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ESPACES PRÉHILBERTIENS RÉELS
Corrigé des exercices - Révisions PCSI

Exercice 1 : Produits scalaires et normes euclidiennes

1. E =Mn(R) et pour tout (A,B) ∈ (Mn(R))
2
, φ(A,B) = tr(A⊺B).

En notant A = (ai,j)1⩽i,j⩽n et B = (bi,j)1⩽i,j⩽n, on a :

φ(A,B) =
n

∑
j=1

[A⊺B]j,j =
n

∑
j=1

n

∑
i=1

[A⊺]j,ibi,j =
n

∑
j=1

n

∑
i=1

ai,jbi,j =
n

∑
i=1

n

∑
j=1

ai,jbi,j.

◇ φ définit bien une application de E ×E à valeurs dans R.
◇ Soit (A,B,C) ∈ E3. Soit λ ∈ R.
On a par linéarité de la trace (∗) :

φ(A,λB +C) = tr(A⊺(λB +C)) = tr(λA⊺B + A⊺C) (∗)= λtr(A⊺B) + tr(A⊺C) = λφ(A,B) + φ(A,C).

◇ Soit (A,B) ∈ E2.

Il est clair que φ(B,A) =
n

∑
i=1

n

∑
j=1

bi,jai,j =
n

∑
i=1

n

∑
j=1

ai,jbi,j = φ(A,B).

◇ Soit A ∈ E. On a φ(A,A) =
n

∑
i=1

n

∑
j=1

(ai,j)
2.

Il s’agit d’une somme de termes positifs donc on a φ(A,A) ⩾ 0.

◇ Soit A ∈ E. On suppose que φ(A,A) = 0 c’est-à-dire
n

∑
i=1

n

∑
j=1

(ai,j)
2 = 0.

Il s’agit d’une somme de termes positifs. Or, une somme de termes positifs est nulle si et seulement
si tous ses termes sont nuls.
On en déduit que pour tout (i, j) ∈ J1, nK2, a2i,j = 0 d’où ai,j = 0.
Ainsi, A = 0n.
Les points précédents prouvent que φ est une forme bilinéaire symétrique définie positive sur E.
Ainsi :

φ définit un produit scalaire sur E et la norme euclidienne associée est donnée par :

∀A ∈Mn(R), ∥A∥ =
√

tr(A⊺A) =

¿
Á
ÁÀ

n

∑
i=1

n

∑
j=1

(ai,j)2

2. Soit a ∈ R. E = Rn[X] et pour tout (P,Q) ∈ (Rn[X])
2
, ψ(P,Q) =

n

∑
k=0

P (k)(a)Q(k)(a).

◇ ψ définit bien une application de E ×E à valeurs dans R.
◇ Soit (P,Q,R) ∈ E3. Soit λ ∈ R.
On a par linéarité de la dérivation puis de la somme :

ψ(P,λQ +R) =
n

∑
k=0

P (k)(a)(λQ +R)(k)(a) =
n

∑
k=0

P (k)(a)(λQ(k)(a) +R(k)(a))

=
n

∑
k=0

(λP (k)(a)Q(k)(a) + P (k)(a)R(k)(a)) = λ
n

∑
k=0

P (k)(a)Q(k)(a) +
n

∑
k=0

P (k)(a)R(k)(a)

= λψ(P,Q) + ψ(P,R).
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◇ Soit (P,Q) ∈ E2.

Il est clair que ψ(P,Q) =
n

∑
k=0

P (k)(a)Q(k)(a) =
n

∑
k=0

Q(k)(a)P (k)(a) = ψ(Q,P ).

◇ Soit P ∈ E. On a ψ(P,P ) =
n

∑
k=0

(P (k)(a))
2
.

Il s’agit d’une somme de termes positifs donc on a ψ(P,P ) ⩾ 0.

◇ Soit P ∈ E. On suppose que ψ(P,P ) = 0 c’est-à-dire
n

∑
k=0

(P (k)(a))
2
= 0.

