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Problème 1 : Étude d’une fonction de Lambert

Les parties II et III sont indépendantes.

Pour des entiers k et n avec 0 ⩽ k ⩽ n, le coefficient binomial k parmi n est noté (n
k
).

Lorsque k ⩽ n, Jk,nK représente l’ensemble des nombres entiers compris, au sens large, entre k et n.

Partie I - Définition de la fonction W

On considère l’application :

f ∶ ∣ R Ð→ R
x z→ x ex .

Q1. Justifier que l’application f réalise une bijection de l’intervalle [−1,+∞[ sur l’intervalle [− e−1,+∞[.

Dans la suite du sujet, la réciproque de cette bijection est notée W . On rappelle que ceci signifie
que, pour tout réel x ⩾ − e−1, W (x) est l’unique solution de l’équation f(t) = x (équation d’inconnue
t ∈ [−1,+∞[).

Partie II - Développement en série entière de la fonction W

Le but de cette partie est d’établir que la fonction W est développable en série entière et de préciser
son développement ainsi que son rayon de convergence. Pour cela, on commence par établir un
résultat de nature algébrique.

II.A. Le théorème binomial d’Abel

On considère dans cette partie un entier naturel n ainsi qu’un nombre complexe a. On définit une
famille de polynômes (A0,A1, . . . ,An) en posant

A0 = 1 et ∀k ∈ J1, nK, Ak =
1

k!
X(X − ka)k−1.

On note Cn[X] le C-espace vectoriel des polynômes à coefficients complexes et de degré inférieur ou
égal à n.

Q2. Démontrer que la famille (A0,A1, . . . ,An) est une base de Cn[X].

Q3. Démontrer que pour tout k ∈ J1, nK, A′k(X) = Ak−1(X − a).

Q4. En déduire, pour j et k éléments de J0, nK, la valeur de A
(j)
k (ja). On distinguera suivant que

j < k, j = k ou j > k.
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Soit P un élément de Cn[X] et soient α0, . . . , αn des nombres complexes tels que

P =
n

∑
k=0

αkAk.

Q5. Démontrer que, pour tout j ∈ J0, nK, αj = P (j)(ja).

Q6. En déduire l’identité binomiale d’Abel :

∀(a, x, y) ∈ C3, (x + y)n = yn +
n

∑
k=1

(n
k
)x(x − ka)k−1(y + ka)n−k.

Q7. Établir la relation,

∀(a, y) ∈ C2, nyn−1 =
n

∑
k=1

(n
k
)(−ka)k−1(y + ka)n−k.

II.B. Développement en série entière

On définit une suite (an)n⩾1 en posant,

∀n ∈ N∗, an =
(−n)n−1

n!
.

On définit, lorsque c’est possible, S(x) =
+∞

∑
n=1

anx
n.

Q8. Déterminer le rayon de convergence R de la série entière ∑
n⩾1

anx
n.

Q9. Justifier que la fonction S est de classe C∞ sur ] −R,R[ et, pour tout entier n ∈ N, exprimer
S(n)(0) en fonction de n.

Q10. Démontrer que la fonction S est définie et continue sur [−R,R].

Q11. Démontrer que,
∀x ∈] −R,R[, x(1 + S(x))S′(x) = S(x).

On pourra utiliser le résultat de la question 7.

On considère la fonction h ∶ ∣ ] −R,R[ Ð→ R
x z→ S(x) eS(x) .

Q12. Démontrer que h est solution sur ] −R,R[ de l’équation différentielle xy′ − y = 0.

Q13. Résoudre l’équation différentielle xy′ − y = 0 sur chacun des intervalles ]0,R[, ] −R,0[, puis sur
l’intervalle ] −R,R[.

Q14. En déduire que,
∀x ∈] −R,R[, S(x) =W (x).

Q15. Ce résultat reste-t-il vrai sur [−R,R] ?
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Partie III - Approximation de W

On définit dans cette partie une suite de fonctions (wn)n⩾0 et on étudie sa convergence vers la fonction
W définie dans la partie I.
Pour tout réel positif x, on considère la fonction Φx définie par

Φx ∶ ∣
R Ð→ R
t z→ x exp(−x exp(−t))

et on définit, sur R+, une suite de fonctions (wn)n⩾0 par

∀x ∈ R+, ∣ w0(x) = 1
wn+1(x) = Φx(wn(x)).

Q16. Démontrer que, pour tout réel positif x, W (x) est un point fixe de Φx, c’est-à-dire une solution
de l’équation Φx(t) = t.

Q17. Démontrer que, pour tout réel positif x, la fonction Φx est de classe C2 sur R et que

∀ t ∈ R, 0 ⩽ Φ′x(t) ⩽
x

e
.

