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N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de
la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d’énoncé, il
le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives
qu’il a été amené à prendre.

Rappel des consignes

⋆ Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre
composition ; d’autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement
pour les schémas et la mise en évidence des résultats.

⋆ Ne pas utiliser de correcteur.

⋆ Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites.

Le sujet est composé de quatre exercices indépendants.

Exercice 1 : Étude d’un endomorphisme matriciel

Présentation générale

Dans tout l’exercice, on considère un entier n ∈ N∗.

Pour toute matrice A ∈ Mn(C), on note φA ∶ Mn(C) →Mn(C) définie par φA ∶M ↦ AM.
En particulier, on remarque qu’en notant On la matrice nulle de Mn(C) et In la matrice d’identité
deMn(C), alors φOn est l’application nulle deMn(C) et φIn est l’application identité deMn(C).

L’objectif de cet exercice est d’étudier quelques propriétés de l’application φA.

Partie I - Généralités

Q1. Montrer pour tout A ∈ Mn(C) que l’application φA est un endomorphisme deMn(C).

Q2. Montrer pour tout (A,B) ∈ Mn(C)2 que φA ○ φB = φAB.

Q3. Soit A ∈ Mn(C). Déduire de la question précédente que φA est un isomorphisme si et seulement
si la matrice A est inversible. Indication : si φA est un isomorphisme, on pourra considérer
un antécédent par φA de la matrice identité deMn(C).

1



Partie II - Étude d’un exemple

Dans cette partie uniquement, on suppose que n = 2. On considère un nombre a ∈ C et la matrice :

A = (1 1
0 a
) ∈M2(C).

Q4. Déterminer une condition nécessaire et suffisante sur le nombre a ∈ C pour que la matrice A
soit diagonalisable.

Q5. Déterminer la matrice de φA dans la base C = ((1 0
0 0
) ,(0 1

0 0
) ,(0 0

1 0
) ,(0 0

0 1
)) deM2(C).

Q6. En déduire la valeurs propres de φA, puis déterminer la dimension de chaque sous-espace propre
de φA en fonction de a ∈ C.

Q7. Déterminer une condition nécessaire et suffisante sur a ∈ C pour que φA soit diagonalisable.

Partie III - Réduction de φA si A est diagonalisable

Dans cette partie, on considère une matrice A ∈ Mn(C). Nous allons étudier les propriétés liant les
éléments propres de la matrice A et ceux de l’endomorphisme φA.

Q8. Montrer pour tout k ∈ N que φk
A = φAk .

Q9. En déduire pour tout polynôme P ∈ C[X] que P (φA) = φP (A).

Q10. Rappeler la caractérisation de la diagonalisabilité d’une matrice ou d’un endomorphisme à l’aide
d’un polynôme annulateur. En déduire que la matrice A est diagonalisable si et seulement si
l’endomorphisme φA est diagonalisable.

Q11. On note χA le polynôme caractéristique de A. Montrer que χA(φA) est l’endomorphisme nul.
En déduire une inclusion entre l’ensemble des valeurs propres de A et l’ensemble des valeurs
propres de φA, puis que la matrice A et l’endomorphisme φA ont les mêmes valeurs propres.

Q12. Soit λ ∈ C une valeur propre de A. Montrer qu’une matrice M ∈ Mn(C) est dans le sous-espace
propre Eλ(φA) de φA pour la valeur propre λ si et seulement si chaque colonne de la matrice
M est dans le sous-espace propre Eλ(A) de la matrice A pour la valeur propre λ.

On déduit directement de la question précédente que pour toute valeur propre λ ∈ C de la matrice
A, l’application Ψ qui à toute matrice deMn(C) associe le n-uplet de ses colonnes :

Ψ ∶
⎛
⎜
⎝

m1,1 ⋯ m1,n

⋮ ⋮
mn,1 ⋯ mn,n

⎞
⎟
⎠
↦
⎛
⎜
⎝

⎛
⎜
⎝

m1,1

⋮
mn,1

⎞
⎟
⎠
, . . . ,

⎛
⎜
⎝

m1,n

⋮
mn,n

⎞
⎟
⎠

⎞
⎟
⎠

est un isomorphisme du sous-espace propre de Eλ(φA) sur Eλ(A)n.

Q13. Dans le cas où la matrice A est diagonalisable, déduire des résultats de cette partie une
expression du déterminant et de la trace de φA en fonction du déterminant et de la trace
de A.
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Exercice 2 : Étude d’une famille de séries entières

Dans tout l’exercice, α désigne un nombre réel. On note Dα l’ensemble des réels x pour lesquels la
série entière ∑

n⩾1

xn

nα
est convergente et on pose, pour tout x ∈ Dα :

fα(x) =
+∞

∑
n=1

xn

nα
.

Objectifs

Cet exercice est composé de deux parties indépendantes.

Dans la Partie I, on étudie quelques propriétés élémentaires des fonctions fα.

L’objectif de la Partie II est de construire un logarithme complexe.

Partie I - Quelques propriétés des fonctions fα

Q14. Donner le rayon de convergence commun aux séries entières définissant les fonctions fα.

