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EXERCICE 1 – Étude d’un endomorphisme matriciel (d’après CCINP 2025 PC)

Partie I – Généralités
Q1. Soit A ∈ Mn(C).

Puisque le produit de deux matrices de Mn(C) est bien défini, et est dans Mn(C), φA est correctement définie
sur Mn(C), à valeurs dans Mn(C).
De plus, pour tout (M,N) ∈ Mn(C)2 et pour tout (λ, µ) ∈ C2 :

φA(λM + µN) = A(λM + µN) = λAM + µAN = λφA(M) + µφA(N)

φ est donc une application linéaire définie sur Mn(C) à valeurs dans Mn(C), donc un endomorphisme de Mn(C).
Q2. Pour tout (A,B) ∈ Mn(C)2, pour tout M ∈ Mn(C) :

φA ◦ φB(M) = φA(φB(M)) = φA(BM) = A(BM) = (AB)M = φAB(M),

et donc φA ◦ φB = φAB .
Q3. 99K Si A est inversible, alors, d’après Q2., φA ◦ φA−1 = φAA−1 = φIn

= IdMn(C), et, de même,
φA−1 ◦ φA = IdMn(C).

Par conséquent, φA est bijective, et sa réciproque est φA−1 .
99K Réciproquement, supposons φA : Mn(C) −→ Mn(C) bijective.

En particulier, la matrice In possède un unique antécédent par φA : il existe une unique matrice B ∈ Mn(C)
telle que φA(B) = In. Cette dernière égalité se récrit AB = In, ce qui justifie que A est inversible (et que
B est son inverse).

Partie II – Étude d’un exemple

Q4. χA =
∣∣∣∣X − 1 −1

0 X − a

∣∣∣∣ = (X − 1)(X − a), donc deux situations se présentent :

99K si a ̸= 1, alors A possède exactement deux valeurs propres distinctes (à savoir a et 1), et puisque A ∈ M2(C),
A est diagonalisable ;

99K si a = 1, alors A possède 1 pour unique valeur propre, et si A était diagonalisable, alors il existerait

P ∈ GL2(C) tel que A = P ×
(

1 0
0 1

)
× P−1 = PP−1 = I2.

Puisque A ̸= I2, cette conclusion est fausse, et A ne peut donc pas être diagonalisable lorsque a = 1.
Par conséquent, A est diagonalisable si et seulement si a ̸= 1.

Q5. On note E1,1 =
(

1 0
0 0

)
, E1,2 =

(
0 1
0 0

)
, E2,1 =

(
0 0
1 0

)
et E2,2 =

(
0 0
0 1

)
.

On calcule les images des éléments de C par φ :

φA (E1,1) =
(

1 1
0 a

)
×
(

1 0
0 0

)
=
(

1 0
0 0

)
= 1E1,1 + 0E1,2 + 0E2,1 + 0E2,2

φA (E1,2) =
(

1 1
0 a

)
×
(

0 1
0 0

)
=
(

0 1
0 0

)
= 0E1,1 + 1E1,2 + 0E2,1 + 0E2,2

φA (E2,1) =
(

1 1
0 a

)
×
(

0 0
1 0

)
=
(

1 0
a 0

)
= 1E1,1 + 0E1,2 + aE2,1 + 0E2,2

φA (E2,2) =
(

1 1
0 a

)
×
(

0 0
0 1

)
=
(

0 1
0 a

)
= 0E1,1 + 1E1,2 + 0E2,1 + aE2,2

et on en déduit que MatC(φA) =


1 0 1 0
0 1 0 1
0 0 a 0
0 0 0 a

.

Q6. Puisque la matrice précédente est triangulaire supérieure, on montre rapidement que χφA
= (X − 1)2(X − a)2,

et donc Sp(φA) = {1, a}.
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De plus, MatC(φA − IdM2(C)) =


0 0 1 0
0 0 0 1
0 0 a− 1 0
0 0 0 a− 1

 est de rang 2 (quelle que soit la valeur de a puisque

les colonnes C1 et C2 sont nulles et les colonnes C3 et C4 ne sont pas colinéaires) donc par la formule du rang,
dim(E1(φA)) = dim(Ker(φA − IdM2(C))) = dim(M2(C)) − rg(φA − IdM2(C)) = 2.

