alors :

u ∈ F ⊥ ⇔ u ∈ {v1, . . . , vp}⊥ ⇔ ∀i ∈ J1, pK, ⟨u, vi⟩ = 0.
▸ On a toujours X ⊂ (X⊥)⊥.

II. Espaces euclidiens

On appelle espace euclidien tout R-espace vectoriel de dimension finie muni d’un produit
scalaire.

Définition 16

Exemple : L’espace vectoriel Rn, muni du produit scalaire canonique, est un espace euclidien.

A. Bases orthonormées

Soit B une famille de vecteurs de E.
On dit que B est une base orthonormée ou orthonormale de E lorsque B est à la fois une
base de E et une famille orthonormée.

Définition 17
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Exemple : Pour tout i ∈ J1, nK, on note ei le n-uplet dont toutes les coordonnées sont nulles sauf la
i-ème qui vaut 1. La base canonique (e1, . . . , en) est une base orthonormée de l’espace euclidien Rn,
muni de son produit scalaire canonique.

On suppose que E est un espace euclidien de dimension n ∈ N∗.
Si B est une famille orthonormée de E de cardinal n alors B est une base orthonormée
de E.

Proposition 18

Notons alors que dans l’algorithme de Gram-Schmidt, si l’on part d’une base de E alors on obtient
une base orthonormée de E.

Tout espace euclidien possède une base orthonormée.

Théorème 19 (Existence de bases orthonormées)

Toute famille orthonormée d’un espace euclidien E peut être complétée en une base ortho-
normée de E.

Théorème 20 (Théorème de la base orthonormée incomplète)

Soit B = (e1, . . . , en) une base orthonormée de E.
Soit u et v deux vecteurs de E s’écrivant dans la base B :

u =
n

∑
i=1

xiei et v =
n

∑
i=1

yiei avec (x1, . . . , xn, y1, . . . , yn) ∈ R2n.

▸ Pour tout i ∈ J1, nK, on a xi = ⟨u, ei⟩.
▸ Le produit scalaire et la norme sont donnés par :

⟨u, v⟩ =
n

∑
i=1

xiyi et ∥u∥ =

¿
ÁÁÀ

n

∑
i=1

x2
i

Proposition 21 (Calculs dans une base orthonormée)

En d’autres termes, si on note X =MatB(u) =
⎛
⎜
⎝

x1

⋮
xn

⎞
⎟
⎠

et Y =MatB(v) =
⎛
⎜
⎝

y1
⋮
yn

⎞
⎟
⎠

⟨u, v⟩ = (X ∣Y ) si on note (.∣.) le produit scalaire canonique sur Mn,1(R).

Ainsi, lorsqu’on utilise les relations vectoriel/matriciel dans une base orthonormée, le produit sca-
laire sur E correspond au produit scalaire canonique sur Mn,1(R).

↪ Exercice 4
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B. Supplémentaire orthogonal

Soit F un sous-espace vectoriel de E de dimension finie.
On a F ⊕F ⊥ = E.
On dit que F ⊥ est le supplémentaire orthogonal de F dans E.

Théorème 22

On suppose que E est un espace euclidien et F est un sous-espace vectoriel de E.
Alors dim(F ⊥) = dim(E) − dim(F ).

Corollaire 23

▸ On a dans ce cas (F ⊥)⊥ = F (car on a une inclusion et l’égalité des dimensions).
▸ Si H est un hyperplan d’un espace euclidien E alors dim(H⊥) = 1.

On appelle vecteur normal à H tout vecteur u non nul de E, orthogonal à H.
Dans ce cas, (u) est une base de H⊥.

On suppose que E est un espace euclidien et F est un sous-espace vectoriel de E.
Toute famille obtenue en concaténant une base orthonormée de F et une base orthonormée
de F ⊥ est une base orthonormée de E.

Corollaire 24

↪ Exercice 5

C. Projection orthogonale

Soit F un sous-espace vectoriel de E de dimension finie.
On appelle projection orthogonale sur F le projecteur sur F parallèlement à F ⊥ c’est-à-dire
l’endomorphisme de E défini par :

pF ∶ {
E = F ⊕ F ⊥ Ð→ E
u = v +w z→ v

où (v,w) est l’unique couple de F × F ⊥ tel que u = v +w.

Pour u ∈ E, on dit que pF (u) est le projeté orthogonal de u sur F .

Définition 25

La projection orthogonale sur F ⊥ est pF ⊥ = IdE − pF .
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Illustration graphique dans l’espace : F ⊥

pF ⊥(u⃗)
u⃗

pF (u⃗)

F

Soit F un sous-espace vectoriel de E, de dimension finie. Soit u ∈ E.
▸ Soit v ∈ E. On a l’équivalence :

v = pF (u)⇔ v ∈ F et u − v ∈ F ⊥.

▸ Soit (e1, . . . , ep) une base orthonormée de F .

On a pF (u) =
p

∑
i=1
⟨u, ei⟩ei.

Proposition 26 (Calcul du projeté orthogonal)

Pour tout u ∈ E, on a pF ⊥(u) = (IdE − pF )(u) = u −
p

∑
i=1
⟨u, ei⟩ei.

Dans le procédé d’orthonormalisation de Schmidt, on a pour tout k ∈ J2, nK :

u′k = uk −
k−1
∑
i=1
⟨uk, ei⟩ei = pVect(e1,...,ek−1)⊥(uk)

car (e1, . . . , ek−1) est une base orthonormée de Vect(e1, . . . , ek−1).
Ainsi, le procédé d’orthonormalisation de Schmidt consiste à projeter le k-ème vecteur sur l’orthogo-
nal du sous-espace vectoriel engendré par les vecteurs déjà construits puis à normaliser.

Soit F un sous-espace vectoriel de E, de dimension finie.
Soit u ∈ E. On a ∥u − pF (u)∥ =min

v∈F
∥u − v∥.

De plus, pF (u) est le seul vecteur v0 de F tel que ∥u − v0∥ =min
v∈F
∥u − v∥.

Théorème 27 (Minimisation de la norme)

Pour deux vecteurs u et v de E, le réel ∥u − v∥ est la distance entre u et v .
Ainsi, on peut dire que pF (u) est le vecteur de F qui est à la distance la plus petite de u.

Soit u ∈ E. Soit F un sous-espace vectoriel de E, de dimension finie.
On appelle distance de u à F et on note d(u,F ) le réel d(u,F ) =min

v∈F
∥u − v∥ = ∥u − pF (u)∥.

Définition 28
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Comme u − pF (u) ⊥ pF (u), on a par le théorème de Pythagore :

∥u∥2 = ∥u − pF (u)∥2 + ∥pF (u)∥2

d’où
(d(u,F ))2 = ∥u∥2 − ∥pF (u)∥2.

↪ Exercice 6
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