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I. Problème 1 : type CCINP

A. Intégrales de Wallis

Remarquons que pour tout n ∈ N, la fonction t↦ sinn(t) est continue sur [0, π2 ] donc l’intégrale ∫
π
2

0
sinn(t)dt

est une intégrale « ordinaire ». La suite (Wn)n∈N est donc bien définie.

1. On a W0 = ∫
π
2

0
sin0(t)dt = ∫

π
2

0
1dt = π

2
et W1 = ∫

π
2

0
sin1(t)dt = [− cos t]

π
2
0 = − cos(

π

2
) + cos(0) = 1.

W0 =
π

2
et W1 = 1.

2. Soit n ∈ N. La fonction t↦ sinn(t) est positive et continue sur [0, π2 ], et elle n’est pas identiquement nulle

sur [0, π2 ] car par exemple, sinn (π
2
) = 1 ≠ 0.

On en déduit (on a bien 0 < π
2 ) :

pour tout n ∈ N, Wn > 0.

3. Soit n ∈ N. Comme les fonctions t ↦ sinn+1(t) et t ↦ − cos(t) sont de classe C 1 sur [0, π2 ], on obtient par
intégration par parties :

Wn+2 = ∫
π
2

0
sinn+2(t)dt = ∫

π
2

0
(sinn+1(t)×sin(t))dt = [sinn+1(t)×(− cos(t))]

π
2
0 −∫

π
2

0
(n+1) sinn(t) cos(t)×(− cos(t))dt.

Or, sinn+1(0) = 0 et cos (π2 ) = 0.
Ainsi :

Wn+2 = (n + 1)∫
π
2

0
sinn(t) cos2(t)d(t) = (n + 1)∫

π
2

0
sinn(t)(1 − sin2(t))dx

= (n + 1)∫
π
2

0
sinn(t)d(t) − (n + 1)∫

π
2

0
sinn+2(t)d(t) = (n + 1)Wn − (n + 1)Wn+2.

On en dé duit que (n + 2)Wn+2 = (n + 1)Wn ou encore que :

Wn+2 =
n + 1
n + 2

Wn pour tout n ∈ N.

4. Montrons par récurrence que pour tout n ∈ N, (n + 1)Wn+1Wn =
π

2
.

Initialisation : On a (0 + 1)W0+1W0 =
π

2
× 1 = π

2
.

Hérédité : Soit n ∈ N tel que (n + 1)Wn+1Wn =
π

2
. Montrons qu’alors (n + 2)Wn+2Wn+1 =

π

2
.

On a (n + 2)Wn+2 = (n + 1)Wn d’après Q3 d’où (n + 2)Wn+2Wn+1 = (n + 1)WnWn+1 =
π

2
par hypothèse de

récurrence.
Conclusion :

Pour tout n ∈ N, (n + 1)Wn+1Wn =
π

2
.
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5. Soit n ∈ N. Pour tout t ∈ [0, π2 ], on a 0 ⩽ sin(t) ⩽ 1 donc sinn+1(t) ⩽ sinn(t).

Par croissance de l’intégrale, on obtient alors ∫
π
2

0
sinn+1(t)dt ⩽ ∫

π
2

0
sinn(t)dt c’est-à-dire Wn+1 ⩽Wn.

La suite (Wn)n∈N est donc décroissante.

6. Soit n ∈ N. Par Q5, on a :
Wn+2 ⩽Wn+1 ⩽Wn

donc par Q2 et Q3 :
n + 1
n + 2

= Wn+2
Wn

⩽ Wn+1
Wn

⩽ 1.

Or, lim
n→+∞

n + 1
n + 2

= lim
n→+∞

1 + 1
n

1 + 2
n

= 1.

Par le théorème des gendarmes, on en déduit que lim
n→+∞

Wn+1
Wn

= 1 d’où :

Wn+1 ∼Wn.

7. On a par Q3,
π

2
= (n + 1)Wn+1Wn ∼ nW 2

n donc W 2
n ∼

π

2n
d’où ∣Wn∣ ∼

√
π

2n
.

Comme pour tout n ∈ N, Wn ⩾ 0, on a ∣Wn∣ =Wn donc :

Wn ∼
√

π

2n
.

8. Soit n ∈ N. Pour tout u ∈ [0, π2 ], on pose φ(u) = π
2
− u.

La fonction φ est de classe C 1 sur [0, π2 ].
On peut donc poser t = π

2
− u. On a dt = φ′(u)du = −du.

On a φ(0) = π
2 et φ(π2 ) = 0.

D’après le théorème de changement de variable, on obtient :

Wn = ∫
0

π
2

sinn (π
2
− u) (−du) = ∫

π
2

0
sinn (π

2
− u)du = ∫

π
2

0
cosn(u)du.

Pour tout n ∈ N, Wn = ∫
π
2

0
cosn(t)dt.

