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ESPACES PREHILBERTIENS REELS

Corrigé des exercices - Révisions PCSI

Exercice 1 : Produits scalaires et normes euclidiennes

1. |E=.#,(R) et pour tout (A, B) € (,///n(R))2, w(A,B) =tr(A™B).

EH notant A = (ai,j)léi,jgn et B = (bi,j)1<i,an7 on a :

) Z;[AT =2 2 LA Tabig = 0 > aigbig =0 D aisbi.
=

7=1li=1 g=1li=1 i=1j=1

o  définit bien une application de E x E a valeurs dans R.
o Soit (A, B,C) € E3. Soit A e R.
On a par linéarité de la trace (*) :

G(ANB +C) =tr(AT\B + 0)) = tr(AATB + ATC) P Atr(ATB) + tr(ATC) = Mp(4, B) + (A, O).

o Soit (A, B) € E2.
Il est clair que p(B,A) = Z meam = Z Zai,jbi,j = (A, B).

i=1j=1 i=1 j=1
o Soit A€ E. Ona (A, A) =3 (a;i )
i=1 j=1

Il s’agit d’une somme de termes positifs donc on a p(A, A) > 0.
n n
o Soit A € E. On suppose que ¢(A, A) =0 c’est-a-dire » > (a;;)* =0
i=1 j=1
Il s’agit d’'une somme de termes positifs. Or, une somme de termes positifs est nulle si et seulement
si tous ses termes sont nuls.
On en déduit que pour tout (4,7) € [1,n]?, a?. =0 d’ou a; ; = 0.
Ainsi, A =0,.
Les points précédents prouvent que ¢ est une forme bilinéaire symétrique définie positive sur E.
Ainsi :

v définit un produit scalaire sur E et la norme euclidienne associée est donnée par :

VAe M, (R), |[A]| =\/tr(ATA) = | ‘ 22(%;‘)2

2. Soit aeR. | E=R,[X] et pour tout (P,Q) ¢ (R,[X])% ¢(P.Q) = 3. PP (a)Q™(a).
k=0

o 1 définit bien une application de £ x E a valeurs dans R.
o Soit (P,Q, R) € E3. Soit A e R.
On a par linéarité de la dérivation puis de la somme :

V(P AQ+R) = Z P®(a)(AQ + R)M(a) = Z P®(a)(AQ™ (a) + RM(a))

— i(}\P(k)(a)Q(k‘)(a) + P(k)(a)R(k)(a)) =\ Z P(k)(a)Q(k)(a) + i P(k)(a)R(k)(a)
k=0 & &
=M (P, Q) + (P, R).



o Soit (P,Q) € E2.
Il est clair que (P, Q) = Z P(k)(a)Q(k)(a) = Z Q(k)(G)P(k)(G) =(Q,P).
k=0

o Soit Pe E. On a ¢(P,P) = Z(P(k)(a ).
Il s’agit d’'une somme de termes posmfs donc on a (P, P)

¢ Soit P € E. On suppose que (P, P) =0 c’est-a-dire Z(P(k) a))2 =0
k=0
Il s’agit d’'une somme de termes positifs. Or, une somme de termes positifs est nulle si et seulement

si tous ses termes sont nuls.

On en déduit que pour tout & € [0,n], (P(’“)(a))2 =0 d’oa P®)(a) = 0.

Ainsi, a est une racine de P de multiplicité supérieure ou égale a n + 1. Comme P est un polynéme
de degré inférieur ou égal a n, on en déduit que c’est le polynéme nul : P =0g.

Les points précédents prouvent que 1 est une forme bilinéaire symétrique définie positive sur E.
Ainsi :

¥ définit un produit scalaire sur £ et la norme euclidienne associée est donnée par :

TP ER[X], [P] = 2 (PO(@)"

3. | E=R[X] et pour tout (P,Q) € (R[X])’, (P|Q) = fo  P(HQ)e .

o Soit (P,Q) € (R[X])2. La fonction f:t+~ P(t)Q(t)exp(-t) est continue par morceaux sur [0, +oo|
par produit.

Comme P(Q est un polyndéme, on peut 1’écrire sous la forme Z apX* avec d e N, (ay,...,aq) € R4
le=0

d
On a alors, pour tout ¢ € R*, *f(t) = Y at** e .
-0

k=

Pour tout k € [0,d], tlim t***e7t =0 (par croissances comparées) donc, par combinaison linéaire,
—>+00

Jim t2f(t) =0 donc f(t)= o (1/t2).

