LycEE VIcTOR HUGO — BESANCON
PC* ANNEE 2025-2026

CORRIGE DU DEVOIR SURVEILLE 4 (sujet 1)

EXERCICE 1 — Etude d’un endomorphisme matriciel (d’apres CCINP 2025 PC)

Partie | — Généralités

Q1. Soit A € #,(C).
Puisque le produit de deux matrices de .#,(C) est bien défini, et est dans .#,(C), p4 est correctement définie
sur #,(C), a valeurs dans ., (C).
De plus, pour tout (M, N) € .#,,(C)? et pour tout (A, u) € C? :

Pa(AM + uN) = AAM + uN) = MAM + pAN = Apa(M) + ppa(N)

 est donc une application linéaire définie sur .4, (C) a valeurs dans .4, (C), donc un endomorphisme de .4, (C).
Q2. Pour tout (4, B) € #,(C)?, pour tout M € .#,(C) :

paopp(M) =palpp(M)) = pa(BM)=A(BM) = (AB)M = pap(M),

et donc w40 pp = Pap.
Q3. --» Si A est inversible, alors, d’apres Q2., pa0pa-1 = paa-1 = o1, = Id 4, (), et, de méme,
pa-109pa=1Id 4, ()

Par conséquent, ¢ 4 est bijective, et sa réciproque est @ 4-1.

--» Réciproquement, supposons ¢4 : 4, (C) — #,,(C) bijective.
En particulier, la matrice I,, posséde un unique antécédent par ¢ 4 : il existe une unique matrice B € .#,,(C)
telle que w4 (B) = 1,,. Cette derniére égalité se récrit AB = I,,, ce qui justifie que A est inversible (et que
B est son inverse).

Partie 1l — Etude d’un exemple
X -1 —1
0 X —a
--» sia # 1, alors A posséde exactement deux valeurs propres distinctes (& savoir a et 1), et puisque A € .#5(C),
A est diagonalisable ;

Q4. xa = = (X —1)(X — a), donc deux situations se présentent :

--» si @ = 1, alors A possede 1 pour unique valeur propre, et si A était diagonalisable, alors il existerait

P € GLy(C) tel que A = P x (é ?) « P~1 = pp=1—T1,.

Puisque A # I, cette conclusion est fausse, et A ne peut donc pas étre diagonalisable lorsque a = 1.

Par conséquent, A est diagonalisable si et seulement si a # 1.

1 0 0 1 00 00
Q5. On note Ey 1 = (O O)’ Eq9= <O 0)7 Esy = (1 0) et Epp = (0 1)'

On calcule les images des éléments de C par ¢ :

1 1 1 0 1 0
YA (El,l) = 0 a X 0 0 = 0 0 =111+ 0E; 2+ 0E3 1 + 0E5 2
1 1 0 1 0 1
va(Ei2) = 0 o) Vo o)/=\o o)= 0F11+1E12+0Ey1 +0E;
1 1 0 0 1 0
va(E21) = 0 o) *\1 o)=\a 0)= 1E11 +0E1 2 +aks 1 +0Fs o
1 1 0 0 0 1
va(Eapo) = 0 o) Vo 1)=\0 &)= 0F11+1E; 2+ 0E3 1 +aFs o
1 0 1 O
et on en déduit que Matc(pa) = 8 (1) 2 (1)
0 0 0 a

Q6. Puisque la matrice précédente est triangulaire supérieure, on montre rapidement que x,, = (X — 1)*(X — a)?,
et donc Sp(pa) = {1,a}.



Qr.

0 0 1 0
00 0 1 . .
De plus, Matc(pa —1Id_4,(c)) = 00 a1 0 est de rang 2 (quelle que soit la valeur de a puisque

0 0 0 a—1
les colonnes Cy et Co sont nulles et les colonnes C3 et Cy ne sont pas colinéaires) donc par la formule du rang,
dim(E(pa)) = dim(Ker(pa —Id_z,(c))) = dim(.#2(C)) —rg(pa — 1d 4, (c)) = 2.
1—a 0 1 0
0 l1—a 0 1
0 0 0 0
0 0 0 0
C) est colinéaire a C3 et Cy est colinéaire a Cy), donc dim(Eq(pa)) = dim(Ker(pa — ald_z,(c))) = 2.