9. Par Q3, on a pour tout n ∈ N, Wn+2 =
n + 1
n + 2

Wn.
En itérant cette formule, on a :

W2n =
2n − 1
2n

W2n−2 =
2n − 1
2n

2n − 3
2n − 2

×⋯ × 1

2
W0 =

(2n)!
22n(n!)2

π

2

car

(2n)(2n − 2) ×⋯ × 2 =
n

∏
k=1
(2k) = (

n

∏
k=1

2)(
n

∏
k=1

k) = 2nn!

et
(2n − 1)(2n − 3) ×⋯ × 1 = (2n)(2n − 1)(2n − 2)(2n − 3) ×⋯ × 3 × 2 × 1

(2n)(2n − 2) ×⋯ × 2
= (2n)!

2nn!
.

On peut prouver plus rigoureusement ce résultat par une récurrence.

Initialisation : On a
(2 × 0)!
22×0(0!)2

π

2
= π
2
=W2×0.
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Hérédité : Soit n ∈ N tel que W2n =
(2n)!

22n(n!)2
π

2
.

On a alors

W2n+2 =
2n + 1
2n + 2

W2n
H.R= 2n + 1

2n + 2
(2n)!

22n(n!)2
π

2
= 2n + 1
2n + 2

2n + 2
2n + 2

(2n)!
22n(n!)2

π

2

= (2n + 2)(2n + 1)(2n)!
22(n + 1)222n(n!)2

= (2n + 2)!
22n+2((n + 1)!)2

.

Donc on a bien :

pour tout n ∈ N, W2n =
(2n)!

22n(n!)2
π

2
.

Par Q4, on a alors :

pour tout n ∈ N, W2n+1 =
π

2
× 1

(2n + 1)W2n

= 22n(n!)2
(2n + 1)!

.

B. Intégrales de Gauss

10. La fonction x↦ e−nx2 est continue sur [0,+∞[.
En utilisant le changement de variable x = 1√

n
t (licite car changement de variable affine avec dx = 1√

n
dt,

et pour les bornes, comme t =
√
nx, il suffit de calculer

√
n × 0 = 0 et lim

x→+∞
√
nx = +∞), on obtient que les

intégrales ∫
+∞

0
e−nx

2

dx et ∫
+∞

0
e−t

2 1√
n
dt sont de même nature, et de même valeur en cas de convergence.

Comme on a admis que l’intégrale ∫
+∞

0
e−t

2

dt converge, on obtient par linéarité que l’intégrale ∫
+∞

0
e−t

2 1√
n
dt

converge également et on a de plus :

∫
+∞

0
e−t

2 1√
n
dt = 1√

n
∫
+∞

0
e−t

2

dt.

On obtient ainsi que :

l’intégrale ∫
+∞

0
e−nx

2

dx converge et ∫
+∞

0
e−nx

2

dx = 1√
n
∫
+∞

0
e−t

2

dt.

11. Notons que l’intégrale ∫
1

0
(1 − x2)n dx est une intégrale « ordinaire » car la fonction x ↦ (1 − x2)n est

continue sur le segment [0,1].
En utilisant le changement de variable x = sin(t) (licite car t ↦ sin(t) est de classe C 1 sur [0, π/2], avec
sin(0) = 0, sin(π2 ) = 1 et dx = cos(t)dt), on obtient :

∫
1

0
(1 − x2)n dx = ∫

π/2

0
(1 − sin2(t))n cos(t)dt = ∫

π/2

0
cos2n+1(t)dt.

Ainsi :

∫
1

0
(1 − x2)n dx =W2n+1.

12. La fonction x↦ 1

(1 + x2)n
est continue sur [0,+∞[.

Avec le changement de variable x = tan(t) (licite car t↦ tan(t) est de classe C 1 et strictement croissante sur

[0, π/2[ , avec tan(0) = 0 et lim
t→π/2−

tan(t) = +∞ et dx = 1

cos2(t)
dt), on obtient que les intégrales ∫

+∞

0

dx

(1 + x2)n
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et ∫
π/2

0

1

(1 + tan2(t))n
1

cos2(t)
dt sont de même nature, et en cas de convergence de même valeur.

Or, pour tout t ∈ [0, π/2[, on a :

1

(1 + tan2(t))n
1

cos2(t)
= (cos2(t))n 1

cos2(t)
= (cos(t))2n−2.

La fonction t↦ (cos(t))2n−2 est continue sur le segment [0, π/2] donc l’intégrale ∫
π/2

0

1

(1 + tan2(t))n
1

cos2(t)
dt

converge.
On en déduit que :

l’intégrale ∫
+∞

0

dx
(1 + x2)n

converge et ∫
+∞

0

dx
(1 + x2)n

=W2n−2.

13. La fonction exponentielle est convexe (car elle est deux fois dérivable, de dérivée seconde positive) donc
sa courbe représentative se situe au-dessus de sa tangente en 0 qui a pour équation y = x + 1.
On en déduit que :

pour tout réel u, on a eu ⩾ 1 + u.
14. Soit u ∈ R.
D’après la question 13 appliquée en −u, on a pour u ⩽ 1 :

0 ⩽ 1 − u ⩽ e−u donc (1 − u)n ⩽ e−nu

par croissance de la fonction x↦ xn sur R+.
D’après la question 13 appliquée en u, on a pour u > −1 :

0 < 1 + u ⩽ eu donc e−nu ⩽ 1

(1 + u)n

par décroissance de la fonction x↦ x−n = 1

xn
sur R∗+.