De même, MatC(φA − aIdM2(C)) =


1 − a 0 1 0

0 1 − a 0 1
0 0 0 0
0 0 0 0

 est de rang 2 (car C3 et C4 ne sont pas colinéaires,

C1 est colinéaire à C3 et C2 est colinéaire à C4), donc dim(Ea(φA)) = dim(Ker(φA − aIdM2(C))) = 2.
Q7. 99K Si a ̸= 1, φA possède deux valeurs propres distinctes, à savoir 1 et a, et puisque dim(E1(φA))+dim(Ea(φA)) =

2 + 2 = 4 = dim(M2(C)), φA est diagonalisable.
99K Si a = 1, alors φA possède 1 pour unique valeur propre, et comme dim(E1(φA)) = 2 ̸= 4 = dim(M2(C)),

φA n’est pas diagonalisable.
Finalement, φA est diagonalisable si et seulement si a ̸= 1.

Partie III – Réduction de φA si A est diagonalisable
Q8. On a vu en Q2. que, pour tout B ∈ Mn(C), φA ◦ φB = φAB .

En particulier, φ2
A = φA2 .

On en déduit rapidement, par récurrence, que, pour tout k ∈ N∗, φk
A = φAk .

Par ailleurs, φA0 = φIn
= IdMn(C) = φ0

A : l’égalité ci-dessus demeure donc vraie lorsque k = 0.

Q9. Soit P ∈ C[X] : il existe d ∈ N et (a0, . . . , ad) ∈ Cd+1 tels que P =
d∑

k=0
akX

k.

Pour toute M ∈ Mn(C) :

[P (φA)] (M) =
[

d∑
k=0

akφ
k
A

]
(M) =

[
d∑

k=0
akφAk

]
(M)︸ ︷︷ ︸

d’après Q8.

=
d∑

k=0
akφAk (M) =

d∑
k=0

akA
kM =

(
d∑

k=0
akA

k

)
M = φP (A)(M)

On a ainsi montré que P (φA) = φP (A).
Q10. Une matrice (resp. un endomorphisme) est diagonalisable si et seulement si elle (resp. il) possède un polynôme

annulateur scindé dont les racines sont toutes simples.

99K Si A est diagonalisable, alors il existe un polynôme P scindé dont les racines sont toutes simples tel que
P (A) = 0Mn(C).
Par conséquent, P (φA) = φP (A) = φ0Mn(C) = 0L (Mn(C)) : φA possède donc un polynôme annulateur dont
les racines sont toutes simples (à savoir P ) : φA est donc diagonalisable.

99K Réciproquement, supposons φA diagonalisable : il existe donc un polynôme P scindé dont les racines sont
toutes simples tel que P (φA) = 0L (Mn(C)), et donc φP (A) = 0L (Mn(C)).
Par conséquent, pour toute matrice M ∈ Mn(C), P (A)×M = 0. Cette égalité étant valable, en particulier,
pour M = In, on en déduit que P (A) = 0Mn(C) : A possède donc un polynôme annulateur dont les racines
sont toutes simples (à savoir P ), et donc A est diagonalisable.

Q11. D’après Q9., χA(φA) = φχA(A).
Or, d’après le théorème de Cayley-Hamilton, χA(A) = 0Mn(C).
Donc χA(φA) = φ0Mn(C) = 0L (Mn(C)).
Ainsi, χA est un polynôme annulateur de φA : on en déduit que les valeurs propres de φA sont parmi les racines
de χA, qui sont les valeurs propres de A. Autrement dit, Sp(φA) ⊂ Sp(A).
D’autre part, toujours par le théorème de Cayley-Hamilton, χφA

(φA) = 0L (Mn(C)), et, d’après Q9., χφA
(φA) =

φχφA
(A).

Par conséquent, φχφA
(A) = 0L (Mn(C)), et, en raisonnant comme à la fin de la question Q10., on en déduit que

χφA
(A) = 0Mn(C), puis, comme dans la démarche ci-dessus, on en déduit que Sp(A) ⊂ Sp(φA).

Finalement, Sp(A) = Sp(φA).
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Q12. Soit M ∈ Mn(C). Notons C1, . . . , Cn les colonnes de M , de sorte que l’on peut écrire par blocs : M = (C1 · · ·Cn).

