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Corrigé

[. PROBLEME 1 : TYPE CCINP

A. INTEGRALES DE WALLIS

Remarquons que pour tout n € N, la fonction ¢ = sin"(t) est continue sur [0, ] donc 'intégrale '/(; * sin”(t)dt

est une intégrale « ordinaire ». La suite (W,,)nen est donc bien définie.

1. On a Wy = fgsino(t)dt = fE 1dt = g et Wy = /5 sin'(¢)dt = [—Cost]og = —cos(z) +cos(0) = 1.
0 0 0

W():getwlzl.

2. Soit n € N. La fonction ¢ ~ sin"(t) est positive et continue sur [0, 7], et elle n’est pas identiquement nulle

0
, 5] car par exemple, sin” (5) =1=+0.

On en déduit (on a bien 0< %) :

sur [0

‘pour tout n e N, W, >0.‘

n+1(

3. Soit n € N. Comme les fonctions ¢ + sin™"" (t) et ¢t = —cos(t) sont de classe ¢! sur [0, %], on obtient par

intégration par parties :
Whio = [ sin"*2(t)dt = [ (sin™* (¢)xsin(t))dt = [sin™**(¢)x (- cos(t))] 0% [ (n+1)sin™(t) cos(t)x(—cos(t))d:
0

Or, sin™*'(0) = 0 et cos (g) =0.
Ainsi :

Wy = (n+1) fo 7 sin(#) cos?()d(#) = (n+ 1) /0 ® s (1) (1 - sin?() )z
:(n+1)/02sin”(t)d(t)—(n+1)/02sin"+2(t)d(t): (n+ )W, = (n+ 1) Wpso.

On en dé duit que (n+2)W,.5 = (n+1)W,, ou encore que :

n+1
Whpeo = ——W,, pour tout n € N.
n+2

4. Montrons par récurrence que pour tout n e N, (n+ 1)W,, W, = =

Initialisation : On a (0+ 1)Wy Wy = 5 x1= 5

Hérédité : Soit n € N tel que (n+ 1)W1 W, = 5 Montrons qu’alors (n + 2)W, oW1 = g

On a (n+2)W,e = (n+1)W, d'aprés Q3 d’ou (n+2)W, oW1 = (n+ D)W, W41 = il par hypothése de

2
récurrence.

Conclusion :

Pour tout ne N, (n+1)W, . W, = il




5. Soit n € N. Pour tout ¢ € [0,%], on a 0 <sin(t) <1 donc sin™*'(t) < sin™(¢).

Par croissance de 'intégrale, on obtient alors [ ’ sin™* ! (t)dt < f ’ sin”(t)dt c’est-a-dire W,,.1 < W,.
0 0

La suite (W), )nen est donc décroissante.

6. Soit n e N. Par Q5, on a :
Wn+2 < Wn+1 S Wn
donc par Q2 et Q3 :
n+1 _ Wn+2 < Wn+1 <

- X \1-
n+2 w.,, W,

1
. n+1 A
Or, lim im 5 =1
n—+oo 1 4+ 2 notoo | 4 £

n

W
Par le théoreme des gendarmes, on en déduit que lim WH =1dou:

n—+oo
n

Wn+1 ~ Wn

7. On a par 3, T (n+ 1)W1 W, ~nW2 donc W2 ~ T don W] ~ T
2 2n 2n

Comme pour tout n e N, W,, >0, on a |W,|=W,, donc :

T
W, ~+ ] —.
2n

8. Soit n € N. Pour tout w € [0, %], on pose ¢(u) = g - u.
La fonction ¢ est de classe € sur [0, 5].
On peut donc poser ¢ = % —u. On a dt = ¢'(u)du = —du.

On a p(0) =7 et ¢(5) =0.
D’aprés le théoréme de changement de variable, on obtient :

0 s jus
W, = f sin” (Z - u) (—du) = f * sin” (E - u) du = f * cos™(u)du.
z 2 0 2 0

us

Pour tout ne N, W,, = [ * cos™(t)dt.
0

9. Par Q3, on a pour tout ne N, W, o = nr 1VVn.
En itérant cette formule, on a : 2
2n -1 2n—-12n-3 1 2n)!
Won = =5 Wana = =g gy g o= %5
car . . .
(2n)(2n-2) x--x2=T](2k) = (H 2) (H k) =2"n!
k=1 k=1 k=1
et
(20— 1)(2n-3) x - x 1= 2n)(2n-1)(2n-2)(2n-3) x -+ x3x2x1 _ (Qn)!'
(2n)(2n-2) x---x 2 2nn!
On peut prouver plus rigoureusement ce résultat par une récurrence.