Il s’agit d’une somme de termes positifs. Or, une somme de termes positifs est nulle si et seulement
si tous ses termes sont nuls.
On en déduit que pour tout k ∈ J0, nK, (P (k)(a))

2
= 0 d’où P (k)(a) = 0.

Ainsi, a est une racine de P de multiplicité supérieure ou égale à n + 1. Comme P est un polynôme
de degré inférieur ou égal à n, on en déduit que c’est le polynôme nul : P = 0E.
Les points précédents prouvent que ψ est une forme bilinéaire symétrique définie positive sur E.
Ainsi :

ψ définit un produit scalaire sur E et la norme euclidienne associée est donnée par :

∀P ∈ Rn[X], ∥P ∥ =

¿
Á
ÁÀ

n

∑
k=0

(P (k)(a))
2
.

3. E = R[X] et pour tout (P,Q) ∈ (R[X])2, ⟨P ∣Q⟩ = ∫
+∞

0
P (t)Q(t)e−tdt.

◇ Soit (P,Q) ∈ (R[X])2. La fonction f ∶ t↦ P (t)Q(t) exp(−t) est continue par morceaux sur [0,+∞[
par produit.

Comme PQ est un polynôme, on peut l’écrire sous la forme
d

∑
k=0

akX
k avec d ∈ N, (a0, . . . , ad) ∈ Rd+1.

On a alors, pour tout t ∈ R+, t2f(t) =
d

∑
k=0

akt
2+ke−t.

Pour tout k ∈ J0, dK, lim
t→+∞

t2+ke−t = 0 (par croissances comparées) donc, par combinaison linéaire,
lim
t→+∞

t2f(t) = 0 donc f(t) = o
t→+∞
(1/t2).

On a pour tout t ∈ [1,+∞[,
1

t2
⩾ 0 et comme 2 > 1, l’intégrale ∫

+∞

1

1

t2
dt converge.

On en conclut par comparaison que l’intégrale définissant ⟨P ∣Q⟩ est convergente.
Notons φ ∶ (P,Q) ↦ ⟨P ∣Q⟩.
◇ Pour (P1, P2,Q) ∈ (Rn[X])3, λ ∈ R, par linéarité d’intégrales généralisées toutes convergentes,
φ(P1 + λP2,Q) = φ(P1,Q) + λφ(P2,Q).
Ainsi, φ est linéaire à gauche.
◇ Par commutativité du produit dans R, pour tout (P,Q) ∈ (Rn[X])2, φ(P,Q) = φ(Q,P ).
Ainsi, φ est symétrique et étant linéaire à gauche, c’est donc une forme bilinéaire et symétrique.
◇ Soit P ∈ Rn[X]. On a φ(P,P ) = ∫

+∞

0
P (t)2e−tdt.

Pour tout t ∈ [0,+∞[, P (t)2e−t ⩾ 0 donc par positivité de l’intégrale (0 ⩽ +∞), φ(P,P ) ⩾ 0.

◇ On suppose φ(P,P ) = 0. On a donc ∫
+∞

0
P (t)2e−tdt = 0.

Comme t↦ P (t)2e−t est continue et positive sur [0,+∞[, d’après le théorème de nullité de l’intégrale,
pour tout t ∈ R+, P (t)2 e−t

¯
≠0

= 0 d’où P (t) = 0.

Le polynôme P a une infinité de racines donc P est le polynôme nul.
Par conséquent, φ est définie positive.
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Ainsi :

⟨.∣.⟩ définit un produit scalaire sur E et la norme euclidienne associée est donnée par :

∀P ∈ R[X], ∥P ∥ =
√

∫

+∞

0
(P (t))

2
e−tdt.