M ∈ Eλ(φA) ⇐⇒ φA(M) = λM

⇐⇒ AM = λM

⇐⇒ A× (C1 · · ·Cn) = (λC1 · · ·λCn)
⇐⇒ (A× C1 · · ·A× Cn) = (λC1 · · ·λCn)
⇐⇒ ∀ k ∈ J1 ;nK, A× Ck = λCk

⇐⇒ ∀ k ∈ J1 ;nK, Ck ∈ Eλ(A)

Q13. Notons λ1, . . . , λp les valeurs propres (deux à deux distinctes) de A, et r1, . . . , rp leurs ordres de multiplicité
respectifs.

Comme χA est scindé sur C (comme tout polynôme non constant), on a tr(A) =
p∑

k=1
rkλk et det(A) =

p∏
k=1

λrk

k .

De même, comme χφA
est scindé sur C, la trace de φA est la somme de ses valeurs propres (comptées avec leur

multiplicité) et le déterminant de φA est le produit de ses valeurs propres (comptées avec leur multiplicité).
De plus, d’après Q11., Sp(φA) = {λ1, . . . , λp} et, d’après la remarque qui suit la question Q12., pour tout
k ∈ J1 ; pK, les espaces Eλk

(φA) et Eλk
(A)n sont isomorphes, donc dim(Eλk

(φA)) = dim (Eλk
(A)n) = ndim(Eλk

(A)).
Puisque A est diagonalisable, pour tout k ∈ J1 ; pK, dim(Eλk

(A)) = rk, et donc dim(Eλk
(φA)) = nrk.

Comme A est diagonalisable, φA aussi d’après Q11. donc pour tout k ∈ J1 ; pK, la multiplicité de la valeur preuve
λk pour φA est égale à nrk.

Par conséquent, tr(φA) =
p∑

k=1
nrkλk = n

p∑
k=1

rkλk = ntr(A) et det(φA) =
p∏

k=1
λnrk

k =
(

p∏
k=1

λrk

k

)n

= det(A)n.

EXERCICE 2 – Étude d’une famille de séries entières (d’après CCINP 2021 PSI)

Partie I – Quelques propriétés des fonctions fn

Q14. On sait par le cours que le rayon de convergence des séries entières
∑
n⩾1

nβxn pour tout β ∈ R est 1. En appliquant

ce résultat avec β = −α, on obtient que :

pour tout α ∈ R, R

∑
n⩾1

xn

nα

 = 1.

Q15. Dα est l’ensemble de définition d’une somme de série entière de rayon de convergence égal à 1 donc d’après le
cours, on a :

] − 1, 1[⊂ Dα ⊂ [−1, 1].

Il reste à discuter, selon la valeur de α, de la nature des séries
∑
n⩾1

1
nα

et
∑
n⩾1

(−1)n

nα
.

On sait que la série de Riemann
∑
n⩾1

1
nα

converge si et seulement si α > 1.

On en déduit que 1 ∈ Dα si et seulement si α > 1.
Étudions maintenant la nature de la série

∑
n⩾1

(−1)n

nα
.

Si α ∈] − ∞, 0] alors lim
n→+∞

∣∣∣∣ (−1)n

nα

∣∣∣∣ = lim
n→+∞

n−α =
{

+∞ si α > 0
1 si α = 0. Comme la suite

(∣∣∣∣ (−1)n

nα

∣∣∣∣)
n⩾1

ne converge

pas vers 0 alors la suite
(

(−1)n

nα

)
n⩾1

ne converge pas vers 0 et la série
∑
n⩾1

(−1)n

nα
diverge donc grossièrement.

On peut donc déjà conclure que :
a) si α ∈] − ∞, 0] alors Dα =] − 1, 1[.

Si α ∈]0, 1] alors la série
∑
n⩾1

(−1)n

nα
est une série alternée car pour tout n ∈ N∗, 1

nα
⩾ 0. Comme la suite

(
1
nα

)
n⩾1

tend vers 0 et est décroissante (car α > 0), on en déduit par le critère spécial des séries alternées que la série
∑
n⩾1

(−1)n

nα

converge.
Ainsi :

b) si α ∈]0, 1] alors Dα = [−1, 1[.
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Si α ∈]1,+∞[ alors la série
∑
n⩾1

(−1)n

nα
converge absolument puisque la série

∑
n⩾1

1
nα

converge.