Ainsi :
(1 − u)n ⩽ e−nu si u ⩽ 1
e−nu ⩽ 1

(1 + u)n
si u > −1.

15. Pour tout x ∈ [0,1], on a u = x2 ⩽ 1 donc d’après la question 14, (1 − x2)n ⩽ e−nx2 .
Par croissance de l’intégrale (0 ⩽ 1), on en déduit que :

∫
1

0
(1 − x2)n dx ⩽ ∫

1

0
e−nx

2

dx puis ∫
1

0
e−nx

2

dx ⩽ ∫
1

0
e−nx

2

dx + ∫
+∞

1
e−nx

2

dx

(par positivité de l’intégrale (convergente) car pour tout x ∈ [1,+∞[, exp(−nx2) ⩾ 0).
Pour tout x ∈ [0,+∞[, on a u = x2 > −1, donc d’après la question 14, e−nx

2 ⩽ 1

(1 + x2)n
donc par croissance de

l’intégrale (les deux intégrales en jeu convergent) :

∫
+∞

0
e−nx

2

dx ⩽ ∫
+∞

0

dx

(1 + x2)n
.

Ainsi :

∫
1

0
(1 − x2)n dx ⩽ ∫

+∞

0
e−nx

2

dx ⩽ ∫
+∞

0

dx

(1 + x2)n
.

16. En utilisant les questions 10, 11 et 12, les inégalités obtenues en question 15 deviennent :

W2n+1 ⩽
1√
n
∫
+∞

0
e−t

2

dt ⩽W2n−2.
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D’après Q7, Wn ∼+∞

√
π

2n
donc W2n+1 ∼+∞

√
π

2(2n + 1)
∼+∞

√
π

2
√
n

(suite extraite) donc lim
n→+∞

√
nW2n+1 =

√
π

2
et

de même, lim
n→+∞

√
nW2n−2 =

√
π

2
.

Par passage à la limite dans les inégalités ci-dessus après multiplication par
√
n, on obtient :

√
π

2
⩽ ∫

+∞

0
e−t

2

dt ⩽
√
π

2
.

On en déduit la valeur de l’intégrale de Gauss :

∫
+∞

0
e−t

2

dt =
√
π

2
.

17. Soit a ∈]0,+∞[. La fonction t↦ e−at2 est continue sur R.
En utilisant le changement de variable x =

√
at (licite car changement de variable affine) dans l’intégrale

convergente ∫
+∞

0
e−x

2

dx, on obtient que l’intégrale ∫
+∞

0
e−at

2√
a dt converge et a même valeur.

Comme
√
a ≠ 0, on en déduit que ∫

+∞

0
e−at

2

dt converge et on a par linéarité :

∫
+∞

0
e−at

2

dt = 1√
a
∫
+∞

0
e−at

2√
a dt = 1√

a

√
π

2
.

De plus, comme la fonction t↦ e−at2 est paire, par le changement de variable u = −t, on obtient que l’intégrale

∫
0

−∞
e−at

2

dt est de même nature que l’intégrale ∫
+∞

0
e−at

2

dt, elle est donc convergente, et elle a la même
valeur.
On en déduit que l’intégrale ∫

+∞

−∞
e−at

2

dt converge et on a :

∫
+∞

−∞
e−at

2

dt = ∫
0

−∞
e−at

2

dt + ∫
+∞

0
e−at

2

dt = 2∫
+∞

0
e−at

2

dt =
√
π

a
.

L’intégrale ∫
+∞

−∞
e−at

2

dt converge et a pour valeur
√
π

a
.

II. Problème 2 : type Centrale/Mines - Source : Centrale PC 2019

I. Introduction d’une fonction auxiliaire

I.A - Dérivées successives

1. La fonction f est de classe C∞ sur I comme quotient de fonctions de classe C∞ dont le dénominateur
ne s’annule pas sur I, et on a pour tout x ∈ I :

f ′(x) = (cosx)
2 + sin(x)(sin(x) + 1)
(cosx)2

= 1 + sinx
(cosx)2

,

f ′′(x) = (cosx)
3 + 2 sinx cosx(1 + sinx)

(cosx)4
= (cosx)

2 + 2 sinx + 2(sinx)2
(cosx)3

= (sinx)
2 + 2 sinx + 1
(cosx)3

et f (3)(x) = (2 cosx sinx + 2 cosx)(cosx)
3 + 3 sinx(cosx)2((sinx)2 + 2 sinx + 1)
(cosx)6

= 2(cosx)2 sinx + 2(cosx)2 + 3(sinx)3 + 6(sinx)2 + 3 sinx
(cosx)4

= (sinx)
3 + 4(sinx)2 + 5 sinx + 2
(cosx)4

.
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∀x ∈ I, f ′(x) = 1 + sinx
(cosx)2

, f ′′(x) = (sinx)
2 + 2 sinx + 1
(cosx)3

et f (3)(x) = (sinx)
3 + 4(sinx)2 + 5 sinx + 2
(cosx)4

.

