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Dans tout ce chapitre, E désigne un R-espace vectoriel.

[. ESPACES PREHILBERTIENS

A. DEFINITIONS

—{ Définition 1 }

» Une forme bilinéaire sur E est une application ® de F x E dans R qui vérifie :

) B, ) R, g ), findandté & sroite)
» d est dite symétrique lorsque V(u,v) € E?, ®(u,v) = P(v,u)
» D est dite positive lorsque Vu e E, ®(u,u) >0
» D est dite définie lorsque Yue E, [®(u,u) =0 = u=0g]

Notons que la linéarité a gauche et la symétrie impliquent la bilinéarité.

— Définition 2 |

» On appelle produit scalaire sur E toute forme bilinéaire sur E, symétrique et définie

positive.
» Un espace vectoriel muni d’un produit scalaire est appelé espace préhilbertien.

Lorsque ® est un produit scalaire sur F, on note habituellement (u,v) le réel ®(u,v).

On rencontre également les notations (u|v) ou u-v

— Définition 3 |

Soit (, ) un produit scalaire sur E.

, . . EF — R+ , L.

L’application est une norme sur E appelée la norme euclidienne.
u — \{u,u)

On note alors pour tout u € E, |u| =/(u, u).




FExemples fondamentauz :

ESPACE VECTORIEL PRODUIT SCALAIRE

NORME EUCLIDIENNE

(F.o0= [ Fateyar

(a et b réels tels que a < b)

E=R" (z,y) =) wy; n
i=1 lz] = | > a7
(n € N*) our= ('1:17 7':377,)3 y= (y17 7yn) =1
X Y)=Z:czyz—XTY
E = 4,,(R) (oY) =2 n
(neN) 0w X1 = | 208 = VX
ou X=|:]|,Y=]|: N
Tn Yn
E=%([a,b],R)

1=/ [ P

Le premier/second produit scalaire est appelé produit scalaire canonique sur R/ 4, 1 (R).

Pour n = 2, c’est celui que vous avez étudié au lycée dans le plan.
— FExercice 1

Dans toute la suite, (,

B. PROPRIETES CALCULATOIRES

) désigne un produit scalaire sur F et ||.| la norme euclidienne associée.

Proposition 4

» Généralisation de la bilinéarité :

Pour tout (uq,...,up,v1,...,

=1 =1 i=1 j=1
» On a pour tout u € F, (u,0g5) = (0g,u) =0
Par suite :
|u| =0 < u=0g.
» Calculs avec la norme :
Pour tout (u,v) € E?, on a : [Aw] = A« [u

e+ o] =

Formules de polarisation :
Pour tout (u,v) € E2, on a :

(u,v) =

1
(u0) = 5 (lu+ o] = Jul® - [0]?) et

v,) € EPT2 et tout (Aq,. ..

[ul® + Jol* + 2(u,v) et Ju-v]*=

s Aps 415 -5 hg) € RPT on a

I* -

2 (u,v)

[l + o

1
7w+ ol? = u-]?)

Les formules de polarisation permettent de trouver le produit
euclidienne.

scalaire dont provient une norme




— Théoréme 5 (Inégalité de Cauchy-Schwarz)

» Pour tout (u,v) € E? on a:
[, )| < flu] - o]

» De plus, 'égalité |(u, v)| = ||ul|-|v| est vérifiée si et seulement si u et v sont colinéaires.

» On rappelle que deux vecteurs u et v sont colinéaires lorsque 3\ € R tel que u = \v ou v = A\u
ou de maniere équivalente lorsque u = 0 ou 3\ € R tel que v = \u.

» L’inégalité de Cauchy-Schwarz dans le cas des exemples fondamentaux 1 et 3 s’écrit :

n

Z TiYi

i=1

n

N

n
i=1 i=1

T

V(Z1,. . T, Y1,y Yn) € R?™, y?

V() e (@(atl®Y, | [ 1o

— Théoréme 6 (Inégalité triangulaire)

» Pour tout (u,v) € E?, on a :
Ju+ o] < Jul + ol

» De plus, I'égalité ||u+v| = |u|+|v| est vérifiée si et seulement si u et v sont colinéaires
et orientés dans le méme sens c’est-a-dire il existe A € R, tel que u = Av ou v = Au.

Lllustration graphique dans le plan :
Le chemin direct est le plus court : OB < OA + AB.

@ B
A
U
U+ 0

— BEzxercice 2



C. ORTHOGONALITE

1. VECTEURS ORTHOGONAUX

Définition 7|

Soit u et v deux vecteurs de F.
On dit que u et v sont orthogonauzr et on note u L v lorsque (u,v) = 0.

» Le vecteur nul est le seul vecteur orthogonal a lui-méme.
Le vecteur nul est le seul vecteur orthogonal a tous les vecteurs de E.

» L’orthogonalité dépend du produit scalaire.