2x0) m 9w
( )___:W2><0-

Initialisation : On a 22XO—W 579



P : (2n)!
Heérédité : Soit n € N tel que Wy, = ———.
227 (nl)? 2
On a alors

2n+1 ar2n+1 (2n)! © 2n+12n+2 (2n)
2m+2 " m42222(nl)22  2n+22n+222%(nl)2 2
_(@2n+2)2n+1)(2n)!  (2n+2)!

S 2(n+1)222(n!)2 2242((n+1)1)2

W2n+2 =

Donc on a bien :

(2n)!

our tout ne N, Wy, = —————|
P 2= 92n(pl)2 2

Par Q4, on a alors :

s 1 227 (nl)?
tout ne N, Wo,,1 = = = .
POMERORL T T W on = X o+ DWay (204 1)!

B. INTEGRALES DE GAUSS

10. La fonction = = e est continue sur [0, +ool.

1
En utilisant le changement de variable x = —t (licite car changement de variable affine avec dx = —dt,
Vn Vn

et pour les bornes, comme ¢ = \/_ nw il suffit de calculer \/n x 0 =0 et lim \/nz = +00), on obtient que les

oo
intégrales f e dg et [ — dt sont de méme nature, et de méme valeur en cas de convergence.
0
+00 1
Comme on a admis que 'intégrale [ ? qt converge, on obtient par linéarité que l'intégrale f -t \/_ dt
0 0 n

converge également et on a de plus :

+o00 9 1
et dt =
/0 vn \/_

On obtient ainsi que :

+oo 2 +oo 2 ]. +oo 2
I'intégrale f e " dx converge et / e " dr = T / et
0 0 n Jo

1
11. Notons que l'intégrale / (1 -2*)"dx est une intégrale « ordinaire » car la fonction x +~ (1 — 22)" est
0

continue sur le segment [0,1].
En utilisant le changement de variable x = sin(¢) (licite car ¢ ~ sin(t) est de classe ¢! sur [0,7/2], avec
sin(0) = 0, sin(%) =1 et dx = cos(t)dt), on obtient :

1 /2 /2
f (1-2*)"dx = [ (1 —sin?(t))" cos(t)dt = f cos?" 1 (t)dt.
0 0 0

Ainsi :

1
'/0 (1_:):2)71 dZL’ZWQn_,.l.

1
12. La fonction x T est continue sur [0, +oo].
+x

Avec le changement de variable z = tan(t) (licite car ¢ — tan(t) est de classe ¢! et strictement croissante sur

1 d
[0,7/2[, avec tan(0) =0 et tliﬁrg_ tan(t) = +o0 et dz = cos2(t) ;

+o00
dt), on obtient que les intégrales f —_—
) q 8 o (1+az?)n



dt sont de méme nature, et en cas de convergence de méme valeur.

; fw/z 1 1
o A+ tan’ ()" cos2 (1)
Or, pour tout ¢ € [0,7/2[, on a :

1 1
(1 +tan?(t))" cos2(t)

1
2

o2 (D) = (cos(t))™~.

(cos™(t))"

1 1
(1 +tan?(t))™ cos2(t) d

/2
La fonction ¢ — (cos(t))?"~2 est continue sur le segment [0, 7/2] donc l'intégrale /
0

converge.
On en déduit que :

I'intégrale f+oo —dx converge et [Mo —d:v W-
Vi = n—-2-
S Jo v a2 8O Jo razyn 2

13. La fonction exponentielle est convexe (car elle est deux fois dérivable, de dérivée seconde positive) donc
sa courbe représentative se situe au-dessus de sa tangente en 0 qui a pour équation y = x + 1.
On en déduit que :