2. Montrons par récurrence que, pour tout n ∈ N, il existe un polynôme Pn ∈ R[X] tel que ∀x ∈ I,
f (n)(x) = Pn(sinx)

(cosx)n+1 .
Initialisation : Pour n = 0, le polynôme P0 =X + 1 convient.
Notons au passage que d’après la question précédente,

les polynômes P1 =X + 1, P2 =X2 + 2X + 1 et P3 =X3 + 4X2 + 5X + 2 conviennent.

Hérédité : Soit n ∈ N..
Supposons qu’il existe un polynôme Pn ∈ R[X] tel que ∀x ∈ I, f (n)(x) = Pn(sinx)

(cosx)n+1 .
On a alors pour tout x ∈ I :

f (n+1)(x) = (f (n))′ (x)

= cosxP ′n(sinx)(cosx)n+1 + (n + 1) sinx(cosx)nPn(sinx)
(cosx)2n+2

= (cosx)
2P ′n(sinx) + (n + 1) sinxPn(sinx)

(cosx)n+2

= (1 − (sinx)
2)P ′n(sinx) + (n + 1) sinxPn(sinx)

(cosx)n+2
= Pn+1(sinx)
(cosx)n+2

en posant Pn+1(X) = (1 −X2)P ′n(X) + (n + 1)XPn(X) ∈ R[X] (car Pn ∈ R[X]).
Conclusion :
Pour tout n ∈ N, il existe un polynôme Pn ∈ R[X] tel que ∀x ∈ I, f (n)(x) = Pn(sinx)

(cosx)n+1 .
De plus, cette suite vérifie :

pour tout n ∈ N, Pn+1(X) = (1 −X2)P ′n(X) + (n + 1)XPn(X).

3. ● Montrons d’abord l’unicité de la suite (Pn). L’article défini « le » de l’énoncé semble indiquer qu’elle
est demandée...
Soit n ∈ N.
On suppose qu”il existe deux polynômes Pn et Qn vérifiant ∀x ∈ I, f (n)(x) = Pn(sinx)

(cosx)n+1 =
Qn(sinx)
(cosx)n+1 .

Alors pour tout x ∈ I, (Pn −Qn)(sinx) = 0.
Comme sin(I) =] − 1,1[, on a pour tout t ∈] − 1,1[, (Pn −Qn)(t) = 0.
Ainsi, le polynôme Pn −Qn a une infinité de racines donc c’est le polynôme nul d’où Pn = Qn.
Il y a donc bien unicité de la suite (Pn)n∈N.
● Montrons par récurrence que, pour tout n ∈ N∗, Pn est unitaire, de degré n et ses coefficients sont
des entiers naturels.
Initialisation : Les polynômes P1 =X + 1 et P2 =X2 + 2X + 1 sont bien unitaires à coefficients dans
N, deg(P1) = 1 et deg(P2) = 2.
Hérédité : Soit n ∈ N avec n ⩾ 2. On suppose que le polynôme Pn est unitaire, de degré n et ses
coefficients sont des entiers naturels.
Alors il existe (a0, . . . , an−1) ∈ Nn tel que Pn =Xn +∑n−1

k=0 akXk.
On a alors :

Pn+1 = (1 −X2)P ′n(X) + (n + 1)XPn(X)

= (1 −X2)(nXn−1 +
n−1
∑
k=1

kakX
k−1) + (n + 1)X (Xn +

n−1
∑
k=0

akX
k)

= nXn−1 +
n−1
∑
k=1

kakX
k−1 − nXn+1 −

n−1
∑
k=1

kakX
k+1 + (n + 1)Xn+1 +

n−1
∑
k=0
(n + 1)akXk+1

=Xn+1 + n®
∈N
Xn−1 +

n−2
∑
k=0
(k + 1)ak+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈N

Xk + (n + 1)a0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈N

X +
n

∑
k=2
(n + 2 − k)ak−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈N

Xk.
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On en déduit que Pn+1 est un polynôme unitaire, de degré n + 1 et tous ses cœfficients sont des entiers
naturels (car c’est une somme de polynômes à cœfficients dans N).
Conclusion :
Pour tout n ∈ N∗, le polynôme Pn est unitaire, de degré n et ses coefficients sont des entiers naturels.

4. On a pour tout x ∈ I :

f(x)2 + 1 = (sinx + 1)
2

(cosx)2
+ 1 = (sinx)

2 + 2 sinx + 1 + (cosx)2
(cosx)2

= 2 + 2 sinx
(cosx)2

= 2f ′(x).

Pour tout x ∈ I, 2f ′(x) = f(x)2 + 1.

5. ● En appliquant la relation obtenue dans la question précédente en x = 0, on obtient

2f ′(0) = (f(0))2 + 1 c’est-à-dire 2α1 = α2
0 + 1.

● Soit n ∈ N∗. En dérivant n fois la relation obtenue à la question précédente, on obtient par la formule
de Leibniz :

∀x ∈ I, 2f (n+1)(x) = (f × f)(n)(x) =
n

∑
k=0
(n
k
)f (k)(x)f (n−k)(x).