De méme, Matc(pa — ald_4,c)) = est de rang 2 (car C5 et Cy ne sont pas colinéaires,

--» Sia # 1, ¢ 4 posséde deux valeurs propres distinctes, & savoir 1 et a, et puisque dim(FE1 (¢ 4))+dim(E,(¢a)) =
2+2=4=dim(#>(C)), pa est diagonalisable.

--» Si a =1, alors ¢4 posséde 1 pour unique valeur propre, et comme dim(E;(p4)) = 2 # 4 = dim(.#2(C)),
w4 n'est pas diagonalisable.

Finalement, ¢4 est diagonalisable si et seulement si a # 1.

Partie Il1 — Réduction de ¢4 si A est diagonalisable

Qs.

Q9.

Q1o0.

Q11.

On a vu en Q2. que, pour tout B € #,(C), va0pp = vaB.

En particulier, ¢% = ¢ 42.

On en déduit rapidement, par récurrence, que, pour tout k € N*, <p’j‘ = k-

Par ailleurs, ¢ 40 = ¢1,, =1Id 4, (c) = ©Y : Pégalité ci-dessus demeure donc vraie lorsque k = 0.

d
Soit P € C[X] : il existe d € N et (ag, .. .,aq) € CH! tels que P = > ap X*.
k=0

Pour toute M € .#,(C) :

d

d d d d
[Plpa)] (M) = lz aw’i;] (M) = [Z ak‘PAk] (M) =) arpar(M) =Y apA*M = (Z akAk> M = @p(a)(M)
k=0 k=0 k=0 k=0

k=0

d’apres Q8.

On a ainsi montré que P(¢4) = ¢p(a)-

Une matrice (resp. un endomorphisme) est diagonalisable si et seulement si elle (resp. il) posséde un polynéme
annulateur scindé dont les racines sont toutes simples.

--+ Si A est diagonalisable, alors il existe un polynéome P scindé dont les racines sont toutes simples tel que
P(A) =04, )
Par conséquent, P(¢p4) = ©pa) = 0.4, = 0z, (C)) : pa possede donc un polyndome annulateur dont
les racines sont toutes simples (& savoir P) : ¢4 est donc diagonalisable.

--» Réciproquement, supposons ¢4 diagonalisable : il existe donc un polynéme P scindé dont les racines sont
toutes simples tel que P(p4) = Og(//[” @), €t donc Pp) = Og(ﬁn(c)).
Par conséquent, pour toute matrice M € #,,(C), P(A) x M = 0. Cette égalité étant valable, en particulier,
pour M =1, on en déduit que P(A) =0_4, ) : A possede donc un polynéme annulateur dont les racines
sont toutes simples (& savoir P), et donc A est diagonalisable.

D’aprés Q9., XA(@A) = Pxa(A)-

Or, d’apres le théoreme de Cayley-Hamilton, xa(A) = 0.4, «)-

Done xa(pa) = ¢0.4, ¢, = 0z (. ()

Ainsi, x4 est un polynéme annulateur de ¢4 : on en déduit que les valeurs propres de ¢4 sont parmi les racines
de x4, qui sont les valeurs propres de A. Autrement dit, Sp(p4) C Sp(A).

D’autre part, toujours par le théoreme de Cayley-Hamilton, x,,(v4) = 0.2, c)), et, d'aprées Q9., x,,(va) =
Pxp4(A):

Par conséquent, ©xo, (4) = 02z, (C)), b, en raisonnant comme a la fin de la question Q10., on en déduit que
Xea(A) =04, ), puis, comme dans la démarche ci-dessus, on en déduit que Sp(A) C Sp(pa).

Finalement, Sp(A) = Sp(pa4).



Q12. Soit M € #,,(C). Notons C4,...,C,, les colonnes de M, de sorte que I’on peut écrire par blocs : M = (C; - -- Cy,).