‘pour tout réel u, on a e* > 1+ u‘

14. Soit u € R.
D’apreés la question 13 appliquée en —u, on a pour u <1 :

0<l-u<e™ donc (1-u)"<e™

par croissance de la fonction x —~ 2™ sur R,.
D’apres la question 13 appliquée en u, on a pour u > -1 :

1
0<l+u<e" donc e™ < —
(1+u)"
. . 1
par décroissance de la fonction x — 27" = — sur R}.
x
Ainsi :
(1-u)"<e™ siugl
1 :
T ——— siu> -1
(1+u)r

15. Pour tout x € [0,1], on a u = 22 < 1 donc d’aprés la question 14, (1 - 22)" < ™",
Par croissance de l'intégrale (0 < 1), on en déduit que :

1 T T T too
f (1-2?)"dx < / e " dz puis f e dr < f e dr + f e "™ do
0 0 0 0 1

(par positivité de I'intégrale (convergente) car pour tout z € [1,+oo[, exp(—nz?) > 0).
2

" ¢ ————— donc par croissance de
(1+a2)"

Pour tout z € [0, +oo[, on a u = 22 > -1, donc d’aprés la question 14, e~

I'intégrale (les deux intégrales en jeu convergent) :

+00 9 +00 dx
[Tt [T
0 o (L+a?)n

1 +00 9 +00
[ (1—$2)”dx<f e " dmsf d—a:
0 0 o (1+z?)"

16. En utilisant les questions 10, 11 et 12, les inégalités obtenues en question 15 deviennent :

Ainsi :

1 ‘oo 5
Wops1 € — f e dt < Wa,_a.
Vvn Jo

4



D’apres Q7, W, o /% donc Wayi1 o3 (2S+ D) o 2\/\/7; (suite extraite) donc lim /nWao,,1 =

n—+oo
N

de méme, lim \/ﬁWQn,Q = 7
n—+00
Par passage a la limite dans les inégalités ci-dessus aprés multiplication par \/n, on obtient :

VT < fm e dt € ﬁ.
2 0 2

<[5

On en déduit la valeur de I'intégrale de Gauss :

17. Soit a €]0, +oo[. La fonction t — e~o* est continue sur R.

En utilisant le changement de variable = = \/at (licite car changement de variable affine) dans l'intégrale
+00

+00
_m2 . . . —at? A
convergente / e dx, on obtient que l'intégrale [ e " \/a dt converge et a méme valeur.
0 0
+o00

Comme /a # 0, on en déduit que / e ¢ converge et on a par linéarité :
0

teo o 1 [t 1 Jr
—at dt=—/ at dt = ——.
fo © Va Jo Vo va 2

De plus, comme la fonction ¢ ~ e~9¢* est paire, par le changement de variable u = —t, on obtient que I'intégrale

0 +00
f e dt est de méme nature que l'intégrale f emat” dt, elle est donc convergente, et elle a la méme
oo 0

valeur.

+00

On en déduit que l'intégrale [ e dt converge et on a :

—00

+oo 0 +00 +00
f e~ dt = f e~ dt + f e dt = 2 / e~ dt = \/f
oo —o0 0 0 a

+00 T
L’intégrale f e qt converge et a pour valeur \/j
a

— 00

[I. PROBLEME 2 : TYPE CENTRALE/MINES - SOURCE : CENTRALE PC 2019
[. INTRODUCTION D’UNE FONCTION AUXILIAIRE

I.A - DERIVEES SUCCESSIVES

1. La fonction f est de classe C* sur I comme quotient de fonctions de classe C* dont le dénominateur
ne s’annule pas sur I, et on a pour tout z €[ :

(cosx)? +sin(x)(sin(x) +1) 1+sinw

J'(x) = (cosx)? ~ (cosz)?’
no _ (cosx)?+2sinzcosx(l+sinz) (coswz)?+2sinx +2(sinx)?

/() = (cosx)? - (cosx)?
_ (sinz)? +2sinx + 1
- (cosx)?

et FO) () = (2coszsinz + 2cosz)(cosz)? + 3sinx(cosz)?((sinz)? + 2sinx + 1)
(cosx)b

_ 2(cosz)?sinz +2(cosw)? + 3(sinw)? + 6(sinx)? + 3sinx
- (cosx)?
_ (sinz)3 +4(sinz)? + 5sinw + 2

(cosx)?