En appliquant en x = 0, on obtient la relation souhaitée.

∀n ∈ N∗, 2αn+1 =
n

∑
k=0
(n
k
)αkαn−k.

I.B - Développement en série entière

6. La fonction f est de classe C∞ sur I donc pour tout N ∈ N, en lui appliquant la formule de Taylor avec
reste intégral entre 0 et x ∈ [0, π/2[, on obtient :

f(x) =
N

∑
n=0

f (n)(0)
n!

xn + ∫
x

0

(x − t)N
N !

f (N+1)(t)dt

=
N

∑
n=0

αn

n!
xn + ∫

x

0

(x − t)N
N !

PN+1(sin t)
(cos t)N+2

dt.

Or, comme x ∈ [0, π/2[, on a pour tout t ∈ [0, x], (x−t)
N

N ! ⩾ 0, (cos t)N+2 ⩾ 0 et comme PN+1 est à
coefficients positifs et sin t ⩾ 0, PN+1(sin t) ⩾ 0.
Par positivité de l’intégrale (0 ⩽ x), on en déduit :

f(x) −
N

∑
n=0

αn

n!
xn = ∫

x

0

(x − t)N
N !

PN+1(sin t)
(cos t)N+2

dt ⩾ 0.

∀N ∈ N, ∀x ∈ [0, π/2[,
N

∑
n=0

αn

n!
xn ⩽ f(x).

7. Pour tout n ∈ N, comme αn = Pn(0), c’est le cœfficient constant de Pn donc c’est un entier naturel
(c’est vrai aussi pour n = 0). Pour tout x ∈ [0, π/2[ la série numérique ∑n⩾0

αn

n! x
n est donc à termes

positifs et la suite de ses sommes partielles est majorée par f(x) d’après la question précédente donc
la série ∑n⩾0

αn

n! x
n converge.

On en déduit que pour tout x ∈ [0, π/2[, x ⩽ R. En faisant tendre x vers π/2, on obtient R ⩾ π/2.
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8. Par produit de Cauchy de la série entière∑
αn

n!
xn avec elle-même, on a pour tout x ∈ R tel que ∣x∣ < R

et donc en particulier pour tout x ∈ I :

(g(x))2 + 1 = (
+∞
∑
n=0

αn

n!
xn)

2

+ 1

=
+∞
∑
n=0
(

n

∑
k=0

αk

k!

αn−k
(n − k)!

)xn + 1

=
+∞
∑
n=0

1

n!
(

n

∑
k=0

n!

k!(n − k)!
αkαn−k)xn + 1

= α2
0 + 1 +

+∞
∑
n=1

1

n!
(

n

∑
k=0
(n
k
)αkαn−k)xn

= 2α1 +
+∞
∑
n=1

2αn+1
n!

xn = 2
+∞
∑
n=0
(n + 1) αn+1

(n + 1)!
xn

= 2g′(x)

par dérivation terme à terme sur l’intervalle ouvert de convergence.

∀x ∈ I, 2g′(x) = g(x)2 + 1.

9. Soit φ = arctan(f) et ψ = arctan(g).
Les fonctions φ et ψ sont dérivables sur l’intervalle I et on a pour tout x ∈ I :

φ′(x) = f ′(x)
(f(x))2 + 1

= 1

2
et ψ′(x) = g′(x)

(g(x))2 + 1
= 1

2

d’après les relations établies aux questions 4 et 8.
On en déduit qu’il existe K ∈ R tel que pour tout x ∈ I, f(x) = g(x) +K.
De plus, ψ(0) = arctan(g(0)) = arctan(α0) = arctan(f(0)) = φ(0) d’où K = 0.
Par suite, pour tout x ∈ I, f(x) = tan(φ(x)) = tan(ψ(x)) = g(x).

∀x ∈ I, f(x) = g(x).

10. Raisonnons par l’absurde en supposant R > π/2. Alors la fonction g, continue sur ] − R,R[, serait
continue en π/2.

Or limx→π/2− g(x) = limx→π/2− f(x) = limx→π/2−

→2

³ ¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
sinx+1
cosx²
→0+

= +∞ donc g n’est pas continue en π/2, ce qui est

absurde.
On a donc bien R = π/2.

I.C - Partie paire et partie impaire du développement en série entière

11. Raisonnons par analyse-synthèse. Soit h ∶ I → R.
Analyse : S’il existe p paire et i impaire telle que h = p + i sur I alors pour tout x ∈ I, on a :

h(x) = p(x) + i(x) et h(−x) = p(−x) + i(−x) = p(x) − i(x),

donc p(x) = h(x)+h(−x)
2 et i(x) = h(x)−h(−x)

2 .

Synthèse : Réciproquement, soit p ∶ x ∈ I ↦ h(x)+h(−x)
2 et i ∶ x ∈ I ↦ h(x)−h(−x)

2 . Alors :

• pour tout x ∈ I, −x ∈ I et p(−x) = h(−x)+h(−(−x))
2 = h(x)+h(−x)

2 = p(x) donc p est paire

• pour tout x ∈ I, −x ∈ I et i(−x) = h(−x)−h(−(−x))
2 = −h(x)−h(−x)

2 = −i(x) donc i est impaire
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• pour tout x ∈ I, p(x) + i(x) = h(x)+h(−x)
2 + h(x)−h(−x)

2 = h(x) donc h = p + i.