Ainsi :
c) si α ∈]1,+∞[ alors Dα = [−1, 1].

Q16. Soit x ∈ Dα.
Si x ⩾ 0 alors pour tout n ∈ N∗, x

n

nα
⩾ 0 donc par somme, fα(x) ⩾ 0.

Si x < 0 alors la série
∑
n⩾1

xn

nα
=
∑
n⩾1

(−1)n(−x)n

nα
est une série alternée car pour tout n ∈ N∗, (−x)n

nα
⩾ 0. Comme la

suite
(

|x|n

nα

)
n⩾1

tend vers 0 (comme |x| ⩽ 1, c’est le produit d’une suite bornée et d’une suite qui tend vers 0 puisque

α > 0) et est décroissante (en tant que produit de deux suites décroissantes et positives), on en déduit par le critère
spécial des séries alternées que la somme

∑
n=1

xn

nα
est du signe de son premier terme donc fα(x) est du signe de x donc

fα(x) ⩽ 0.
Pour tout x ∈ Dα, fα(x) ⩾ 0 si x ⩾ 0 et fα(x) ⩽ 0 si x ⩽ 0.

Q17. On sait par le cours (série géométrique) que :

pour tout x ∈] − 1, 1[, f0(x) =
+∞∑
n=1

xn = x

1 − x
.

On sait que pour tout x ∈] − 1, 1[,
+∞∑
n=0

xn = 1
1 − x

.

En tant que somme d’une série entière, on peut dériver x 7→
+∞∑
n=0

xn terme à terme sur son intervalle ouvert de conver-

gence. On en déduit que :

∀x ∈] − 1, 1[,
+∞∑
n=1

nxn−1 = 1
(1 − x)2 .

En multipliant par x, on obtient :

pour tout x ∈] − 1, 1[, f−1(x) =
+∞∑
n=1

nxn = x

(1 − x)2 .

On sait que pour tout u ∈] − 1, 1[, ln(1 + u) =
+∞∑
n=1

(−1)n+1

n
xn.

Ainsi, pour tout x ∈] − 1, 1[, comme −x ∈] − 1, 1[, on a :

ln(1 − u) =
+∞∑
n=1

(−1)n+1

n
(−1)nxn = −

+∞∑
n=1

1
n
xn.

On en déduit que :

pour tout x ∈] − 1, 1[, f1(x) =
+∞∑
n=1

xn

n
= − ln(1 − x).

Q18. Avec ]−1, 1[, il est facile de répondre à la question posée : en tant que somme d’une série entière, fα est continue
sur son intervalle ouvert de convergence donc fα est continue sur ] − 1, 1[ (et ceci est vrai pour tout réel α).
Dans le cas α > 1, prouvons qu’elle est continue sur [−1, 1].
Pour tout n ∈ N∗, posons gn : x 7→ xn

nα
.

⋆ Pour tout n ∈ N∗, gn est continue sur [−1, 1] (fonction polynômiale).

⋆ On a pour tout n ∈ N∗, ∥gn∥[−1,1]
∞ = sup

x∈[−1,1]

|x|n

nα
= sup

x∈[0,1]

xn

nα
= 1
nα

par parité puis croissance de la fonction sur

[0, 1].
Or, la série de Riemann

∑
n⩾1

1
nα

converge (α > 1).
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On en déduit que la série
∑

n⩾1 gn converge normalement donc uniformément sur [−1, 1].
Ainsi, par le théorème de continuité des sommes de séries de fonctions :

la fonction fα est continue sur [−1, 1].

Q19. Soit x ∈ [0, 1[. On a pour tout n ∈ N∗, 0 < nα ⩽ n donc xn

nα
⩾
xn

n
(puisque xn ⩾ 0) d’où par somme (séries

convergentes) : fα(x) ⩾ f1(x).
Or, on sait que f1(x) = − ln(1 − x) −→

x→1−
+∞.

Par inégalité, on en déduit que :
lim

x→1−
fα(x) = +∞.

Partie II – Un logarithme complexe
Q20. On sait par le cours que :

pour tout x ∈] − 1, 1[, ln(1 + x) =
+∞∑
n=1

(−1)n+1

n
xn .