—>4+00 t—+

+00
On a pour tout ¢ € [1, +oo], tl 0 et comme 2 > 1, 'intégrale / —dt converge.
On en conclut par comparaison que 'intégrale définissant (P|Q) est convergente.
Notons ¢ : (P,Q) » (P|Q).
o Pour (P, P2, Q) € (R,[X])3, A € R, par linéarité d’intégrales généralisées toutes convergentes,
(P + AR, Q) = o(P1,Q) + Ap(F, Q).
Ainsi, ¢ est linéaire a gauche.
¢ Par commutativité du produit dans R, pour tout (P,Q) € (R,[X])?, ¢(P,Q) = ¢(Q, P).

Ainsi, ¢ est symétrique et étant linéaire a gauche, c’est donc une forme bilinéaire et symétrique.
+00

o Soit PeR,[X]. On a o(P,P) = f P(t)2etdt.
0
Pour tout ¢ € [0, +o0o[, P(t)2e* >0 donc par positivité de l'intégrale (0 < +o00), (P, P) >0
o On suppose p(P, P) =0. On a donc f P(t)%etdt = 0.
0

Comme t — P(t)%e7t est continue et positive sur [0, +oo[, d’aprés le théoréme de nullité de l'intégrale,
pour tout t € R*, P(t)2et =0 d’ou P(t) = 0.
——
0
Le polynéme P a une infinité de racines donc P est le polynéme nul.
Par conséquent, ¢ est définie positive.



Ainsi :

(.|.) définit un produit scalaire sur E et la norme euclidienne associée est donnée par :

VP eR[X], |P] = \/ [0 (1)) etat.

Exercice 2 : Inégalité de Cauchy-Schwarz
1. Enoncé du théoreme :

» Pour tout (u,v) € E?, on a [(u,v)| < |u] - ||v].
» De plus, I'égalité |(u,v)| = |u] - |v] est vérifiée si et seulement si u et v sont colinéaires.

Preuve du théoréme : Soit (u,v) € E2.

ler cas : On suppose que u = Op.

On a alors | <u,v>|=1]0[=0et |u].|v|=0.|v| = 0.

On a donc bien | < u,v > | < |u].|v].

Remarquons qu’il y a méme égalité et dans ce cas, u et v sont colinéaires.

2éme cas : On suppose que u # Og.
Soit x € R. On a :

12+ 22 < u, v >= |ul?2% + 2 <u,v >z + ||

2
|z +v|? = |ozul? + [v]? + 2 < 2u, v >= (J2|.|u])” + |v

Comme u # 0, on a |ul? #0.
Ainsi, la fonction ¢ : z — |u|?2? + 2 <u,v >z + ||v]|? est un trindme du second degré.
Notons A son discriminant. On a :

2
A= (2<uv>) ~aful ol = 4((< wv >)? - Jul?[o]?).

Comme pour tout z € R, p(x) = |zu+v|? > 0, on a nécessairement A <0 (car si on avait A >0, la
fonction ¢ prendrait des valeurs strictement négatives entre ses deux racines).
On en déduit (< u,v >)? < |uf?.||v]? et donc par croissance de la fonction racine carrée sur R, :

| <u, 0> | <l o

Etudions le cas d’égalité. On a les équivalences suivantes :

| <u,v>|=|ul.|v] <= A=0

<~ JxgeR tel que () =0

car A<0
<= g€ R tel que |zou+v|*=0
< dxg e R tel que zou+v=0g

<~ JaeR tel que v=au
a=-xq

<= u et v sont colinéaires
ur0p

2. Application 1 : Notons X(Q) = {x1,...,2,}.

Comme X (£2) est un sous-ensemble fini de R, X et X2 sont d’espérance finieet ona E(X) = ) 2, P(X = ay)
k=1

et E(X?) =) 27 P(X =) par le théoréme du transfert.

k=1
On se place dans R™ muni du produit scalaire canonique.