M € Ex(pa) pa(M) =AM

AM =M
AX(Cy---Cp)=(AC1---AC)
(AxCy---AxCp)=(AC1---AChy)
Vke[l;n],AxCy=MACy

Vk e [1;n],Cy € Ex(A)

rreeee

Q13. Notons Aq,...,\, les valeurs propres (deux a deux distinctes) de A, et r1,...,7, leurs ordres de multiplicité
respectifs.

k_lrk)\k et det(A) = kl;ll PV

De méme, comme X, est scindé sur C, la trace de p4 est la somme de ses valeurs propres (comptées avec leur

multiplicité) et le déterminant de ¢ 4 est le produit de ses valeurs propres (comptées avec leur multiplicité).

De plus, d’aprés Q11., Sp(pa) = {A1,..., Ay} et, d’apres la remarque qui suit la question Q12., pour tout

k € [1;p], les espaces Ej, (¢a) et Ex, (A)™ sont isomorphes, donc dim(Ey, (¢4)) = dim (Ej, (A)") = ndim(Ej, (A)).

Puisque A est diagonalisable, pour tout k € [1;p], dim(E\, (A)) = 7&, et donc dim(E\, (pa)) = nr.

Comme A est diagonalisable, ¢4 aussi d’aprés Q11. donc pour tout k € [1;p], la multiplicité de la valeur preuve

Ak pour @4 est égale a nrg.

P p
Comme x4 est scindé sur C (comme tout polynéme non constant), on a tr(A) =

P P p p "
Par conséquent, tr(pa) = > nrpAp =n Y rpAp = ntr(A) et det(pa) = [[ Ay™ = <H AZ’“) = det(A)™.
k=1 k=1 k=1 k=1

EXERCICE 2 — Etude d’une famille de séries entiéres (daprés CCINP 2021 PSI)

Partie | — Quelques propriétés des fonctions f,

14. On sait par le cours que le rayon de convergence des séries enticres nPz" pour tout B € Rest 1. En appliquant
g
n>1
ce résultat avec ﬁ = —Q, On obtient que :

xn
pour tout « € R, R Zn—a =1.
n>1

Q15. 7, est 'ensemble de définition d’une somme de série entiere de rayon de convergence égal a 1 donc d’apres le

cours, on a :
| —1,1[C o C [-1,1].

(-1

1
Il reste a discuter, selon la valeur de «, de la nature des séries E — et E
« na

n>1 n>1

1
On sait que la série de Riemann E — converge si et seulement si a > 1.
n

n>1

On en déduit que 1 € Z,, si et seulement si o > 1.

P —1)™

Etudions maintenant la nature de la série Z %

n>1
. . 1" . _ i 0 . 1"
Si a €] —o0,0] alors lim ()i — lim po={ T° s> Comme la suite (=1 ne converge
n—-+400 n< n—-+oo 1 siaa=0. n< n>1

(="

e}

diverge donc grossiérement.

_1\n
pas vers 0 alors la suite (( a) > ne converge pas vers 0 et la série Z
n n=1 n>1
On peut donc déja conclure que :

’a) si o €] — 00, 0] alors 9, =| — 1,1[.‘

(=D"

na

Si « €]0,1] alors la série Z

- . 1 . 1
est une série alternée car pour tout n € N*, — > 0. Comme la suite —
n>1 n n>1
=

(=n"

[e3

tend vers 0 et est décroissante (car > 0), on en déduit par le critére spécial des séries alternées que la série E

n>=1
converge.

Ainsi :

‘b) si a €]0,1] alors 2, = [—1,1[.‘




-n" 1
Si « €]1,400[ alors la série Z ( converge absolument puisque la série Z — converge.
n(l/,
n=1 n=1
Ainsi :
‘c) si o €]1, 400[ alors 7, = [—1, 1]‘
Q16. Soit x € Z,.
n
Si x > 0 alors pour tout n € N*, a2 > 0 donc par somme, f,(x) > 0.
-1 —z)"
Si x < 0 alors la série Z Z est une série alternée car pour tout n € N*, (=2) > 0. Comme la
noz
n>1 n>1

x
suite <a> tend vers 0 (comme |z| < 1, c’est le produit d’une suite bornée et d’une suite qui tend vers 0 puisque
n>1

a > 0) et est décroissante (en tant que produit de deux suites décroissantes et positives), on en déduit par le critere
n

, . . . x . . .
spécial des séries alternées que la somme g — est du signe de son premier terme donc fa(x) est du signe de x donc
n

n=1

falz) 0.