Q21. On s’intéresse à la série entière
∑
n⩾1

(−1)n+1

n
zn.

On a pour tout n ∈ N∗, an = (−1)n+1

n
̸= 0 et :∣∣∣∣an+1

an

∣∣∣∣ = 1/n+ 1
1/n = 1

1 + 1
n

−→
n→+∞

1.

Par le critère de d’Alembert, on en déduit que :

R = 1
1 = 1.

Pour tout x ∈] − 1, 1[, on a S(x) =
+∞∑
n=1

(−1)n+1

n
xn = ln(1 + x).

Ainsi :
pour tout x ∈] − 1, 1[, exp(S(x)) = 1 + x.

Q22. Si z0 = 0 alors r = R

∑
n⩾1

0tn
 = +∞ (série entière nulle, convergence pour tout réel t).

Si z0 ̸= 0 alors pour tout n ∈ N∗, bn = (−1)n−1 z
n
0
n

̸= 0 et :∣∣∣∣bn+1

bn

∣∣∣∣ = |z0|n+1/n+ 1
|z0|n/n

= |z0| 1
1 + 1

n

−→
n→+∞

|z0|.

Par le critère de d’Alembert, on en déduit que r = 1
|z0|

.

Ainsi :

si z0 = 0 alors r = +∞ et si z0 ̸= 0 alors r = 1
|z0|

.

Q23. Comme |z0| < 1, on a toujours r > 1.
Or, en tant que somme de série entière, g est de classe C ∞ sur son intervalle ouvert de convergence et les dérivées s’y
obtiennent par dérivation terme à terme.
Comme [0, 1] ⊂] − r, r[, on en déduit que :

g est définie et de classe C ∞ sur [0, 1].

On a de plus pour tout t ∈ [0, 1] :

g′(t) =
+∞∑
n=1

(−1)n−1 z
n
0
n
ntn−1 = z0

+∞∑
n=1

(−tz0)n−1 = z0

+∞∑
n=0

(−tz0)n.
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On reconnaît une somme géométrique (avec | − tz0| ⩽ |z0| < 1) donc :

pour tout t ∈ [0, 1], g′(t) = z0

1 + tz0
.

Q24. Comme g est dérivable sur [0, 1] à valeurs complexes, on sait par le cours (PCSI) que h est dérivable sur [0, 1]
et on a :

pour tout t ∈ [0, 1], h′(t) = g′(t) exp(g(t)) = z0

1 + tz0
h(t).

Q25. La fonction φ : t 7→ 1 + tz0 est dérivable sur [0, 1] et a pour dérivée t 7→ z0.
Pour tout t ∈ [0, 1], z0

1 + tz0
φ(t) = z0

1 + tz0
(1 + tz0) = z0 = φ′(t).

Donc :

la fonction t 7→ 1 + tz0 est bien une solution de l’équation différentielle y′(t) = z0

1 + tz0
y(t) sur [0, 1].

On a de plus φ(0) = 1 et h(0) = exp(g(0)) = exp(0) = 1.

Ainsi, φ et g sont deux solutions du problème de Cauchy
{

y′(t) − z0

1 + tz0
y(t) = 0

y(0) = 1
sur [0, 1] (on a bien t 7→ −z0

1 + tz0
∈

C ([0, 1],C)).
Or, un problème de Cauchy admet une unique solution donc on en déduit que pour tout t ∈ [0, 1], h(t) = φ(t).
En particulier, h(1) = φ(1) ce qui donne :

exp(S(z0)) = 1 + z0.

EXERCICE 3 –Un développement en série entière (d’après CCINP 2005 PC)

Q26. Soit x ∈ [−1, 1]. On a pour tout t ∈ [0, π
2 ], |x sin2 t| ⩽ |x| ⩽ 1 donc x sin2 t ⩾ −1 donc 1 + x sin2 t ⩾ 0.

On en déduit par composition de fonctions continues que la fonction t 7→
√

1 + x sin2 t est continue sur le segment
[0, π

2 ] donc l’intégrale définissant ψ(x) existe bien en tant que réel.
Ainsi :

la fonction ψ est bien définie sur [−1, 1].