Conclusion :
Toute fonction h ∶ I → R s’écrit de façon unique sous la forme h = p + i avec p paire et i impaire.

12. Pour tout x ∈ I, on a :

f(x) = 1

cosx
+ sinx

cosx
,

et la fonction x↦ 1
cosx est paire, la fonction x↦ sinx

cosx est impaire.
Par ailleurs, pour tout x ∈ I, comme les séries qui apparaissent ci-dessous convergent (les suites
( α2n

(2n)!x
2n)

n∈N
et ( α2n+1

(2n+1)!x
2n+1)

n∈N
convergent vers 0 en tant que suites extraites donc les rayons de

convergence des séries entières ∑
α2n

(2n)!
x2n et ∑

α2n+1
(2n + 1)!

x2n+1 sont supérieurs ou égaux à π/2), on a

aussi :
f(x) = g(x) =

+∞
∑
n=0

αn

n!
xn =

+∞
∑
n=0

α2n

(2n)!
x2n +

+∞
∑
n=0

α2n+1
(2n + 1)!

x2n+1,

et la fonction x↦ ∑+∞n=0 α2n

(2n)!x
2n est paire, la fonction x↦ ∑+∞n=0 α2n+1

(2n+1)!x
2n+1 est impaire.

D’où par l’unicité de la décomposition prouvée à la question précédente, on a :

∀x ∈ I, tan(x) =
+∞
∑
n=0

α2n+1
(2n + 1)!

x2n+1 et
1

cosx
=
+∞
∑
n=0

α2n

(2n)!
x2n.

13. D’après la question précédente, tan est développable en série entière sur I et elle coïncide donc avec sa
série de Taylor ∑+∞n=0

tan(n)(0)
n! xn sur I.

Par unicité du développement en série entière, on en déduit que :

pour tout n ∈ N, tan(2n)(0) = 0 et tan(2n+1)(0) = α2n+1.

14. Pour tout x ∈ I, tan′(x) = 1 + (tanx)2 donc t′ = 1 + t2.

15. Pour tout x ∈ I, t′(x) = ∑+∞n=0(2n + 1) α2n+1
(2n+1)!x

2n = ∑+∞n=0 α2n+1
(2n)! x

2n.
Par produit de Cauchy, on a aussi pour tout x ∈ I :

t′(x) = (t(x))2 + 1 = (
+∞
∑
n=0

tan(n)(0)
n!

xn)
2

+ 1

=
+∞
∑
n=0
(

n

∑
k=0

tan(k)(0)
k!

tan(n−k)(0)
(n − k)!

)xn + 1.

Par unicité du développement en série entière de t′ sur I, on en déduit que α1 = 0 + 1 = 1 et pour tout
n ⩾ 1 :

α2n+1
(2n)!

=
2n

∑
k=0

tan(k)(0)
k!

tan(2n−k)(0)
(2n − k)!

= 1

(2n)!

2n

∑
k=0
(2n
k
) tan(k)(0) tan(2n−k)(0)

= 1

(2n)!

2n

∑
k=0

k pair

(2n
k
) tan(k)(0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

tan(2n−k)(0) + 1

(2n)!

2n

∑
k=0

k impair

(2n
k
) tan(k)(0) tan(2n−k)(0)

= 1

(2n)!

n

∑
k=1
( 2n

2k − 1
) tan(2k−1)(0) tan(2n−(2k−1))(0)

= 1

(2n)!

n

∑
k=1
( 2n

2k − 1
)α2k−1α2n−2k+1 (d’après 13 avec 2k − 1 et 2n − 2k + 1 impairs).

Ainsi :

∀n ∈ N∗, α2n+1 =
n

∑
k=1
( 2n

2k − 1
)α2k−1α2n−2k+1.
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II. Equivalent de α2n+1

II.A - La fonction zêta

16. Soit s > 1.
● Posons g ∶ t↦ 1

ts = exp(−s ln(t)). La fonction g est continue et décroissante sur [1,+∞[.
● Par suite, pour tout n ⩾ 2, pour tout t ∈ [n,n + 1], g(t) ⩽ g(n) d’où par positivité de l’intégrale
(n ⩽ n + 1), on a :

∫
n+1

n
g(t)dt ⩽ ∫

n+1

n
g(n)dt = g(n).

Soit p ∈ N avec p ⩾ 2. En sommant ces inégalités pour n allant de 2 à p et en utilisant la relation de
Chasles, on obtient :

∫
p+1

2
g(t)dt =

p

∑
n=2
∫

n+1

n
g(t)dt ⩽

p

∑
n=2

g(n).

● De même, pour tout n ⩾ 2, pour tout t ∈ [n − 1, n], g(t) ⩾ g(n) d’où par positivité de l’intégrale
(n − 1 ⩽ n), on a :

∫
n

n−1
g(t)dt ⩾ ∫

n

n−1
g(n)dt = g(n).