Exercice 2 : Inégalité de Cauchy-Schwarz
1. Énoncé du théorème :

▸ Pour tout (u, v) ∈ E2, on a ∣⟨u, v⟩∣ ⩽ ∥u∥ ⋅ ∥v∥.
▸ De plus, l’égalité ∣⟨u, v⟩∣ = ∥u∥ ⋅ ∥v∥ est vérifiée si et seulement si u et v sont colinéaires.

Preuve du théorème : Soit (u, v) ∈ E2.

1er cas : On suppose que u = 0E.
On a alors ∣ < u, v > ∣ = ∣0∣ = 0 et ∥u∥.∥v∥ = 0.∥v∥ = 0.
On a donc bien ∣ < u, v > ∣ ⩽ ∥u∥.∥v∥.
Remarquons qu’il y a même égalité et dans ce cas, u et v sont colinéaires.

2ème cas : On suppose que u ≠ 0E.
Soit x ∈ R. On a :

∥xu + v∥2 = ∥xu∥2 + ∥v∥2 + 2 < xu, v >= (∣x∣.∥u∥)
2
+ ∥v∥2 + 2x < u, v >= ∥u∥2x2 + 2 < u, v > x + ∥v∥2.

Comme u ≠ 0, on a ∥u∥2 ≠ 0.
Ainsi, la fonction φ ∶ x↦ ∥u∥2x2 + 2 < u, v > x + ∥v∥2 est un trinôme du second degré.
Notons ∆ son discriminant. On a :

∆ = (2 < u, v >)
2
− 4∥u∥2.∥v∥2 = 4((< u, v >)2 − ∥u∥2∥v∥2).

Comme pour tout x ∈ R, φ(x) = ∥xu + v∥2 ⩾ 0, on a nécessairement ∆ ⩽ 0 (car si on avait ∆ > 0, la
fonction φ prendrait des valeurs strictement négatives entre ses deux racines).
On en déduit (< u, v >)2 ⩽ ∥u∥2.∥v∥2 et donc par croissance de la fonction racine carrée sur R+ :

∣ < u, v > ∣ ⩽ ∥u∥.∥v∥

Étudions le cas d’égalité. On a les équivalences suivantes :

∣ < u, v > ∣ = ∥u∥.∥v∥ ⇐⇒ ∆ = 0

⇐⇒
car ∆⩽0

∃x0 ∈ R tel que φ(x0) = 0

⇐⇒ ∃x0 ∈ R tel que ∥x0u + v∥2 = 0
⇐⇒ ∃x0 ∈ R tel que x0u + v = 0E
⇐⇒
α=−x0

∃α ∈ R tel que v = αu

⇐⇒
u≠0E

u et v sont colinéaires

2. Application 1 : Notons X(Ω) = {x1, . . . , xn}.

CommeX(Ω) est un sous-ensemble fini de R,X etX2 sont d’espérance finie et on aE(X) =
n

∑
k=1

xkP (X = xk)

et E(X2) =
n

∑
k=1

x2kP (X = xk) par le théorème du transfert.

On se place dans Rn muni du produit scalaire canonique.
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En appliquant l’inégalité de Cauchy-Schwarz aux vecteurs a = (x1
√
P (X = x1), . . . , xn

√
P (X = xn))

et b = (
√
P (X = x1), . . . ,

√
P (X = xn)), on a :

∣ < a, b > ∣ ⩽ ∥a∥ ⋅ ∥b∥ ⇔ ∣
n

∑
k=1

xk
√
P (X = xk)

√
P (X = xk)∣ ⩽

¿
Á
ÁÀ

n

∑
k=1

(xk
√
P (X = xk))2 ⋅

¿
Á
ÁÀ

n

∑
k=1

(
√
P (X = xk))2

⇔ ∣
n

∑
k=1

xkP (X = xk)∣ ⩽

¿
Á
ÁÀ

n

∑
k=1

x2kP (X = xk) ⋅

¿
Á
ÁÀ

n

∑
k=1

P (X = xk).