1+sinz (sinz)?+2sinx + 1

Vael, f/(x) = o f(x) -

(cosx)?’ (cosx)?

(sinzx)3 +4(sinz)? + 5sinx + 2

et fO)(x) =

(cosx)4

2. Montrons par récurrence que, pour tout n € N, il existe un polynéme P, € R[X] tel que Vz € I,
f(n)(ﬂf) _ Py, (sinz)

(cosz)n+l-
Initialisation : Pour n =0, ‘le polynome Fy = X + 1 convient.
Notons au passage que d’aprés la question précédente,

lles polynomes Py = X +1, Po=X?+2X +1 et Py=X3+4X?+5X +2 conviennent.

Hérédité : Soit n e N.. '
Supposons qu'il existe un polynome P, € R[X] tel que Va e I, f(®)(x) = (fgs(j?n”i)l
On a alors pour tout x €1 :

FeD (@) = () ()

_cosxP)(sinx)(cosx)™*! + (n+1)sinz(cosx)" P, (sinx)

(cosx)?n+2
_ (cosz)?P)(sinx) + (n+1)sinzP,(sinx)
- (cosz)+2
~ (1-(sinz)?)Pi(sinz) + (n+1)sinzP,(sinz) Py, (sinx)
- (cosx)m+? ~ (cosxz)n+?

en posant P,.1(X)=(1-X2)P/(X)+ (n+1)XP,(X) e R[X] (car P, e R[X]).
Conclusion :

Py (sinz)
(cosz)n+l-

Pour tout n € N, il existe un polynéme P, e R[X] tel que Vz € I, f(")(z) =

De plus, cette suite vérifie :

pour tout n €N, P,,1(X)=(1-X?)P(X)+(n+1)XP,(X).

3. & Montrons d’abord l'unicité de la suite (P,). L’article défini « le » de I’énoncé semble indiquer qu’elle
est demandée...
Soit n € N.
On suppose qu'il existe deux polyndomes P, et Q,, vérifiant Vo e I, f(™) () =
Alors pour tout x € I, (P, - Q,)(sinz) = 0.
Comme sin(7) =] = 1, 1[, on a pour tout ¢t €] - 1, 1[, (P, - Q,)(t) = 0.
Ainsi, le polynéme P, — @, a une infinité de racines donc c’est le polynéme nul d’ou P, = @Q,,.
Il y a donc bien unicité de la suite (P, )nen-
e Montrons par récurrence que, pour tout n € N*, P, est unitaire, de degré n et ses coefficients sont
des entiers naturels.
Initialisation : Les polynomes P, = X +1 et P, = X2 +2X + 1 sont bien unitaires & coefficients dans
N, deg(Py) =1 et deg(P) = 2.
Hérédité :  Soit n € N avec n > 2. On suppose que le polynéme P, est unitaire, de degré n et ses
coefficients sont des entiers naturels.
Alors il existe (ag,...,a,-1) € N* tel que P, = X" + ZZ;& ap Xk,
On a alors :

Poii=(1-X?)P(X)+(n+1)XP,(X)

n—-1 n—-1
=(1-X?) (nX"1 + kakal) +(n+1)X (X” + aka)

P,(sinz) _ Qpn(sinz)
(cosz)"*l 7 (cosz)n+l”

k=1 k=0
n-1 n—-1 n-1
=nX"+ Y kap XM X" =3 kap X 4 (n+ D)X+ Y (n+ 1) X!
k=1 k=1 k=0

n-2 n
= X" 4 n X" Y (k+ Dag XF+ (n+1)ag X + ) (n+2-k)ap_ X*.
pe g — k=2 -
€ € €




On en déduit que P, ;1 est un polynéme unitaire, de degré n + 1 et tous ses coefficients sont des entiers
naturels (car c’est une somme de polynémes a ceefficients dans N).
Conclusion :

‘Pour tout n € N*, le polynéme P, est unitaire, de degré n et ses coeflicients sont des entiers naturels.