Q27. D’après le cours, on a pour tout u ∈] − 1, 1[ :

√
1 + u = (1 + u)1/2 = 1 +

+∞∑
n=1

1
2 ( 1

2 − 1) . . . ( 1
2 − n+ 1)

n! un

= 1 +
+∞∑
n=1

1.(−1)(−3) . . . (−(2n− 3))
2nn! un

= 1 +
+∞∑
n=1

(−1)n−11.3 . . . (2n− 1)
(2n− 1)2nn! un

= 1 +
+∞∑
n=1

(−1)n−1

2n− 1
1.2.3 . . . (2n− 1)(2n)

2nn!2.4 . . . (2n) un

= 1 +
+∞∑
n=1

(−1)n−1

2n− 1
(2n)!

22n (n!)2u
n.

Comme le terme pour n = 0 vaut bien 1, on en déduit que :

pour tout u ∈] − 1, 1[, on a
√

1 + u =
+∞∑
n=0

(−1)n−1

2n− 1
(2n)!

22n (n!)2u
n.

Q28. Soit x ∈] − 1, 1[.
On a pour tout t ∈ [0, π

2 ], |x sin2(t)| ⩽ |x| < 1 donc x sin2(t) ∈] − 1, 1[ donc par la question précédente :

√
1 + x sin2 t =

+∞∑
n=0

(−1)n−1

2n− 1
(2n)!

22n (n!)2x
n sin2n t.

Pour tout n ∈ N, on note fn la fonction t 7→ (−1)n−1

2n− 1
(2n)!

22n (n!)2x
n sin2n t.

Pour tout n ∈ N, la fonction fn est continue sur [0, π
2 ].
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Montrons que la série de fonctions
∑

fn converge normalement sur [0, π
2 ].

Soit n ∈ N. On a pour tout t ∈ [0, π
2 ] :∣∣∣∣∣ (−1)n−1

2n− 1
(2n)!

22n (n!)2x
n sin2n t

∣∣∣∣∣ ⩽ 1
2n− 1

(2n)!
22n (n!)2 |x|n (ne dépend pas de t).

Ainsi, 1
2n− 1

(2n)!
22n (n!)2 |x|n est un majorant de {|fn(t)|, t ∈ [0, π

2 ]} et ∥fn∥[0, π
2 ]

∞ est le plus petit majorant de cet ensemble

donc :
0 ⩽ ∥fn∥[0, π

2 ]
∞ ⩽

1
2n− 1

(2n)!
22n (n!)2 |x|n.

La série numérique
∑ 1

2n− 1
(2n)!

22n (n!)2 |x|n converge par ce qui précède puisqu’on reconnaît la série entière de somme

−
√

1 − |x| avec |x| ∈] − 1, 1[.
On en déduit par comparaison que la série

∑
∥fn∥[0, π

2 ]
∞ converge.

Ainsi, la série de fonctions
∑

fn converge uniformément sur [0, π
2 ] et on peut donc intégrer terme à terme :

ψ(x) = 2
π

+∞∑
n=0

∫ π
2

0

(−1)n−1

2n− 1
(2n)!

22n (n!)2x
n sin2n t dt =

+∞∑
n=0

(−1)n−1

2n− 1
(2n)!

22n (n!)2

(
2
π

∫ π
2

0
sin2n t dt

)
xn.

Ainsi :

la fonction ψ est développable en série entière et pour tout x ∈] − 1, 1[, ψ(x) =
+∞∑
n=0

(−1)n−1

2n− 1
(2n)!

22n (n!)2
2
π
Inx

n.

Q29. Soit n ∈ N.
Les fonctions t 7→ sin2n+1 t et t 7→ − cos t sont de classe C 1 sur [0, π

2 ] et on a par intégration par parties :

In+1 =
∫ π

2

0
sin2n+1(t) sin(t) dt = [sin2n+1(t) × (− cos(t))]

π
2
0 −

∫ π
2

0
(2n+ 1) sin2n(t) cos(t) × (− cos(t)) dt

= 0 + (2n+ 1)
∫ π

2

0
sin2n(t)(1 − sin2(t)) dt

= (2n+ 1)
(∫ π

2

0
sin2n(t) dt−

∫ π
2

0
sin2(n+1)(t) dt

)
= (2n+ 1)(In − In+1).