Or, comme ([X = xk])1⩽k⩽n est un système complet d’événements, on a
n

∑
k=1

P (X = xk) = 1.

On en déduit que :
∣E(X)∣ ⩽

√
E(X2).

NB : On pouvait aussi utiliser l’inégalité de Cauchy-Schwarz qui sera vue dans le cours sur les
variables aléatoires avec les variables X et Y = 1 (car X2 et Y 2 sont d’espérance finie).
On obtient (E(X))2 ⩽ E(X2) d’où le résultat par croissance de la fonction racine carrée sur R+.

Autre méthode en utilisant la variance :
Comme X2 est d’espérance finie, X admet une variance et on a par positivité de l’espérance,

V (X) = E((X −E(X))2) ⩾ 0.

Par la formule d’Huygens, on en déduit :

V (X) = E(X2) − (E(X))
2
⩾ 0 d’où E(X2) ⩾ (E(X))

2
.

On conclut comme précédemment.

3. Application 2 : Soit x ∈ [0,1].
Comme f ∈ C 1([0,1],R) et f(0) = 0, on a f(x) = f(x) − f(0) = ∫

x

0
f ′(t)dt.

On se place dans C ([0, x],R) muni du produit scalaire usuel < φ,ψ >= ∫
x

0
φ(t)ψ(t)dt.

En appliquant l’inégalité de Cauchy-Schwarz aux vecteurs φ ∶ t↦ 1 et ψ ∶ t↦ f ′(t), on a :

∣ < φ,ψ > ∣ ⩽ ∥φ∥.∥ψ∥ ⇔ ∣∫
x

0
1 × f ′(t)dt∣ ⩽

√

∫

x

0
12dt
√

∫

x

0
(f ′(t))2dt

⇔ ∣f(x)∣ ⩽
√
x

√

∫

x

0
(f ′(t))2dt.

Par croissance de la fonction u↦ u2 sur R+, on en déduit que :

(f(x))
2
⩽ x∫

x

0
(f ′(t))2dt.

Soit x ∈ [0,1]. Comme pour tout t ∈ [0,1], (f ′(t))2 ⩾ 0, on a ∫
x

0
(f ′(t))2dt ⩽ ∫

1

0
(f ′(t))2dt.

En effet, par la relation de Chasles et la positivité de l’intégrale (x ⩽ 1), on a :

∫

1

0
(f ′(t))2dt − ∫

x

0
(f ′(t))2dt = ∫

1

x
(f ′(t))2dt ⩾ 0.

Comme x ⩾ 0, on en déduit que (f(x))2 ⩽ x∫
1

0
(f ′(t))2dt.

Par croissance et linéarité de l’intégrale (0 ⩽ 1 et intégrales de fonctions continues sur un segment),
on obtient :

∫

1

0
(f(x))

2
dx ⩽ ∫

1

0
(f ′(t))2dt ⋅ ∫

1

0
xdx.
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Comme ∫
1

0
xdx = [

1

2
x2]

1

0

=
1

2
, on en déduit le résultat souhaité :

∫

1

0
(f(x))

2
dx ⩽

1

2 ∫
1

0
(f ′(t))2dt.

Exercice 3 : Procédé d’orthonormalisation de Gram-Schmidt

On commence par vérifier que la famille (u1, u2, u3) est libre.
Calculons le déterminant de cette famille dans la base canonique de R3.
Par les opérations L2 ← L2 −L1 et L3 ← L3 −L1, on obtient une matrice triangulaire.

RRRRRRRRRRRRRR

1 1 1
1 −1 1
1 1 −1

RRRRRRRRRRRRRR

=

RRRRRRRRRRRRRR

1 1 1
0 −2 0
0 0 −2

RRRRRRRRRRRRRR

= 4 ≠ 0.

La famille (u1, u2, u3) est donc libre. Orthonormalisons-la à l’aide du procédé de Gram-Schmidt.
◇ On a ∥u1∥ =

√
12 + 12 + 12 =

√
3.