En appliquant I'inégalité de Cauchy-Schwarz aux vecteurs a = (z;\/P(X =11),..., 2,/ P(X = 1,))
et b=(/P(X=21),...,/P(X =2,)),0ona:

| <a,b>[<]al - [b] = Zl’k\/P(X zi)VP(X = )

k=1

k=1

S e2P(X =) | 3 P(X = 20).
k=1 k=1

Or, comme ([X = z}])1<ren est un systéme complet d’événements, on a ». P(X =) = 1.
k=1
On en déduit que :

[E(X)| < E(X?).

NB : On pouvait aussi utiliser 'inégalité de Cauchy-Schwarz qui sera vue dans le cours sur les
variables aléatoires avec les variables X et Y =1 (car X? et Y2 sont d’espérance finie).
On obtient (E(X))? < E(X?) d’ou le résultat par croissance de la fonction racine carrée sur R,.

Autre méthode en utilisant la variance :
Comme X2 est d’espérance finie, X admet une variance et on a par positivité de l'espérance,

V(X)=E(X-E(X))*>0.
Par la formule d’Huygens, on en déduit :
V(X) = E(X2) - (E(X)) >0 dot E(X2) > (E(X))".
On conclut comme précédemment.
3. Application 2 : Soit x € [0, 1]. i
Comme fe%'([0,1],R) et f(0)=0,0n a f(z)=f(z)- f(0)= [0 f(t)de.

On se place dans €'([0,x],R) muni du produit scalaire usuel < p, 1) >= f e(t)y(t)dt.
0
En appliquant 'inégalité de Cauchy-Schwarz aux vecteurs p:t— 1 et ¢ :t+— f'(t), on a :

<o l<leblvl= | [ irou] < f [Ty [Ceopa
“r@isva/ [ o

Par croissance de la fonction u — u? sur R,, on en déduit que :

(f(z))? S:B/Ox(f’(t))zdt.

Soit € [0,1]. Comme pour tout ¢ € [0,1], (f/(£))2>0, on a fx(f’(t) )2dt < [l(f’(t))th

En effet, par la relation de Chasles et la positivité de I'intégrale (z <1), on a :
fo (f'(t))?dt - fo (f'(t))%dt = fz (f'(t))%dt > 0.

1
Comme z > 0, on en déduit que (f(z))* < .:Ef (f'(t))3dt.
0

Par croissance et linéarité de l'intégrale (0 < 1 et intégrales de fonctions continues sur un segment),

on obtient : ) X 1
fo (f(w))desfo (f’(t))2dt-f0 zdz.

4
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1 L
Comme f xdx = [—xQ] =5 on en déduit le résultat souhaité :
0 0

[ uetar<s [Coroya

Exercice 3 : Procédé d’orthonormalisation de Gram-Schmidt

On commence par vérifier que la famille (uy,us, u3) est libre.
Calculons le déterminant de cette famille dans la base canonique de R3.
Par les opérations Ly < Ly — Ly et L3 < L3 — L1, on obtient une matrice triangulaire.

1 1 1 1 1 1
1 -1 1 |=10 -2 0 |=4=+0.
1 1 -1 0 0 -2

La famille (uq,us,us) est donc libre. Orthonormalisons-la & 'aide du procédé de Gram-Schmidst.

oOna |u =v12+12+12=+/3.

Uy 1 1 1
On pose alors e; = m = %, %, ﬁ .

o On calcule u}, = ug— < ug,e1 > €.
1
uh=(1,-1,1) - 3 <(1,-1,1),(1,1,1) > (1,1,1)
1
= (L-L1) - g(Ix 1+ (-1) x 1+ 1x1)(1,1,1)

1 2
= (1,-1,1) - =(1,1,1) = =(1,-2,1).
(7 7)3(77)3(7 7)

2 2\/6
onaw%uzqu2+pzy+12:—%i.
u’ 1 -2 1
On pose alors 622—32(—,—,—).
lus| \V6' 6 V6

¢ On calcule u} = us— <wus,e; >e;— <ug, ez > es.
/ 1 1
uy = (1,1,-1) - 3 <(1,1,-1),(1,1,1) > (1,1,1) - A <(1,1,-1),(1,-2,1) > (1,-2,1)
1 1
= (17 17_1) - g x 1 x (17 17 1) - 8 X (_2)(17_27 1)

1 1
=(LL-1)-5(LL 1)+ 5(1,-2.1) = (1,0,-1).