On a donc (2n+ 1)In = (2n+ 2)In+1.
Ainsi :

pour tout n ∈ N, In+1 = 2n+ 1
2n+ 2In.

On a :

I0 =
∫ π

2

0
1 dt = π

2 .

Montrons par récurrence que pour tout n ∈ N, In = (2n)!
22n+1(n!)2π.

Initialisation : Pour n = 0, on a (2 × 0)!
22×0+1(0!)2π = π

2 = I0.

Hérédité : Soit n ∈ N tel que In = (2n)!
22n+1(n!)2π. Montrons que In+1 = (2n+ 2)!

22n+3((n+ 1)!)2π.

On a In+1 = 2n+ 1
2n+ 2In d’après ce qui précède donc en utilisant l’hypothèse de récurrence, on obtient :

In+1 = 2n+ 1
2n+ 2

(2n)!
22n+1(n!)2π = (2n+ 1)!

2(n+ 1)22n+1(n!)2π = (2n+ 2)(2n+ 1)!
22(n+ 1)222n+1(n!)2π = (2n+ 2)!

22n+3((n+ 1)!)2π.

Conclusion :

Pour tout n ∈ N, In = (2n)!
22n+1(n!)2π.
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Par suite :

pour tout x ∈] − 1, 1[, ψ(x) =
+∞∑
n=0

(−1)n−1

2n− 1

(
(2n)!

22n (n!)2

)2

xn.

EXERCICE 4 –Une équation différentielle (d’après E3A 2025 PC)

Q31. Si on évalue (E) pour x = 0, il vient : y(0) = 0.
Q32. On peut commencer par observer que a0 = f(0) = 0 (d’après Q31.) et a1 = f ′(0) = 1 (par hypothèse).

De plus, en tant que somme d’une série entière, f est de classe C ∞ sur ] − R ;R[ et, pour tout x ∈] − R ;R[,

f ′(x) =
+∞∑
n=1

annx
n−1 et f ′′(x) =

+∞∑
n=2

ann(n− 1)xn−2.

Ainsi, puisque f est solution de (E), x2
+∞∑
n=2

ann(n− 1)xn−2 + x

+∞∑
n=1

annx
n−1 −

(
x2 + x+ 1

) +∞∑
n=0

anx
n = 0.

Puisque x2
+∞∑
n=2

ann(n− 1)xn−2 =
+∞∑
n=0

ann(n− 1)xn, x
+∞∑
n=1

annx
n−1 =

+∞∑
n=0

annx
n et :

(
x2 + x+ 1

) +∞∑
n=0

anx
n =

+∞∑
n=0

anx
n+2 +

+∞∑
n=0

anx
n+1 +

+∞∑
n=0

anx
n

=
+∞∑
n=2

an−2x
n +

+∞∑
n=1

an−1x
n +

+∞∑
n=0

anx
n

= a0 + (a0 + a1)x+
+∞∑
n=2

(an−2 + an−1 + an)xn

l’égalité issue de (E) se réécrit alors :
+∞∑
n=0

ann(n− 1)xn +
+∞∑
n=0

annx
n −

(
a0 + (a0 + a1)x+

+∞∑
n=2

(an−2 + an−1 + an)xn

)
= 0

ou encore : a1x− a0 − (a0 + a1)x+
+∞∑
n=2

(−an−2 − an−1 + (n(n− 1) + n− 1)an)xn = 0.

Par unicité des coefficients d’une série entière, on en déduit que a0 = 0 et, pour tout n ⩾ 2 :

an−2 + an−1 −
(
n2 − 1

)
an = 0.

Q33. Raisonnons par récurrence (double) et posons, pour tout n ∈ N∗, P(n) : |an| ⩽ 1
(n− 1)! .

99K Puisque a1 = 1 et a2 = a1 + a0

22 − 1 = 1
3, les inégalités a1 ⩽

1
0! et a2 ⩽

1
1! sont vérifiées.

99K Soit n ∈ N∗ tel que P(n) et P(n+ 1) sont vraies : montrons P(n+ 2).
Puisque, d’après Q32.,

(
(n+ 2)2 − 1

)
an+2 = an+1 + an, il vient :

an+2 = an+1

(n+ 3)(n+ 1) + an

(n+ 3)(n+ 1)

⩽
1

(n+ 3)(n+ 1) × n! + 1
(n+ 3)(n+ 1) × (n− 1)! d’après P(n) et P(n+ 1)

= 1
(n+ 1)! ×

(
1

n+ 3 + n

n+ 3

)
︸ ︷︷ ︸

= n+1
n+3 <1

⩽
1

(n+ 1)!