En sommant ces inégalités pour tout n allant 2 à p et en utilisant la relation de Chasles, on obtient :

∫
p

1
g(t)dt =

p

∑
n=2
∫

n

n−1
g(t)dt ⩾

p

∑
n=2

g(n).

On a donc obtenu :

∫
p+1

2

1

ts
dt ⩽

p

∑
n=2

1

ns
⩽ ∫

p

1

1

ts
dt.

Comme s > 1, la série et les intégrales de Riemann en +∞ convergent et on obtient par passage à la
limite p→ +∞ :

∫
+∞

2

1

ts
dt ⩽

+∞
∑
n=2

1

ns
⩽ ∫

+∞

1

1

ts
dt.

En calculant les intégrales, on obtient :

[ 1

−s + 1
t−s+1]

+∞

2

⩽ ζ(s) − 1 ⩽ [ 1

−s + 1
t−s+1]

+∞

1

d’où en ajoutant 1 :

1 + 1

(s − 1)2s−1
⩽ ζ(s) ⩽ 1 + 1

s − 1
.

Comme lims→+∞ 1 + 1
(s−1)e(s−1) ln 2 = 1 = lims→+∞ 1 + 1

(s−1) , on en déduit par le théorème de limite par
encadrement que :

lims→+∞ ζ(s) = 1.

17. Pour tout s ∈]1,+∞[, on a (toutes les séries en jeu convergent) :

+∞
∑
k=1

1

(2k − 1)s
=
+∞
∑
j=1

1

js
−
+∞
∑
j=1

j pair

1

js
=
+∞
∑
j=1

1

js
−
+∞
∑
k=1

1

(2k)s
= (1 − 1

2s
) ζ(s),

donc :
C(s) = 1 − 1

2s convient.
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II.B - Une formule pour la fonction cosinus

18. Soit n ∈ N avec n ⩾ 2 et x ∈ R.
● Posons pour tout t ∈ [0, π/2], u(t) = 2x sin(2xt) et v(t) = (cos t)n.
Les fonctions u et v sont de classe C1 sur [0, π/2] et on a pour tout t ∈ [0, π/2] :

u′(t) = 4x2 cos(2xt) et v′(t) = −n sin t(cos t)n−1.

Par intégration par parties, on a alors :

4x2In(x) = ∫
π/2

0
u′(t)v(t)dt = [2x sin(2xt)(cos t)n]π/20 + n∫

π/2

0
2x sin(2xt) sin t(cos t)n−1dt

= n∫
π/2

0
2x sin(2xt) sin t(cos t)n−1dt.

Posons à présent pour tout t ∈ [0, π/2], u(t) = − cos(2xt) et v(t) = sin t(cos t)n−1.
Les fonctions u et v sont de classe C1 sur [0, π/2] et on a pour tout t ∈ [0, π/2] :

u′(t) = 2x sin(2xt) et v′(t) = (cos t)n − (n − 1)(sin t)2(cos t)n−2.

Par intégration par parties, on obtient :

4x2In(x) = n∫
π/2

0
2x sin(2xt) sin t(cos t)n−1dt

= n [− cos(2xt) sin(t)(cos t)n−1]π/2
0
+ n∫

π/2

0
cos(2xt)((cos t)n − (n − 1)(sin t)2(cos t)n−2)dt

= 0®
car n⩾2

+n∫
π/2

0
cos(2xt)(cos t)ndt − n(n − 1)∫

π/2

0
cos(2xt)(1 − (cos t)2)(cos t)n−2dt

= nIn(x) − n(n − 1)∫
π/2

0
cos(2xt)(cos t)n−2dt + n(n − 1)∫

π/2

0
cos(2xt)(cos t)ndt

= nIn(x) − n(n − 1)In−2(x) + n(n − 1)In(x) = n2In(x) − n(n − 1)In−2(x),

donc (n2 − 4x2)In(x) = n(n − 1)In−2(x) d’où en divisant par n2 ≠ 0 :

(1 − 4x2

n2
) In(x) =

n − 1
n

In−2(x).

● En particulier pour x = 0, on a In(0) = n−1
n In−2(0).

De plus, comme la fonction t↦ (cos t)n est continue, positive sur [0, π/2] et n’est pas la fonction nulle
(cos(0) = 1), on a In(0) = ∫

π/2
0 (cos t)ndt > 0 donc on peut diviser par In(0) et on obtient :

(1 − 4x2

n2
) In(x)
In(0)

=
(1 − 4x2

n2 ) In(x)
In(0)

=
n−1
n In−2(x)

n−1
n In−2(0)

= In−2(x)
In−2(0)

.

(1 − 4x2

n2 ) In(x)
In(0) =

In−2(x)
In−2(0) .