— Théoréme 8 (Théoréme de Pythagore)

Soit v et v deux vecteurs de E.
On a :

ulv < fu+o]?=ul®+ o)

Lllustration graphique dans le plan :
Le triangle OAB est rectangle en A si et seulement si OB? = OA% + AB2.

2. FAMILLES ORTHOGONALES / ORTHONORMALES

— Définition 9 |

Soit (uy,us,...,u,) une famille de p vecteurs de E.

deux a deux orthogonaux c’est-a-dire lorsque :

vV (i,7) € [1,p]* avec i # 7, (wi,u;) =0

thogonale et composée de vecteurs de norme 1 c’est-a-dire lorsque :

0 sii#j

V(Za]) € [[]-ap]]Q’ (ui7uj> =6i»j :{ 1 sie :j.

» La famille (uy,us,...,u,) est dite orthogonale lorsque les vecteurs uy,...,u, sont

» La famille (uq,us,...,u,) est dite orthonormale ou orthonormée lorsqu’elle est or-

—{ Définition 10 }

Un vecteur u de E est dit unitaire ou normé lorsque |lul| = 1.

. 1 ,
» Siw un vecteur non nul de £ alors le vecteur Hu est normé.
U

1
» Si(uq,...,u,) est une famille orthogonale ne contenant pas le vecteur nul alors (H
Uy
est orthonormale.

Uy,

]

|



— Théoréme 11 (Théoréme de Pythagore)

Si (ug,us,...,u,) est une famille orthogonale alors :

g g + e [ = g |+ Juz|* + -+ .

La réciproque est fausse si p > 3.

Proposition 12

Toute famille orthogonale de E ne contenant pas le vecteur nul est libre.

» En particulier, toute famille orthonormale est libre.

» Si E est un espace vectoriel de dimension n alors toute famille libre possede au plus n vecteurs.
Par conséquent, toute famille orthogonale ne contenant pas le vecteur nul (en particulier toute
famille orthornormale) possede au plus n vecteurs.

— Théoréme 13 (Procédé d’orthonormalisation de Schmidt)

Soit (uy,us,...,u,) une famille libre de E.
On calcule successivement les vecteurs (eq, es, ..., €,) de la maniére suivante :
Uy k-1 u’
e; = —— et pour tout k € [2,p], uj, = uy - Z(uk,ei)ei puis e = —
Jua = i |
Alors (e, es,...,¢e,) est une famille orthonormée de E telle que pour tout k € [1,p],
Vect(eq, e, ..., exr) = Vect(uy, ug, ..., ug).
» Pour p =3, les formules précédentes donnent :
Uy
€1 =
Jua
u/
uy = Uy — (Ug, €1)€1 Puis eg = ——
Jus]
u/
uh = uz — (us, er)e; — (us, ea)ey puis ez = m

3

» On part d’une famille libre de E et on obtient concretement une famille orthonormée qui
possede le méme nombre de vecteurs et qui engendre le méme espace que la famille précédente.

» Notons que 'on applique ce procédé a une famille déja orthonormée alors elle n’est pas modi-
fiée.

— Fxercice 3



3. ORTHOGONAL D’UN SOUS-ESPACE

—{ Définition 14 }

Soit X une partie de E.
On appelle orthogonal de X et on note X+ 'ensemble des vecteurs de E orthogonaux a
tous les vecteurs de X c’est-a-dire :

Xt={ueE/VYveX,ulv}.

Ezxemples :
On a E* ={0g}. En effet, le seul vecteur orthogonal a tous les vecteurs de E est le vecteur nul.
On a {Og}* = E. En effet, tous les vecteurs de E sont orthogonaux au vecteur nul.

— Proposition 15

Soit X une partie de E.
» X! est un sous-espace vectoriel de F.
» X+ = (Vect(X))".

» Pour deux vecteurs v et v de E, on a I’équivalence :
ulv < uef{v}t < ue (Vect(v))l.

» On suppose que F' = Vect(vy,...,v,). Soit u € E.
Alors :
ueF* < we{vy,...,u1" < Vie[l,p], (u,v;) =0.

» On a toujours X c (Xl)L.

II. ESPACES EUCLIDIENS

Définition 16|

On appelle espace euclidien tout R-espace vectoriel de dimension finie muni d’un produit
scalaire.

Ezxemple : L’espace vectoriel R, muni du produit scalaire canonique, est un espace euclidien.

A. BASES ORTHONORMEES

— Définition 17|

Soit A une famille de vecteurs de F.
On dit que A est une base orthonormée ou orthonormale de E lorsque 4 est a la fois une
base de E et une famille orthonormée.




Ezemple : Pour tout i € [1,n], on note e; le n-uplet dont toutes les coordonnées sont nulles sauf la
i-eme qui vaut 1. La base canonique (e, ..., e,) est une base orthonormée de 'espace euclidien R,
muni de son produit scalaire canonique.

— Proposition 18

On suppose que E est un espace euclidien de dimension n € N*.

Si Z est une famille orthonormée de E de cardinal n alors & est une base orthonormée
de E.