‘Pourtoutxe@a, fa(x) 20siz>0et fa(:z:)g()sixg().‘

Q17. On sait par le cours (série géométrique) que :

pour tout = €] — 1, 1], Zx
400 1
On sait que pour tout = €] — 1,1], " = .
que p ] 5> T2
n=0
+o0
En tant que somme d’une série entiere, on peut dériver x — Z 2" terme & terme sur son intervalle ouvert de conver-
n=0
gence. On en déduit que :
1
Vo €] —1,1|, ng"t=—— .
g St =
En multipliant par z, on obtient :
our tout z €] —1,1], nx" .
p ] Lz:l - x)g

too (_1)n+1
On sait que pour tout w €] — 1,1, In(1 + u) = E -
n
n=1

Ainsi, pour tout x €] — 1, 1], comme —x €] — 1,1[, on a :

+o0 +oo1
n(l —u) Z —)"a:":—zzlﬁx”.
n=1 n—

On en déduit que :

pour tout = €] —1,1] Z—:—lnl—m).

Q18. Avec ] —1,1], il est facile de répondre a la question posée : en tant que somme d’une série entiére, f, est continue
sur son intervalle ouvert de convergence donc f, est continue sur | — 1, 1[ (et ceci est vrai pour tout réel «).
Dans le cas a > 1, prouvons qu’elle est continue sur [—1, 1].
xn
Pour tout n € N*, posons g,, : z +— —.
n
* Pour tout n € N*| g,, est continue sur [—1, 1] (fonction polynomiale).
z|" z"
* On a pour tout n € N*| ||gn||£;1 U= sup % = sup — = — par parité puis croissance de la fonction sur
z€[-1,1] T z€l0,1] T n

[0, 1].

- . 1
Or, la série de Riemann Z - converge (a>1).
n>=1



On en déduit que la série ), - g, converge normalement donc uniformément sur [—1, 1].
=
Ainsi, par le théoréme de continuité des sommes de séries de fonctions :

‘la fonction f, est continue sur [—1,1]. ‘

n n
Q19. Soit z € [0,1]. On a pour tout n € N*, 0 < n® < n donc x—a > r (puisque ™ > 0) d’ou par somme (séries
n n
convergentes) : fq(x) > f1(x).
Or, on sait que fi(z) = —In(1 —z) — +oo.
r—1-
Par inégalité, on en déduit que :
lim f,(x) = 4o0.
r—1—
Partie Il — Un logarithme complexe
Q20. On sait par le cours que :
+oo
our tout x €] — 1,1, In(1 + x) = ﬂx"
p ) )
n=1 n
(_1)n+1
Q21. On s’intéresse a la série entiere Z — 2"
n=1
(71)n+1
On a pour tout n € N*, a,, = #0et:
Gnt1 :1/n+1: 1 -
A, l/n 1+ % n—+o00

Par le critere de d’Alembert, on en déduit que :

1
= - = ]_
r 1
S~ =y
Pour tout z €] — 1,1[, on a S(z) = Z ———a" =In(l+ ).
n=1
Ainsi :
‘pour tout z €] — 1,1, exp(S(z)) =1+ z. ‘
Q22. Si zg =0alorsr=R Z 0t"™ | = +oo (série entiére nulle, convergence pour tout réel t).

n>1

Si zg # 0 alors pour tout n € N* b, = (71)”*12—0 #0et:
n

bni1 20 ntl/p +1 1
ZJF = | | |n// = |ZU|1 1 n—>—+>oo|zo|'
n z0|/m + poy
Par le critere de d’Alembert, on en déduit que r = ﬁ
20

Ainsi :

sizO:Oalorsr:+ooetsizo;«éOalorsr:ﬁ
20

Q23. Comme |z| < 1, on a toujours r > 1.

Or, en tant que somme de série entiére, g est de classe €°° sur son intervalle ouvert de convergence et les dérivées s’y
obtiennent par dérivation terme a terme.