19. Soit x ∈ R.
Montrons par récurrence que pour tout n ∈ N∗, sin(πx) = πx I2n(x)

I2n(0) ∏
n
k=1 (1 − x2

k2 ).
Initialisation : (pour n = 1)
On a :

πx
I2(x)
I2(0)

1

∏
k=1
(1 − x

2

k2
) = πxI2(x)

I2(0)
(1 − 4x2

22
) = πxI0(x)

I0(0)
(par la question précédente avec n = 2).
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Or, I0(0) = ∫
π/2

0
1dt = π/2

et 2xI0(x) = ∫
π/2

0
2x cos(2xt)dt = [sin(2xt)]π/20 = sin(2x(π/2)) − sin(2x × 0) = sin(πx).

Ainsi, πx
I2(x)
I2(0)

1

∏
k=1
(1 − x

2

k2
) = π

2

sin(πx)
π/2

= sin(πx).

Hérédité : Soit n ∈ N∗ et supposons que sin(πx) = πx I2n(x)
I2n(0) ∏

n
k=1 (1 − x2

k2 ).
Alors :

πx
I2n+2(x)
I2n+2(0)

n+1
∏
k=1
(1 − x

2

k2
) = πxI2n+2(x)

I2n+2(0)
(1 − x2

(n + 1)2
)

n

∏
k=1
(1 − x

2

k2
)

= πxI2n+2(x)
I2n+2(0)

(1 − 4x2

(2n + 2)2
)

n

∏
k=1
(1 − x

2

k2
)

= πxI2n(x)
I2n(0)

n

∏
k=1
(1 − x

2

k2
) (par la question précédente en remplaçant n par 2n + 2 ⩾ 2)

= sin(πx) (d’après l’hypothèse de récurrence).

Conclusion : On en déduit que

∀x ∈ R, ∀n ∈ N∗, sin(πx) = πx I2n(x)
I2n(0) ∏

n
k=1 (1 − x2

k2 ) .

20. Soit n ∈ N∗. Soit x ∈]0,1[. On a πx ∈]0, π[ donc sin(πx) ≠ 0. On a donc en appliquant la question
précédente avec x et n puis 2x et 2n :

cos(πx) = 1

2

sin(2πx)
sin(πx)

= 1

2

sin(π(2x))
sin(πx)

= 1

2

π(2x) I4n(2x)I4n(0) ∏
2n
k=1 (1 −

(2x)2
k2 )

πx I2n(x)
I2n(0) ∏

n
k=1 (1 − x2

k2
)

= I4n(2x)
I4n(0)

I2n(0)
I2n(x)

∏2n
k=1 (1 −

(2x)2
k2 )

∏n
k=1 (1 − x2

k2
)

= I4n(2x)
I4n(0)

I2n(0)
I2n(x)

∏n
k=1 (1 −

(2x)2
(2k)2 )∏

n
k=1 (1 −

(2x)2
(2k−1)2)

∏n
k=1 (1 − x2

k2
)

= I4n(2x)
I4n(0)

I2n(0)
I2n(x)

∏n
k=1 (1 − x2

k2 )∏
n
k=1 (1 −

(2x)2
(2k−1)2)

∏n
k=1 (1 − x2

k2
)

= I4n(2x)
I4n(0)

I2n(0)
I2n(x)

n

∏
k=1
(1 − (2x)2

(2k − 1)2
) .

∀n ∈ N∗, ∀x ∈]0,1[, cos(πx) = I4n(2x)
I4n(0)

I2n(0)
I2n(x)∏

n
k=1 (1 − 4x2

(2k−1)2) .

Notons que la formule est encore valable pour x = 0 (on le vérifie aisément en prenant x = 0).

II.C - Un équivalent de α2n+1

21. D’après la question 12, pour tout x ∈ [0,1/2[, comme πx ∈ [0, π/2[⊂ I, on a

π tan(πx) = π
+∞
∑
n=0

α2n+1
(2n + 1)!

(πx)2n+1 =
+∞
∑
n=0

α2n+1
(2n + 1)!

π2n+2x2n+1.
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Par ailleurs, d’après le développement admis, on a pour tout x ∈ [0,1/2[ en posant n = p − 1,

π tan(πx) =
+∞
∑
p=1

2(22p − 1)ζ(2p)x2p−1 =
+∞
∑
n=0

2(22n+2 − 1)ζ(2n + 2)x2n+1.

Ces deux égalités restent valables sur ] − 1/2,0] par imparité de toutes les fonctions apparaissant ici.
Par unicité du développement en série entière de x↦ π tan(πx) sur ]−1/2,1/2[, on en déduit que pour
tout n ∈ N :

α2n+1
(2n + 1)!

π2n+2 = 2(22n+2 − 1)ζ(2n + 2)

d’où :
α2n+1 = 2(22n+2−1)(2n+1)!

π2n+2 ζ(2n + 2).

22. Comme limn→+∞ ζ(2n + 2) = 1 (d’après Q16 puisque limn→+∞(2n + 2) = +∞), on a ζ(2n + 2) ∼ 1 et par
suite :

α2n+1 ∼
n→+∞

2(22n+2)(2n+1)!
π2n+2 = 22n+3(2n+1)!

π2n+2 .

On peut éventuellement aller plus loin en utilisant Stirling, mais quel intérêt ici ?!
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