4. On a pour tout x €1 :

(sinz+1)2  (sinz)?+2sinz+1+ (cosx)? 2+2sinx

= 2f'(2).

f()?+1=

(cosx)? - (cosx)? ~ (cosx)?

Pour tout x € I, 2f"(z) = f(x)% + 1.

5. e En appliquant la relation obtenue dans la question précédente en x = 0, on obtient

2f'(0) = (f(0))* + 1 c’est-a-dire | 2a; = a2 + 1.

e Soit n € N*. En dérivant n fois la relation obtenue a la question précédente, on obtient par la formule
de Leibniz :

el 200 = (Fx NO) = 3 () F @ @)

En appliquant en x = 0, on obtient la relation souhaitée.

Vn e N*, 20,41 = Z (n)akan_k.
oo \k

I.B - DEVELOPPEMENT EN SERIE ENTIERE

6. La fonction f est de classe C* sur I donc pour tout N € N, en lui appliquant la formule de Taylor avec
reste intégral entre 0 et = € [0, 7/2[, on obtient :

f(x) _ Jz\f: f(n)(o) [ ($ t) f(N+1)(t)dt

n=0

N .

n r(x—-t)N P, sint

Z@—afuf (w=HF N“( nt)

= n! 0 N!  (cost)N+2

Or, comme z € [0,7/2[, on a pour tout t € [0,z], (IJ_\,—t,)N >0, (cost)N*2 > 0 et comme Py, est a
coefficients positifs et sint > 0, Py,1(sint) >0

Par positivité de U'intégrale (0 < z), on en déduit :

f(z) - Zan ”—f (= OF Prasind) o, o

N!'  (cost)N+2

N
VN eN, Ya e [0,7/2], Z—"‘ < f(x).

7. Pour tout n € N, comme «,, = P,(0), c’est le ccefficient constant de P, donc c’est un entier naturel
(c’est vrai aussi pour n = 0). Pour tout x € [0,7/2[ la série numérique Y, 42" est donc a termes
positifs et la suite de ses sommes partielles est majorée par f(x) d’aprés la question précédente donc

la série Y, TFa™ converge.

On en déduit que pour tout z € [0,7/2[, z < R. En faisant tendre = vers 7/2, on obtient | R > 7/2.




. L. N Q A

8. Par produit de Cauchy de la série entiére Z —T:U” avec elle-méme, on a pour tout x € R tel que |z| < R

n!
et donc en particulier pour tout x €[ :

O

(9(9”))2+1—(+0m )

( Onk ) "+ 1
n=0 \k=0 k'(n E)!
n!
— gy, 2"+ 1
) '(kzok'( i )

_a0+1+ f ! (i(:)akank)x”

nln k=0
_2a1+2 Gl ”—22(n+1) ) "
=2g(fL")

par dérivation terme a terme sur l'intervalle ouvert de convergence.

Veel, 2¢9'(z) = g(x)?+ 1.

9. Soit ¢ = arctan(f) et ¢ = arctan(g).
Les fonctions ¢ et ¢ sont dérivables sur I'intervalle I et on a pour tout x €I :

SRS P S (N

(9(2))?+1 2
d’apreés les relations établies aux questions 4 et 8.
On en déduit qu'il existe K € R tel que pour tout x € I, f(z) = g(z) + K.
De plus, 1(0) = arctan(g(0)) = arctan(cy) = arctan(f(0)) = ¢(0) d’ou K = 0.
Par suite, pour tout x € I, f(z) =tan(p(z)) = tan(y(x)) = g(x).

¢'(z) =

Veel, f(x)=g(x).

10. Raisonnons par l’absurde en supposant R > 7/2. Alors la fonction g, continue sur | - R, R[, serait

continue en 7/2.
)
sinz+1

cos T
N
-0t

Or limy_o- g() = limgrjo- f(x) = limy_ /o = +00 donc g n’est pas continue en /2, ce qui est

absurde.
On a donc bien | R = 7/2.