On pose alors e1 =
u1
∥u1∥

= (
1
√
3
,
1
√
3
,
1
√
3
).

◇ On calcule u′2 = u2− < u2, e1 > e1.

u′2 = (1,−1,1) −
1

3
< (1,−1,1), (1,1,1) > (1,1,1)

= (1,−1,1) −
1

3
(1 × 1 + (−1) × 1 + 1 × 1)(1,1,1)

= (1,−1,1) −
1

3
(1,1,1) =

2

3
(1,−2,1).

On a ∥u′2∥ =
2

3

√
12 + (−2)2 + 12 =

2
√
6

3
.

On pose alors e2 =
u′2
∥u′2∥

= (
1
√
6
,
−2
√
6
,
1
√
6
).

◇ On calcule u′3 = u3− < u3, e1 > e1− < u3, e2 > e2.

u′3 = (1,1,−1) −
1

3
< (1,1,−1), (1,1,1) > (1,1,1) −

1

6
< (1,1,−1), (1,−2,1) > (1,−2,1)

= (1,1,−1) −
1

3
× 1 × (1,1,1) −

1

6
× (−2)(1,−2,1)

= (1,1,−1) −
1

3
(1,1,1) +

1

3
(1,−2,1) = (1,0,−1).

On a ∥u′3∥ =
√
12 + 02 + (−1)2 =

√
2.

On pose alors e3 =
u′3
∥u′3∥

= (
1
√
2
,0,−

1
√
2
).

On a donc :

e1 =
1
√
3
(1,1,1), e2 =

1
√
6
(1,−2,1), e3 =

1
√
2
(1,0,−1).

D’après le procédé de Gram-Schmidt, la famille (e1, e2, e3) est une famille orthonormée de R3.
Elle est donc libre et de cardinal 3 = dim(R3) donc c’est une base de R3.
Ainsi :

la famille (e1, e2, e3) est une base orthonormée de R3.

Exercice 4 : Bases orthonormées
1. Remarquons tout d’abord que (P0, . . . , Pn) est bien une famille de E car pour tout i ∈ J0, nK, Pi
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est un polynôme de degré i donc Pi ∈ Rn[X].
Soit (i, j) ∈ J0, nK2 avec i ≠ j. Montrons que < Pi, Pj >= 0.

On a < Pi, Pj >=
n

∑
k=0

P
(k)
i (a)P

(k)
j (a).

Soit k ∈ J0, nK.

Comme P (k)i (X) = {
i(i − 1) . . . (i − k + 1)(X − a)i−k si k ⩽ i

0 si k > i, on obtient en évaluant en a :

P
(k)
i (a) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 si k < i
i! si k = i
0 si k > i

= {
i! si k = i
0 sinon.

De même, P (k)j (a) = {
j! si k = j
0 sinon.

Comme i ≠ j, on en déduit que P (k)i (a)P
(k)
j (a) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 × 0 si k ∉ {i, j}
i! × 0 si k = i
0 × j! si k = j

= 0.

Ainsi, < Pi, Pj >=
n

∑
k=0

0 = 0.

Donc :
la famille (P0, . . . , Pn) est une famille orthogonale de E.

2. Soit i ∈ J0, nK.
On a :

∥Pi∥ =
√
< Pi, Pi > =

¿
Á
ÁÀ

n

∑
k=0

(P
(k)
i (a))

2
=
√
(i!)2 = ∣i!∣ = i!

car on a vu que pour tout k ∈ J0, nK, P (k)i (a) = {
i! si k = i
0 sinon.

Ainsi :
pour tout k ∈ J0, nK, ∥Pi∥ = i!.

Par suite, la famille (
P0

0!
,
P1

1!
, . . . ,

Pn

n!
) est une famille orthonormée de E (car c’est une famille

orthogonale de E et tous ses vecteurs sont de norme 1).
C’est donc en particulier une famille libre de E et elle est de cardinal n+ 1 = dim(Rn[X]) donc c’est
une base de E.
Ainsi :

B = (
P0

0!
,
P1

1!
, . . . ,

Pn

n!
) est une base orthonormée de E.