Comme [0, 1] C] —r,r[, on en déduit que :

‘g est définie et de classe € sur [0, 1]. ‘

On a de plus pour tout ¢ € [0,1] :

+oo on “+oo +oo
! t) = -1 n—1~°0 tn—l _ —t n—1 _ —t n.
g'(t) nz::l( )t 20 ;( 20) 20 nz::o( 20)



On reconnait une somme géométrique (avec | — tzg| < |2zo| < 1) donc :

2o
1 + tZO ’

pour tout ¢ € [0,1], ¢'(t) =

Q24. Comme g est dérivable sur [0, 1] & valeurs complexes, on sait par le cours (PCSI) que h est dérivable sur [0, 1]
et on a :

20
tout ¢ € [0,1], K (t) = ¢'(t 1)) = h(t
pour tout 1 € 0, 1], W(1) = g/ (1) explg(1) = 12—
Q25. La fonction ¢ : t — 1+ tz est dérivable sur [0, 1] et a pour dérivée ¢ — z.
20 <0
Pour tout ¢ € [0, 1], t) = 14 t20) = 20 = ().
our tou [0,1] 1+t20<ﬁ() 1+tz0( +tz0) = 20 = ¢'(1)
Donc :
la fonction ¢ — 1+ tzg est bien une solution de 1’équation différentielle y/'(t) = 1 —fot y(t) sur [0,1].
20

On a de plus ¢(0) = 1 et h(0) = exp(g(0)) = exp(0) = 1. a0

+ tZ()

y'(t) —

. y(t) =0
y(0) =1

—20
S
1 + tZO

Ainsi, ¢ et g sont deux solutions du probléme de Cauchy sur [0,1] (on a bien ¢t —

%([0,1],C)).
Or, un probléme de Cauchy admet une unique solution donc on en déduit que pour tout ¢ € [0,1], h(t) = p(¢).
En particulier, h(1) = ¢(1) ce qui donne :

[exp(S(20) = 1+ 20,

EXERCICE 3 —Un développement en série entiére (d’apres CCINP 2005 PC)

Q26. Soit x € [—1,1]. On a pour tout ¢ € [0, 5], |zsin®¢| < |#| < 1 donc zsin®t > —1 donc 1 + zsin®t > 0.

On en déduit par composition de fonctions continues que la fonction ¢ ++ /1 + xsin?t est continue sur le segment
[0, 5] donc I'intégrale définissant 1)(x) existe bien en tant que réel.
Ainsi :

‘la fonction 1 est bien définie sur [—1,1]. ‘

Q27. D’apreés le cours, on a pour tout u €] — 1,1 :

+o0 1/1 1
A E-n+1
Vitu=(1+u)'?=1+) (g DGt l) .

n!

n=1

+oo
14 Z 1L(=1)(=3)...(—(2n — 3))u”

2nn!
n=1

1)"11.3...(2n — 1)
=1 n
+Z 2n— 120l ¢

) 1123 .(2n —1)(2n)
=1 n
+ Z 124, (2n)

n 1 271)
=1 ",
+Z 2n—1 220 ()2 "

Comme le terme pour n = 0 vaut bien 1, on en déduit que :

n 1 (2n)
2n —1 92n (nl)

pour tout u €] — 1, 1], ona\/l—i—U—Z

n

Q28. Soit z €] — 1,1[.
On a pour tout ¢ € [0, Z], |zsin®(t)| < |z| < 1 donc xsinQ(t) €] — 1, 1] donc par la question précédente :

n 1 2)!
V14 xsin?t = (2n)! 21‘"51112”1?.

<—1>H (20)!
2n — 1 22 (p1)?
Pour tout n € N, la fonction f, est continue sur [0, 7].

" sin

Pour tout n € N, on note f,, la fonction ¢ — g,



Montrons que la série de fonctions Z [n converge normalement sur [0, 7).
Soit n € N. On a pour tout t € [0, 5] :

(1" (2n)!

Qnt
2n —1 220 (pl)

1 2
= 2n—122(n(n))2|x|n (ne dépend pas de t).

n ..
QI s

Ainsi

1 (2n)! "
S — WM est un majorant de {|f,(t)|,t € [0, 5]} et ||an Pest le plus petit majorant de cet ensemble

donc : ) 2 )
[072] n n
1 (2n)!
n—1292n (p)?

—/1—|z| avec |z] €] = 1,1][.

On en déduit par comparaison que la série Y || fn||([>00’5] converge.