1.C - PARTIE PAIRE ET PARTIE IMPAIRE DU DEVELOPPEMENT EN SERIE ENTIERE

11. Raisonnons par analyse-synthése. Soit A : I — R.
Analyse : S’il existe p paire et ¢ impaire telle que h = p+ ¢ sur I alors pour tout x € I, on a :

W) = p(x) +i(x) et h(-x) = p(-z) +i(-x) = p(x) —i(x),

h(z)+h(-z) h(z)- h( x)
2

donc p(z) = et i(z) =

Synthése : Réciproquement, soit p trx el w eti:xelw W Alors :

) = h(_‘r)”;(_(_x)) = h(m)gh(_x) = p(x) donc p est paire

h(-2)-h(-(-x)) _ _h(x)-h(-a) _
2 2

e pour tout z €I, —x el et p(—x

e pour tout z €I, —xel et i(-x)=

—i(x) donc ¢ est impaire



e pour tout z € I, p(z) +i(x) = h(m);h(_m) + h(z)‘;(‘”) = h(z) donc h =p+i.

Conclusion :
Toute fonction h: I — R s’écrit de fagon unique sous la forme h = p + i avec p paire et ¢ impaire.

12. Pour tout x € I, on a :
N sinx

f(x) =

cosxr cosT’
sinz ~ est impaire.
Par ailleurs, pour tout T € [ comme les serles qu1 apparaissent ci-dessous convergent (les suites

(‘;2",952") et ( ‘2’2"?@2”*1) convergent vers 0 en tant que suites extraites donc les rayons de
(2n) neN (2n+1) neN

. Q2n Q2n+1 - . N
convergence des séries enticres ) e )' ot Y 2l a n o 221 sont supérieurs ou égaux & 7/2), on a
n n+

aussl :

Q2 «  Qonsl

+
) =gt = 5 G Sy
nO(n) n:O(n+ )

et la fonction z — ¥.'% @5i¢°" est paire, la fonction z i Gy est impaire.

D’ou par I'unicité de la décomposition prouvée a la question précédente, on a :

+00 +00

Qon+1 2+l 1 Qap 22
Veel, t t .
vel, tan(r)= Z 4 (2n + 1)'  osT = (Qn)‘

13. D’apreés la question précédente, tan est développable en série entiére sur [ et elle coincide donc avec sa

série de Taylor Y.'%) tan(n&x” sur 1.

Par unicité du développement en série entiére, on en déduit que :

pour tout n € N, tan®”(0) = 0 et tan®"*1(0) = agp,;.

14. Pour tout = € I, tan’(z) = 1 + (tanx)? donc

15. Pour tout z € I, t/(xz) = ¥, 20 (2n + 1) giya™ = Ynco Bt

Par produit de Cauchy, on a aussi pour tout x €[ :

2 tan(™ 2
() = (Hx))2+1 = (Z tﬂ#x”) ‘1

n=0
+oo [ (k) (n-k)
S tan'®)(0) tan (0) el
n=0 \k=0 k! (n-Fk)!
Par unicité du développement en série entiére de ¢’ sur I, on en déduit que a; =0+ 1 =1 et pour tout
nzl:
azp1 2 tan®(0) tan@k)(0)
(2n)! & k! (2n - k)!
1 22 (2n
(2n)!k:0(k) an™(0) tan ©)
1 & (2n 12 (2
= t (k) 0)t (2n-k) 0) + ( )t (k) 0)t (2n-k) 0
(zn)!;)(k)wan O+ g 2 () tan® (0 tan®0(0)
k pair =0 k impair
1 & ( 2n
_ tanD (0) tan @ (26-1) ((
(2n)!,;(2k—1) an™(0) tan (0)
! Enj(%) (aprés 13 avec 2k — 1 et 2n — 2k + 1 impairs)
= Qok—1 0oy aprées 13 avec 2k — 1 et 2n — impairs).
2n)! & \2k - 1 2k-102n-2k+1 p p
Ainsi :

L 2n
VneN* agpy = ( )a2k—1052n—2k 1
* ,; 2k -1 "




II. EQUIVALENT DE (9,41

II.A - LA FONCTION ZETA

16. Soit s > 1.

e Posons g: ¢+ = =exp(-sIn(t)). La fonction g est continue et décroissante sur [1, +ool.

e Par suite, pour tout n > 2, pour tout ¢ € [n,n + 1], g(t) <

n+1 n+1
f g(t)dt < f

(n<n+1),ona:

g(n) d’ou par positivité de 'intégrale

g(n)dt = g(n).