3. Soit P ∈ E.
Comme B est une base orthonormée de E, P s’écrit P =

n

∑
k=0

αk
Pk

k!
avec pour tout k ∈ J0, nK :

αk =< P,
Pk

k!
>=

1

k!
< P,Pk >=

1

k!

n

∑
i=0

P (i)(a)P
(i)
k (a).

Comme pour tout i ∈ J0, nK, P (i)k (a) = {
k! si i = k
0 sinon , on en déduit que αk =

1

k!
P (k)(a)×k! = P (k)(a).

On obtient donc la formule de Taylor pour les polynômes :

pour tout P ∈ Rn[X], P =
n

∑
k=0

P (k)(a)
Pk

k!
=

n

∑
k=0

P (k)(a)

k!
(X − a)k.
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Exercice 5 :
1. Montrons l’inclusion Sn ⊂ (An)

⊥
.

Soit M ∈Sn et N ∈ An.
On a :

(M ∣N) = tr(M⊺N) = tr(MN) car M⊺ =M.

On a également par symétrie du produit scalaire :

(M ∣N) = (N ∣M) = tr(N⊺M) = tr(−NM) = −tr(NM) = −tr(MN)

car N⊺ = −N et par les propriétés de la trace.
Ainsi, (M ∣N) = tr(MN) = −tr(MN) d’où (M ∣N) = 0.
On a ainsi prouvé que si M ∈Sn alors M est orthogonal à tous les éléments de An.
On en déduit que Sn ⊂ (An)

⊥
.

2. ⋆ Soit M ∈Sn ∩An.
On a M⊺ =M car M ∈Sn et M⊺ = −M car M ∈ An d’où M = −M donc M = 0n.
On en déduit que les sous-espaces vectoriels Sn et An sont en somme directe.
⋆ Soit A ∈Mn(R).

En posant M =
A +A⊺

2
et N =

A −A⊺

2
, on a A =M +N avec :

M⊺ =
A⊺ +A

2
=M donc M ∈Sn et N⊺ =

A⊺ −A

2
= −N donc N ∈ An.

On en déduit que A ∈Sn ⊕An.
On a donc prouvé l’inclusion Mn(R) ⊂Sn ⊕An.
L’inclusion réciproque étant évidente, on en déduit que Mn(R) =Sn ⊕An .

3. On a déjà prouvé que Sn ⊂ (An)
⊥
.

De plus, comme Mn(R) =Sn ⊕An, on a dim(Sn) + dim(An) = n2.
Ainsi, dim(Sn) = n2 −dim(An) = dim((An)

⊥) car An⊕(An)
⊥
=Mn(R) (Mn est de dimension finie).

On en déduit que Sn = (An)
⊥

.

Exercice 6 :
1. Précisons les notations.
X désigne la fonction t↦ t, X2 désigne la fonction t↦ t2 et 1 est la fonction constante égale à 1.
d(X2, F ) désigne la distance de X2 au sous-espace vectoriel F = Vect(1,X).
Comme F est un sous-espace vectoriel de dimension finie, on a par définition :

(d(X2, F ))
2
= (min

P ∈F
∥X2 − P ∥)

2
=
⎛

⎝
min
P ∈F

√

∫

1

0
(t2 − P (t))2 dt

⎞

⎠

2

=
⎛

⎝
min
(a,b)∈R2

√

∫

1

0
(t2 − at − b)2 dt

⎞

⎠

2

.

Comme x↦ x2 est une fonction croissante sur R+, on en déduit que :

(d(X2, F ))
2
= min
(a,b)∈R2

∫

1

0
(t2 − at − b)2 dt =∆.