La série numérique E 5 |z|" converge par ce qui précede puisqu’on reconnait la série entiere de somme

Ainsi, la série de fonctions E fn converge uniformément sur [0, 7] et on peut donc intégrer terme a terme :

)"~ (2n)! 2n e G R ) L R
Z/ 2n—1 22 (n ')Qx sin“" ¢ dt = Z o 22"(71!)2 ;/0 sin“"t dt | x

n=0

Ainsi :

n

X (=nmt @2 2
la fonction 1) est développable en série entiére et pour tout z €] — 1,1[, ¢(z) = Z 5 T gn ( ')2 -1,
n — n(nph)~m

n=0

Q29. Soit n € N.
Les fonctions ¢ + sin?" !¢ et t ++ — cost sont de classe € sur [0, 7] et on a par intégration par parties :

™

Lip1 = /02 sin2" 1 () sin(t) dt = [sin®" () x (— cos(t))]¢ _/0 (2n + 1) sin®*(¢) cos(t) x (— cos(t)) dt

[NE]

=0+ (2n+1)

=(2n+1) (/0 sin®" (t) dt — /0 sin?( 1 (¢) dt)

sin?"(¢)(1 — sin?(t)) dt

S—
[NE]

On a donc (2n+ 1)1, = (2n+ 2) L, 41.

Ainsi :
2n+1
tout n € N, 1, = — n
pour tout n =5
On a:
2 T
Iy = / 1dt=—.
O 2
Mont fout n € N, I = !
ontrons par récurrence que pour tout n € W’R’.
2 x 0)!
Initialisation : Pour n =0, on a 22(X0+1(())!)27T = g = Iy.
2 2 2)!
Hérédité : Soit n € N tel que I, = 22n(+1n()')77. Montrons que 41 = QQWEBZL(T;F_’_):[)!)ZW
2 1
Onal,y = %In d’apres ce qui précede donc en utilisant I’hypothése de récurrence, on obtient :
n
7 2n+1 (2n)! (2n 4+ 1)! (2n+2)(2n + 1)! (2n +2)!
n = T = m = m = ™
T on 2 22n+1(pl)2 2(n + 1)22n+1(nl)2 22(n + 1)222n+1(n!)2 22n+3((n 4 1)1)2
Conclusion :

(2n)!

Pour tout TLGN I = Wﬂ'




Par suite :

1t \n—1 n)! 2
pour tout z €] =1, 1[, () = (in)f 1 (22("2(2!')2> "

EXERCICE 4 —Une équation différentielle (d’apres E3A 2025 PC)
Q31. Sion évalue (E) pour z = 0, il vient : y(0) = 0.
Q32. On peut commencer par observer que ag = f(0) = 0 (d’aprés Q31.) et a; = f/(0) = 1 (par hypothese).

De plus, en tant que somme d’ une Série entiere, f est de classe € sur | — R; R[ et, pour tout = €] — R; R|,
:Zannx et f(x Zan (n—1zx
n=1
Ainsi, puisque f est solution de ( z2 Z apn(n —Dz" % 4z Z apnx " — (:1:2 +x+ 1) Z anz"” =0
n=1 n=0
—+oo
Puisque 22 Z apn(n — 1)z Z apn(n —1)z" x Z apnz" Z apnz” et :
n=2 n=0
+oo +o00 400 400
(1‘2 + x4+ 1) Z apx” = Z anz"t? 4+ Z anz™ Tt 4+ Z anx"
n=0 n=0 n=0 n=0
“+o0 “+ o0 400
= Z ap—2z" + Z an—17" + Z anpr”
n=2 n=1 n=0
—+oo
= ap+ (ap+ar)z+ Z(an,g +an—1+ ap)z"
n=2

Pégalité issue de (E) se réécrit alors :

+o00 +o0 too
Z apn(n —1)z"™ + Z ap,nx’™ — (ao + (ap 4+ a1)x + Z(an_g +ap_1 + an)x”> =0
n=0 n=0

n=2
—+o0
ou encore : a1 — ag — (ag + a1)x + Z(—an_g —ap—1+ (n(n—1)+n—1)a,)z" =0.
n=2

Par unicité des coefficients d’une série entiere, on en déduit que ag = 0 et, pour tout n > 2 :

Ap—2 + Gp—1 — (n2 - 1) an = 0.