Soit p € N avec p > 2. En sommant ces inégalités pour n allant de 2 & p et en utilisant la relation de

[2p+ ()dt = nifm g(t)dtsnig(n).

Chasles, on obtient :

e De méme, pour tout n > 2, pour tout ¢ € [n —
(n-1<n),ona:

,n], g(t) >

g(n) d’ou par positivité de U'intégrale

[ awars [7 gyt = ()

En sommant ces inégalités pour tout n allant 2 & p et en utilisant la relation de Chasles, on obtient :

flpg(t)dt = ifnnlg(t)dt > z:g(n).

On a donc obtenu :

fp+1 1

\Zns /

Comme s > 1, la série et les intégrales de Riemann en +oco convergent et on obtient par passage a la

limite p - +oo :

f ldt
2

+00o 1 +ool
/ —t.

En calculant les intégrales, on obtient :

1 1 +0o 1 1 +00
t*8+ ] g _ 1 g [ t*S+ ]
|:—8 +1 2 C(S) -s+1 1
d’ou en ajoutant 1 :
1 1
1+ —— < <1+ .
Gopz Sl

: 1
Comme llms_,+oo 1+ m

encadrement que :

— — 1 1
=1-= llms_,+<x,1 + m,

on en déduit par le théoréme de limite par

limg_, 0 C(s) = 1.

17. Pour tout s €]1,+oo[, on a (toutes les séries en jeu convergent) :

1 =1 = 1
o ;F’Z@ks

+

~(1- ).

k=1

+00 1 +00 1 +o00
Lo A X
j pair
donc :
C(s)=1-4

~ convient.
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II.B - UNE FORMULE POUR LA FONCTION COSINUS

18.

19.

Soit ne N avec n > 2 et x e R.
e Posons pour tout ¢ € [0, 7/2], u(t) = 2xsin(2zt) et v(t) = (cost)".
Les fonctions u et v sont de classe C! sur [0,7/2] et on a pour tout t € [0,7/2] :

u'(t) = 42% cos(2xt) et v'(t) = —nsint(cost)™ L.

Par intégration par parties, on a alors :
) w/2 , . /2 w2 ] ] o
4 1, (x) = f o' (t)v(t)dt = [2xsin(2zt)(cost)" |y~ + n/ 2xsin(2xt) sint(cost)"  dt
0 0
w/2
=n f 2z sin(2xt) sint(cost)" 'dt.
0

Posons a présent pour tout ¢ € [0,7/2], u(t) = —cos(2xt) et v(t) = sint(cost)" 1.
Les fonctions u et v sont de classe C! sur [0,7/2] et on a pour tout t € [0,7/2] :

u'(t) = 2 sin(2xt) et v'(t) = (cost)™ — (n—1)(sint)?*(cost)™ 2.

Par intégration par parties, on obtient :
w2
4221, (x) =n f 22 sin(2xt) sint(cost) " dt
0
- /2
=n [— cos(2xt) silrl(t)(cost)”‘l]o/2 +n f cos(2zt)((cost)™ — (n—1)(sint)?(cost)™2)dt
0

/2 /2
= 0 +n f cos(2xt)(cost)*dt —n(n-1) / cos(2xt)(1 - (cost)?)(cost)"2dt
car n>2

=nl,(x)-n(n-1) foﬂ/Q cos(2zt)(cost)"2dt + n(n - 1) foﬂ/Q cos(2xt)(cost)™dt
=nl,(2) -n(n-1)1,_o(z) +n(n-1)L,(2) =n*I,(z) - n(n - 1)1, o(z),

donc (n? —422)1,(x) =n(n-1)I,o(x) d’ou en divisant par n? + 0 :

(1-25) 1) = o).

e En particulier pour z =0, on a 1,(0) = =11, 5(0).
De plus, comme la fonction ¢ — (cost)™ est continue, positive sur [0,7/2] et n’est pas la fonction nulle
(cos(0) =1), on a [,(0) = fﬂ/Q (cost)™dt > 0 donc on peut diviser par I,(0) et on obtient :

(kgghm_04%%m_%w4m_%mg
L(0)  L(0)  Z=lL5(0)  L2(0)

Soit x € R.
z) n z?
Montrons par récurrence que pour tout n € N*, sin(nx) = mx Z"Eog [Tio: (1 - k—2)

Initialisation : (pour n=1)
On a:

(par la question précédente avec n = 2).

i1 (1-57) - me i) (1- 57 - ek
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/2

Or, 10(0):f 1dt = /2
0

/2 . T2 _ . . .
et 2xly(z) = [ 2z cos(2xt)dt = [sin(22t)]y'” = sin(2z(7/2)) - sin(2z x 0) = sin(7z).