Q15. Montrer que :

a) si α ∈] −∞,0] alors Dα =] − 1,1[,
b) si α ∈]0,1] alors Dα = [−1,1[,
c) si α ∈]1,+∞[ alors Dα = [−1,1].

Q16. On suppose dans cette question α > 0. Déterminer, pour tout x ∈ Dα, le signe de fα(x).

Q17. Déterminer f0 et montrer que pour tout x ∈] − 1,1[ :

f−1(x) =
x

(1 − x)2 et f1(x) = − ln(1 − x).

Q18. Soit α > 1. Prouver que fα est continue sur [−1,1].

Q19. Soit α ⩽ 1. Prouver que lim
x→1−

fα(x) = +∞. On pourra comparer fα à f1.

Partie II - Un logarithme complexe

Q20. Donner sans démonstration le développement en série entière au voisinage de 0 de la fonction
qui à x ∈] − 1,1[ associe ln(1 + x).

Pour tout nombre complexe z, tel que la série ∑
n⩾1

(−z)n
n

est convergente, on note : S(z) = −
+∞

∑
n=1

(−z)n
n

.

3



Q21. Donner le rayon de convergence R de la série entière définissant S.
Pour tout x réel élément de ] −R,R[, déterminer la valeur de exp(S(x)).

Soit z0 ∈ C tel que ∣z0∣ < R. On considère la série entière de la variable réelle t suivante :

∑
n⩾1

(−1)n−1 z
n
0

n
tn.

En cas de convergence, on note g(t) sa somme.
On a donc, pour t ∈ R tel que la série est convergente, g(t) = S(tz0).

Q22. On note r le rayon de convergence de la série entière définissant g.

Montrer que si z0 = 0 alors r = +∞ et si z0 ≠ 0 alors r = 1

∣z0∣
.

Q23. Prouver que g est définie et de classe C∞ sur [0,1].
Déterminer g′(t) pour tout t ∈ [0,1].

Q24. On pose h = exp ○g. Prouver que pour tout t ∈ [0,1] :

h′(t) = z0
1 + tz0

h(t).

Q25. Montrer que la fonction t↦ 1+tz0 est une solution de l’équation différentielle y′(t) = z0
1 + tz0

y(t)
sur [0,1]. En déduire que :

exp(S(z0)) = z0 + 1.

Exercice 3 : Un développement en série entière

Soit ψ la fonction de la variable réelle x définie par :

ψ(x) = 2

π ∫
π
2

0

√
1 + x(sin t)2 dt.

Q26. Montrer que la fonction ψ est bien définie sur [−1,1].

Q27. Montrer que pour tout u ∈] − 1,1[, on a
√
1 + u =

+∞

∑
n=0

(−1)n−1
2n − 1

(2n)!
22n(n!)2u

n.

Q28. Montrer que ψ est développable en série entière sur ] − 1,1[ et que l’on a :

∀x ∈] − 1,1[, ψ(x) =
+∞

∑
n=0

(−1)n−1
2n − 1

(2n)!
22n(n!)2

2

π
Inx

n

où pour tout n ∈ N, In = ∫
π
2

0
(sin t)2n dt.

Q29. Montrer que pour tout n ∈ N, on a In+1 =
2n + 1
2n + 2In.

Q30. En déduire que pour tout n ∈ N, In =
(2n)!

22n(n!)2
π

2
.

4



Exercice 4 : Une équation différentielle

On considère l’équation (E) :

∀x ∈ R, x2y′′(x) + xy′(x) − (x2 + x + 1)y(x) = 0

où y est une fonction inconnue de classe C2 sur R.

Q31. Soit y de classe C2 une solution de (E). Calculer y(0).

On cherche une solution f de (E) développable en série entière et telle que f ′(0) = 1.
On suppose qu’il existe R > 0 tel que, ∀x ∈] −R,R[, f(x) =

+∞

∑
n=0

anx
n.

Q32. Montrer que l’on a :
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀n ⩾ 2, (n2 − 1)an − an−1 − an−2 = 0
a0 = 0
a1 = 1

Q33. Montrer, en utilisant un raisonnement par récurrence, que : ∀n ⩾ 1, ∣an∣ ⩽
1

(n − 1)! .

Q34. Justifier alors que la fonction f est définie sur R.

Soit y une fonction de classe C2 sur R solution de (E). On pose, pour tout x réel, z(x) = xy(x)ex.

Q35. Calculer z(0) et z′(0).

Q36. Prouver que z′ est solution sur R de l’équation

xu′(x) − (2x + 1)u(x) = 0 (F )

d’inconnue la fonction u de classe C1 sur R.

Q37. Résoudre sur R∗+ l’équation différentielle :

u′ − (2 + 1

x
)u = 0.

On admet que les seules solutions de (F ) sur R tout entier sont les fonctions de la
forme x↦ cxe2x avec c ∈ R.

Q38. Démontrer qu’il existe un réel a tel que :

∀x ∈ R, z(x) = a(2x − 1)e2x + a.

Q39. Déterminer alors une expression de f à l’aide des fonctions usuelles.
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