L’existence de ∆ est ainsi garantie et on a :

∆ = (d(X2, F ))
2
.

2. Comme F est un sous-espace vectoriel de dimension finie, le projeté orthogonal de X2 sur F est
bien défini. Déterminons pF (X2).
⋆ Méthode 1 : en utilisant la caractérisation du projeté orthogonal
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Soit P ∈ E.

P = pF (X
2) ⇔ P ∈ F et X2 − P ∈ F ⊥

⇔∃(a, b) ∈ R2 tel que P = aX + b et { <X
2 − P,1 >= 0

<X2 − P,X >= 0

⇔∃(a, b) ∈ R2 tel que P = aX + b et { <X
2 − aX − b,1 >= 0

<X2 − aX − b,X >= 0.

Or :

{
<X2 − aX − b,1 >= 0
<X2 − aX − b,X >= 0

⇔

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫

1

0
(t2 − at − b)dt = 0

∫

1

0
(t2 − at − b)tdt = 0

⇔

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

[
1

3
t3 −

a

2
t2 − bt]

1

0

= 0

[
1

4
t4 −

a

3
t3 −

b

2
t2]

1

0

= 0

⇔{
1
3 −

a
2 − b = 0

1
4 −

a
3 −

b
2 = 0

⇔{
3a + 6b = 2
4a + 6b = 3

⇔{
a = 1
b = −1

6 .

On en déduit que pF (X2) =X −
1

6
.

⋆ Méthode 2 : en orthonormalisant une base de F
On a F = Vect(1,X) et (1,X) est une famille libre donc (1,X) est une base de F .
Orthonormalisons la famille (1,X).

On a ∥1∥ =

√

∫

1

0
12dt = 1 donc on pose P1 = 1.

Calculons X− <X,P1 > P1 =X − (∫
1

0
tdt) .1 =X − [

1

2
t2]

1

0

=X −
1

2

et ∥X −
1

2
∥ =

√

∫

1

0
(t −

1

2
)
2

dt =

√

∫

1

0
(t2 − t +

1

4
)dt =

√

[
1

3
t3 −

1

2
t2 +

1

4
t]

1

0

=

√
1

3
−
1

2
+
1

4
=

√
1

12
=

1

2
√
3
.

On pose alors P2 =
X − 1

2

∥X − 1
2∥
= 2
√
3X −

√
3.

Ainsi, (P1, P2) = (1,2
√
3X −

√
3) est une base orthonormée de F .

On a alors :

pF (X
2) =<X2,1 > .1+ <X2,2

√
3X −

√
3 > .(2

√
3X −

√
3)

= (∫

1

0
t2dt) .1 + (2

√
3)2 (∫

1

0
t2 (t −

1

2
)dt)(X −

1

2
)

= [
1

3
t3]

1

0

+ 12 [
1

4
t4 −

1

6
t3]

1

0

(X −
1

2
)

=
1

3
+ 12(

1

4
−
1

6
)(X −

1

2
)

=
1

3
+X −

1

2
.

On en déduit que pF (X2) =X −
1

6
.

3. On a d(X2, F ) = ∥X2 − pF (X2)∥ = ∥X2 −X + 1
6∥.

On a donc :
∆ = ∥X2 − pF (X

2)∥2 = ∥X2∥2 − ∥pF (X
2)∥2

d’après le théorème de Pythagore (X2−pF (X2) ⊥ pF (X2) puisque X2−pF (X2) ∈ F ⊥ et pF (X2) ∈ F ).

Or, ∥X2∥2 = ∫

1

0
t4dt = [

1

5
t5]

1

0

=
1

5
et ∥pF (X2)∥2 = ∫

1

0
(t −

1

6
)
2

dt = [
1

3
t3 −

1

6
t2 +

1

36
t]

1

0

=
1

3
−
1

6
+

1

36
=

7

36
.
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Ainsi, ∆ =
1

5
−

7

36
donc :

∆ =
1

180
.
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