) :
Ainsi, 7z [x(z) H( z ) = msin(7z) = sin(7x).

1,(0) 2 /2
Heérédité : Soit n € N* et supposons que sin(wzx) = mcgzggg [Troy (1 - i—z)

Alors :
Iopia(z) "+1( IQ) Ipia(x) ( x? ) - ( xz)
T 1-—=|)=mx 1- 1-—
[2n+2(0) ,1:11 k2 12n+2(0) (77, + 1)2 ,1:11 k2
Lypio(x) 42 n ( x2)
Ao . — b g
" oo (0) ( (2n + 2)2 H =

I, .
[2 Eg; H ( ) (par la question précédente en remplagant n par 2n +2 > 2)
2n

=sin(mx) (d’aprés 'hypothése de récurrence).

Conclusion : On en déduit que

VreR, VneN* sin(rz) = wxlz’;%g% [Tr-y (1 - i—z) .

20. Soit n € N*. Soit x €]0,1[. On a 7z €]0,n[ donc sin(7wx) # 0. On a donc en appliquant la question
précédente avec x et n puis 2x et 2n :

1sin(2rz) _ 1sin(m(2z))
2 sin(rx) 2 sin(7wz)

I4n (22 mn 21)?
17(22) 7, ((0)) ITi% (1 - (k2) )

D) TIon(2) 1y 22
2 l’é ©) Hk:l(l_k_?)
2n (21‘)2
_ L1, (22) 1,(0) [Ti= (1 SR )

" Ln(0) La(x) TI7, (1-22)

_f4n(2fc)f2n(0)m=1( <2k>2)nk1< %)

cos(mx) =

- I4n(0) IQn(x) szl (1_%2)
 100(20) L(0) T (1 ) T (1 - 5255
Iin(0) Ton(z) M, (1-%)

_ L1n(22) I (0) (1_ (22)? )
Lin(0) Lon(z) g3\ (2k=1)%)

* 140, (22) 12, (0 n 272
VneN s VY G]O, 1[, COS(ﬂ'I') = %(0))[;21; Hk:1 (1 - (Q:T)g) .

Notons que la formule est encore valable pour z =0 (on le vérifie aisément en prenant x = 0).

II.C - UN EQUIVALENT DE Qgp41

21. D’apreés la question 12, pour tout x € [0,1/2[, comme 7z € [0,7/2[c I, on a

= 2n41 on+l = Q2p41 2n+2,.2n+1
t =) — :
mtan(mwx) = 71'2  n +1)' ) T;)(QnJrl)!W x

12



22.

Par ailleurs, d’apreés le développement admis, on a pour tout x € [0,1/2[ en posant n=p -1,
+00 too
mtan(rz) = Y 2(2% - 1)((2p)x® ' = ) 2(22"*2 - 1)((2n + 2)2*"*.
p=1 n=0

Ces deux égalités restent valables sur | — 1/2,0] par imparité de toutes les fonctions apparaissant ici.
Par unicité du développement en série entiére de = — wtan(mwz) sur |-1/2,1/2[, on en déduit que pour
tout n e N : o
2n+1 2n+2 2n+2
—T =2(2 -1)((2n+2
(2n +1)! ( )( )

d’on :

Mopt1 = WC@” + 2)-

Comme lim,, 0 ((2n +2) = 1 (d’aprés Q16 puisque lim,,.0(2n +2) = +00), on a ((2n+2) ~ 1 et par
suite :

2(227*2)(2n+1)! _ 227*3(2n+1)!

T2n+2 r2nt2

[0

n—+oo

On peut éventuellement aller plus loin en utilisant Stirling, mais quel intérét ici 7!
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