On a |uj| = /12+02+ (-1)2 = V2.

! 1 1
On pose alors e3 = f’ = (—,O,——).
Jusl \v2" " V2
On a donc :
L 11), €0 = —=(1,-2,1), 5 = —(1,0,-1)
€1 =—F=\L1 y €2 = —=1,~4, y €3 = —=1L,U,=1).
R G VG

D’apres le procédé de Gram-Schmidt, la famille (e, s, e3) est une famille orthonormée de R3.
Elle est donc libre et de cardinal 3 = dim(R3) donc c¢’est une base de R3.
Ainsi :

la famille (eq, ey, e3) est une base orthonormée de R3.

Ezercice 4 : Bases orthonormées
1. Remarquons tout d’abord que (Fy,..., P,) est bien une famille de E car pour tout ¢ € [0,n], P,

5



est un polyndéme de degré i donc P; € R,[ X].
Soit (4, 7) € [0,n]? avec i # j. Montrons que < P;, P; >=0.

Ona <P, Py>= 3 PY(a) P (a).
k=0
Soit k € [0, n].

o . ik ‘ .
CommePi(k)(X):{l(z )...(i-k+1)(X -a) sik<1

on obtient en évaluant en a :

0 sik>i,
0 sik<i ’ _
Pi(k)(a): il sik=i ={B :nor—lz
0 sik>1 )
De méme P(k)(a): gl sik=j
Y 0 sinon.
0x0 siké¢{i,j}
Comme i # j, on en déduit que P (a)PM(a) ={ ilx0 sik=i - 0.

O0xj! sik=y
Ainsi, < P, P;>=>"0=0.

k=0
Donc :

la famille (F,..., P,) est une famille orthogonale de F.

2. Soit i € [0,7].
On a:

[Pl = /< B P> = kio(P}’“)(a))Q =/(i)2 = il] = !

il sik=1

car on a vu que pour tout k € [0, n], Pi(k)(a) = { 0 sinon

Ainsi :

pour tout k € [0,n], || =

Py P P, , .
0—?, 1—|1, e —|) est une famille orthonormée de E (car c’est une famille
orthogonale de F et tous ses vecteurs sont de norme 1).

C’est donc en particulier une famille libre de E et elle est de cardinal n+1 = dim(]Rn[X ]) donc c’est

une base de E.

Par suite, la famille (

Ainsi :
P P =
= (—0, —1, ce —) est une base orthonormée de F.
o1 n!
3. Soit Pe F. np
Comme £ est une base orthonormée de E, P s’écrit P = Z ak—k avec pour tout k € [0,n] :

o K

Py 1 1 & ;
— v - _ (’L) (’L)
ay =< P, TRaTE P, P, >= Y Z(:)P (a)P." (a).
k! sii=k
0 sinon

On obtient donc la formule de Taylor pour les polynémes :

; 1
Comme pour tout i € [0, n], P,gl)(a) = , on en déduit que oy = EP(’f)(a) x k! = PX®)(a).

n Pk n P(k)(a)
pour tout P eR,[X], P :]Z;]P(k)(a)g = ];) X (X -a).




Exercice 5 :
1. Montrons l'inclusion .¥;, c (,52%”)l
Soit M € .%, et N € o,.
On a :
(M|N) =tr(M'N) =tr(MN) car MT = M.

On a également par symétrie du produit scalaire :
(M|N)=(N|M)=tr(N"M) =tr(-NM) = -tr(NM) = -tr(MN)

car NT = —-N et par les propriétés de la trace.

Ainsi, (M|N) =tr(MN) = -tr(MN) d’ot (M|N) = 0.

On a ainsi prouvé que si M € .%, alors M est orthogonal & tous les éléments de .<7,.
On en déduit que |.¥, c (szn)l
2. = Soit M € ., N4,

Ona M"™=M car M € .%, et M™ =-M car M € o, d'ou M =-M donc M =0,,.
On en déduit que les sous-espaces vectoriels .7, et <7, sont en somme directe.

* Soit A € 4, (R).
A+ AT . A—A

En posant M = ,ona A=M+ N avec :

T T _
A;A:MdoncMeYn et NTZA A

On en déduit que A € .¥, & o7,.
On a donc prouvé l'inclusion ., (R) c .7, & <7,.