1
Q33. Raisonnons par récurrence (double) et posons, pour tout n € N*, Z(n) : |a,| < ( ok
n—1)!
a; +a 1 1 1
--» Puisque a1 =1 et ay = 212+ 10 =3 les inégalités a1 < o et as < I sont vérifiées.

--» Soit n € N* tel que Z(n) et &(n + 1) sont vraies : montrons & (n + 2).
Puisque, d’apres Q32., ((n +2)2 — 1) (pi2 = Qpa1 + Gy, il vient :

‘a 2‘ < |a'n+1| |an‘
LS I3 mnt1) | (nt3)(ntl)
1 1
< d’apre t 1
A xnl T s 1) x (n 1) Lapres Zn) et Zn 1)
_ 1 (L, »
C (n+ 1) \n+3 n+3
—sH
.1
S (n+ 1)

P(n+ 2) est donc vraie.

On conclut & 1'aide du principe de récurrence (double).



Q34.

Q35.

Q36.

Q37.

Q3s.

Q39.

‘ n =" 2" 2"~ -
Pour tout = € R et pour tout n € N*, |a,z"| < ;= |z] x -———, et comme Z =1y est une série

(n—1)! (n—1)V" n—1)!
(exponentielle) convergente, par comparaison de séries & termes positifs, > |a,2™| est convergente, autrement
dit > a,x™ est absolument convergente, donc convergente.

La fonction f est donc définie sur R (R = 400).

2(0) = 0 x y(0) x e = 0.

De plus, z est dérivable et, pour tout « € R, z'(x) = y(x)e® + zy'(x)e” + xy(x)e”, donc 2/ (0) = y(0) = 0.
Pour tout z € R :

Zx) = y(x)e” +y(@)e” +y (x)e” +ay’(z)e” +ay'(z)e” +y(x)e” + a2y (x)e” + zy(z)e”
= e (2y"(z) + (24 22)y'(z) + (2 + 2)y(2))
Par conséquent, pour tout x € R :

22" (x) — (22 + 1)/ (x)

ze” (zy” () + (2 + 22)y () + (2 + 2)y(x))

@0 1) (y(@)e” + 2y (@) + y(e)e”)
= " (@ (@) + oy (1) = (2 + 2+ 1) (o))
= 0.

1
u — (2 + ) u = 0 est une équation différentielle linéaire homogéne du premier ordre.
x

1
Puisque  — —(2z + In(x)) est une primitive de z — — (2 + > sur R, les solutions de notre équation
x

différentielle sont les fonctions de la forme z — \e?*T(®) = \ze?® o A € R.

Puisque 2’ est solution de (F) sur R, il existe ¢ € R tel que, pour tout = € R, 2/(x) = cxe?®.
Comme z(0) = 0, on en déduit que, pour tout x € R :

z(x) = /cteztdt
0

2t z 2t
e e e . .
= ¢ ([t X - } —/ 1x 5 dt) (intégration par parties)
0

En posant a = ¢/4, on obtient le résultat voulu.

Puisque f est une solution de (E), développable en série entiere sur R, elle est en particulier de classe €2 sur R
donc d’apres Q38. : il existe donc a € R tel que, pour tout z € R, zf(x)e® =a ((2:c —1)e?* + 1).

T _ T h
Par conséquent, pour tout € R*, f(z) =a <26I — ee) =2a <e"” B (x))
x x

On peut réécrire, pour tout z € R* :

+o0 " 1 +o0 Z.2n+1 +o0 " +oo x2n
= 2 _—— = T vy = 2 - 7o L1\ :

Cette écriture demeure valable pour = 0 puisque f(0) = 0. Ce développement en série entiére nous donne
£'(0) = 2a (coefficient de x dans le développement en série entiere), et comme f'(0) =1, a = 1/2.
sh(x)

T

six #0

Par conséquent, pour tout x € R, f(x) = ¢
0 sinon

On pourrait conclure ce raisonnement par la réciproque, c'est-a-dire vérifier que la fonction finalement obtenue est
bel et bien solution de (E) sur R, mais ca n'est pas explicitement demandé.