P(n+ 2) est donc vraie.
On conclut à l’aide du principe de récurrence (double).

Q34. Pour tout x ∈ R et pour tout n ∈ N∗, |anx
n| ⩽ |x|n

(n− 1)! = |x| × |x|n−1

(n− 1)! , et comme
∑ |x|n−1

(n− 1)! est une série

(exponentielle) convergente, par comparaison de séries à termes positifs,
∑

|anx
n| est convergente, autrement

dit
∑
anx

n est absolument convergente, donc convergente.
La fonction f est donc définie sur R (R = +∞).
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Q35. z(0) = 0 × y(0) × e0 = 0.
De plus, z est dérivable et, pour tout x ∈ R, z′(x) = y(x)ex + xy′(x)ex + xy(x)ex, donc z′(0) = y(0) = 0.

Q36. Pour tout x ∈ R :

z′′(x) = y′(x)ex + y(x)ex + y′(x)ex + xy′′(x)ex + xy′(x)ex + y(x)ex + xy′(x)ex + xy(x)ex

= ex (xy′′(x) + (2 + 2x)y′(x) + (2 + x)y(x))

Par conséquent, pour tout x ∈ R :

xz′′(x) − (2x+ 1)z′(x) = xex (xy′′(x) + (2 + 2x)y′(x) + (2 + x)y(x))
−(2x+ 1) (y(x)ex + xy′(x)ex + xy(x)ex)

= ex
(
x2y′′(x) + xy′(x) −

(
x2 + x+ 1

)
y(x)

)
= 0.

Q37. u′ −
(

2 + 1
x

)
u = 0 est une équation différentielle linéaire homogène du premier ordre.

Puisque x 7→ −(2x + ln(x)) est une primitive de x 7→ −
(

2 + 1
x

)
sur R∗

+, les solutions de notre équation

différentielle sont les fonctions de la forme x 7→ λe2x+ln(x) = λxe2x, où λ ∈ R.
Q38. Puisque z′ est solution de (F ) sur R, il existe c ∈ R tel que, pour tout x ∈ R, z′(x) = cxe2x.

Comme z(0) = 0, on en déduit que, pour tout x ∈ R :

z(x) =
∫ x

0
cte2t dt

= c

([
t× e2t

2

]x

0
−
∫ x

0
1 × e2t

2 dt
)

(intégration par parties)

= c

(
xe2x

2 −
[

e2t

4

]x

0

)
= c

(
xe2x

2 − e2x − 1
4

)
= c

4 ×
(
(2x− 1)e2x + 1

)
.

En posant a = c/4, on obtient le résultat voulu.
Q39. Puisque f est une solution de (E), développable en série entière sur R, elle est en particulier de classe C 2 sur R

donc d’après Q38. : il existe donc a ∈ R tel que, pour tout x ∈ R, xf(x)ex = a
(
(2x− 1)e2x + 1

)
.

Par conséquent, pour tout x ∈ R∗, f(x) = a

(
2ex − ex − e−x

x

)
= 2a

(
ex − sh(x)

x

)
.

On peut réécrire, pour tout x ∈ R∗ :

f(x) = 2a
(+∞∑

n=0

xn

n! − 1
x

+∞∑
n=0

x2n+1

(2n+ 1)!

)
= 2a

(+∞∑
n=0

xn

n! −
+∞∑
n=0

x2n

(2n+ 1)!

)
.

Cette écriture demeure valable pour x = 0 puisque f(0) = 0. Ce développement en série entière nous donne
f ′(0) = 2a (coefficient de x dans le développement en série entière), et comme f ′(0) = 1, a = 1/2.

Par conséquent, pour tout x ∈ R, f(x) =
{

ex − sh(x)
x

si x ̸= 0
0 sinon

On pourrait conclure ce raisonnement par la réciproque, c’est-à-dire vérifier que la fonction finalement obtenue est
bel et bien solution de (E) sur R, mais ça n’est pas explicitement demandé.
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