L’inclusion réciproque étant évidente, on en déduit que | 4, (R) = .7, & 7, |.
3. On a déja prouvé que .7, (Jz;fn)L

De plus, comme .#,(R) = ., ® <, on a dim(Yn) + dim(,;zfn) =n2.

Ainsi, dim(Yn) =n? —dim(ﬂfn) = dim((&fn)l) car 7, ® (ben)l = M, (R) (A, est de dimension finie).
On en déduit que |.¥, = (szn)l :

MT™ =

=-N donc N € <7,.

Exercice 6 :

1. Précisons les notations.

X désigne la fonction ¢ — t, X2 désigne la fonction ¢ — ¢2 et 1 est la fonction constante égale a 1.
d(X?, F) désigne la distance de X? au sous-espace vectoriel F' = Vect(1, X).

Comme F' est un sous-espace vectoriel de dimension finie, on a par définition :

(d(x?, F))" = (min | X - P])” (mln\/ f (12 - t))2dt) =((ar71bl)i€rﬂl§2\/ fo 1(t2—at—b)2dt).

Comme x — x2 est une fonction croissante sur R,, on en déduit que :

(d(X2 F) = min f(tz—at b)2dt = A

(a,b)eR2

L’existence de A est ainsi garantie et on a :

A= (d(x2, F)).

2. Comme F' est un sous-espace vectoriel de dimension finie, le projeté orthogonal de X? sur F est
bien défini. Déterminons pr(X?).
*= Méthode 1 : en utilisant la caractérisation du projeté orthogonal

7



Soit P e E.

P=pp(X?)<e PeFet X?-PeF*

<X?2-P1>=0
<X?-P,X>=0
<X?2-aX-b1>=0
<X?-aX-0,X>=0.

< 3(a,b) e R? tel que P=aX +b et {

< 3(a,b) eR? tel que P=aX +b et {

Or :
1 1, a, !
{<X2—aX—b,1>:0 fo (t*—at-b)dt=0 [gt —575 —bt]oz
2 _ _ -n = 1 Aad 1
<AXT-aX-5,X>=0 /(t2—at—b)tdt:0 [1#—%3—9#] _0
0 4 3 2 o

L[ i-g-b=0 _ [3a+6b=2 _ [a=1
1 _a_b 4a+6b=3 b

1
On en déduit que |pp(X?) =X - sl

* Meéthode 2 : en orthonormalisant une base de F
On a F' = Vect(1,X) et (1,X) est une famille libre donc (1, X) est une base de F.
Orthonormalisons la famille (1, X).

[ r1
Ona |1 = f 12dt = 1 donc on pose P; = 1.
0

1 1,1 1
CalculonsX—<X,P1>P1=X—(/ tdt).l=X—[§t2] -X -3
0 0
1 1 1\? 1 1 1, 1., 171 11 1 1 1
et||X——|:\// (t——) dt = / (t2—t+—)dt:\/[—t3——t2+—t] :\/———+—: — =
2 0 P 0 4 3" 79" "1, " V3 2 12 23
_1
On pose alors P, = X ?H =2v/3X - V3.
~ 2
Ainsi, (P, P,) = (1,2v/3X - /3) est une base orthonormée de F.

On a alors :

pr(X?) =< X% 1> 1+ < X2, 2V/3X - /3> .(2V3X - /3)

:([01t2dt)-1+(2\/3)2(‘/01752(16_%)&) (X—%)
[Le] szl b (x-0)

:1+12(1_1)(X_1)
3 4 6 2

_1+X—1
3 2
1 1
On en déduit que |pp(X?) =X - sl
3. Onad(X? F)=|X?2-pr(X?)| = X2-X+¢|.

On a donc :
A= X2 - pr(X?))? = | X7 - [pr(X?)|?

d’aprés le théoréme de Pythagore (X2 -pp(X?) L pp(X?) puisque X2 -pp(X?) e Ftet pp(X?) e F).

! 17" 1 LT 1, 1, 1.7° 1 1 1
Or, |\X2||2=f t4dt=[—t5] = Cet HpF(X2)||2:f (t——) dt:[—t3——t2+—t] N
0 5 1o 5 0 6 3 6 361y 3 6 36 36

8



7

1
Ainsi, A = - - — donc :

5 36

" 180’