Notons alors que dans l'algorithme de Gram-Schmidt, si 'on part d'une base de E alors on obtient
une base orthonormée de F.

— Théoréme 19 (Euzistence de bases orthonormées)

Tout espace euclidien possede une base orthonormée.

— Théoréme 20 (Théoréme de la base orthonormée incompléte)

Toute famille orthonormée d’un espace euclidien E peut étre complétée en une base ortho-
normée de FE.

— Proposition 21 (Calculs dans une base orthonormée)

Soit & = (e, ...,e,) une base orthonormée de E.
Soit u et v deux vecteurs de E s’écrivant dans la base % :

n n
— _ 2n
u= inei et v= Zyiei avec (T1,...,Tp,Y1,---,Yn) € R,
= i=1

» Pour tout i € [1,n], on a z; = (u, e;).

» Le produit scalaire et la norme sont donnés par :

n n
(u,v) = leyz et ul = \‘ fo
i=1 i=1

1 hn
En d’autres termes, si on note X = Matg(u) =| : | et Y =Maty(v) =

Tn Yn

(u,v) = (X]Y') si on note (.|.) le produit scalaire canonique sur ., ;(R).

Ainsi, lorsqu’on utilise les relations vectoriel/matriciel dans une base orthonormée, le produit sca-
laire sur E correspond au produit scalaire canonique sur ., 1 (R).

— FEzxercice 4



B. SUPPLEMENTAIRE ORTHOGONAL

—{ Théoréme 22 }

Soit F' un sous-espace vectoriel de £ de dimension finie.
Ona FeF*=F.
On dit que F'* est le supplémentaire orthogonal de F' dans E.

—{ Corollaire 23 }

On suppose que E est un espace euclidien et F' est un sous-espace vectoriel de F.
Alors dim(F*) = dim(FE) — dim(F).

» On a dans ce cas (F*)! = F (car on a une inclusion et ’égalité des dimensions).

» Si H est un hyperplan d’un espace euclidien E alors dim(H*) = 1.
On appelle vecteur normal a H tout vecteur u non nul de F, orthogonal a H.
Dans ce cas, (u) est une base de H*.

—{ Corollaire 24 }

On suppose que E est un espace euclidien et F' est un sous-espace vectoriel de F.
Toute famille obtenue en concaténant une base orthonormée de F' et une base orthonormée
de F'L est une base orthonormée de E.

— BEzxercice 5

C. PROJECTION ORTHOGONALE

—{ Définition 25 }

Soit F' un sous-espace vectoriel de F de dimension finie.
On appelle projection orthogonale sur F' le projecteur sur F' parallelement a F'* c¢’est-a-dire
I’endomorphisme de E défini par :

= L —
PE - { E=ler E ou (v,w) est 'unique couple de F' x F'* tel que u =v + w.

u=v+w >

Pour u € E, on dit que pgr(u) est le projeté orthogonal de u sur F.

La projection orthogonale sur F'* est pp. = [dg — pp.



Lllustration graphique dans [’espace : Ft

pr (1)

— Proposition 26 (Calcul du projeté orthogonal)

Soit F' un sous-espace vectoriel de E, de dimension finie. Soit u € F.

» Soit v € E. On a I’équivalence :
v=pr(u)<veF etu—veF"

» Soit (ey,...,e,) une base orthonormée de F'.

p
On a pp(u) = Z(% €i)e;.
i=1

p
Pour tout u € E, on a pp:(u) = (Idg —pr)(w) =u - (u,€;)e;.
i=1
Dans le procédé d’orthonormalisation de Schmidt, on a pour tout k € [2,n] :
k-1
Uy = Uk = Y (Un, €3)€; = Dvect(enen_r)* (Ur)
i=1
car (e1,...,ex 1) est une base orthonormée de Vect(ey,...,ex 1).
Ainsi, le procédé d’orthonormalisation de Schmidt consiste a projeter le k-eme vecteur sur I’orthogo-
nal du sous-espace vectoriel engendré par les vecteurs déja construits puis a normaliser.

— Théoréme 27 (Minimisation de la norme)

Soit F' un sous-espace vectoriel de F, de dimension finie.
Soit ue E. On a |u-pr(u)| = mlbgl lw—-v].
VE

De plus, pr(u) est le seul vecteur vy de F' tel que |u— v = ml}l u-wv].
ve

Pour deux vecteurs u et v de E, le réel |u—v| est la distance entre u et v .
Ainsi, on peut dire que pgp(u) est le vecteur de F' qui est a la distance la plus petite de u.

Définition 28 }

Soit u € E. Soit F' un sous-espace vectoriel de E, de dimension finie.
On appelle distance de v a F et on note d(u, F) le réel d(u, F) = IIll}’El Ju—v| =|u-pr(u)l.
ve




Comme u — pr(u) L pr(u), on a par le théoreme de Pythagore :
Jul? = Ju=pr(u)|* + |pr(w)]?

dot )
(d(u, )" = [ull® = [pr(u) .

— FBEzxercice 6
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