Q18. En déduire que

∀x ∈ [0, e], ∀n ∈ N, ∣wn(x) −W (x)∣ ⩽ (
x

e
)
n

∣1 −W (x)∣.

Q19. Pour tout réel a ∈]0, e[, justifier que la suite de fonctions (wn) converge uniformément sur [0, a]
vers la fonction W .

Q20. La suite de fonctions (wn) converge-t-elle uniformément vers W sur [0, e] ?

Problème 2 : Sur les matrices et endomorphismes nilpotents

Le but de ce problème est de démontrer quelques résultats sur les matrices et les endomorphismes
nilpotents.

Notations et rappels

Dans tout le sujet, n désigne un entier naturel non nul et E un C-espace vectoriel de dimension n.

Si M est une matrice de Mn(C), on définit la suite des puissances de M par M0 = In et, pour
tout entier naturel k, Mk+1 =MMk.

De même, si u est un endomorphisme de E, on définit la suite des puissances de u par u0 = IdE

et, pour tout entier naturel k, uk+1 = u ○ uk.

Une matrice M est dite nilpotente s’il existe un entier naturel k ⩾ 1 tel que Mk = 0. Dans ce
cas, le plus petit entier naturel k ⩾ 1 tel que Mk = 0 s’appelle l’indice de nilpotence de M .

Soit B une base de E, un endomorphisme de E est nilpotent d’indice p si sa matrice dans B est
nilpotente d’indice p.
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On pose J1 = (0) et, pour un entier α ⩾ 2, Jα =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ ⋯ ⋯ 0
1 ⋱ ⋮
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈Mα(C).

Si A ∈ Mn(C) et B ∈ Mm(C), on note diag(A,B), la matrice diagonale par blocs

diag(A,B) = (A 0
0 B

) ∈Mn+m(C).

Plus généralement, si A1 ∈ Mn1(C), A2 ∈ Mn2(C), . . . ,Ak ∈ Mnk
(C), on note

diag(A1,A2, . . . ,Ak) =
⎛
⎜⎜⎜
⎝

A1 0 ⋯ 0
0 A2 ⋮
⋮ ⋱ 0
0 ⋯ 0 Ak

⎞
⎟⎟⎟
⎠
∈Mn1+n2+⋯+nk

(C).

Q1. Que peut-on dire d’un endomorphisme nilpotent d’indice 1 ?

Partie I - Réduction d’une matrice de M2(C) nilpotente d’indice 2

On suppose que n = 2. Soit u un endomorphisme de E nilpotent d’indice p ⩾ 2.

Q2. Montrer qu’il existe un vecteur x de E tel que up−1(x) /= 0.

Q3. Vérifier que la famille (uk(x))
0⩽k⩽p−1

est libre. En déduire que p = 2.

Q4. Montrer que Ker(u) = Im(u).

Q5. Construire une base de E dans laquelle la matrice de u est égale à J2.

Q6. En déduire que les matrices nilpotentes deM2(C) sont exactement les matrices de trace nulle
et de déterminant nul.

Partie II - Réduction d’une matrice de Mn(C) nilpotente d’indice 2

On suppose que n ⩾ 3. Soit u un endomorphisme de E nilpotent d’indice 2 et de rang r.

Q7. Montrer que Im(u) ⊂ Ker(u) et que 2r ⩽ n.

Q8. On suppose que Im(u) = Ker(u). Montrer qu’il existe des vecteurs e1, e2, . . . , er de E tels que
la famille (e1, u(e1), e2, u(e2), . . . , er, u(er)) est une base de E.

Q9. Donner la matrice de u dans cette base.

Q10. On suppose Im(u) /= Ker(u). Montrer qu’il existe des vecteurs e1, e2, . . . , er de E et des vecteurs
v1, v2, . . . , vn−2r appartenant à Ker(u) tels que (e1, u(e1), e2, u(e2), . . . , er, u(er), v1, v2, . . . , vn−2r)
est une base de E.

Q11. Quelle est la matrice de u dans cette base ?
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Partie III - Valeurs propres, polynôme caractéristique, polynômes annulateurs
d’une matrice nilpotente

Dans cette partie, A désigne une matrice deMn(C).

Q12. Montrer que, si A est nilpotente, alors 0 est l’unique valeur propre de A.

Q13. Quelles sont les matrices deMn(C) à la fois nilpotentes et diagonalisables ?

Q14. Montrer qu’une matrice est nilpotente si, et seulement si, son polynôme caractéristique est égal
à Xn.

Q15. Montrer la réciproque de la question 12.

Q16. Montrer qu’une matrice triangulaire de Mn(C) à diagonale nulle est nilpotente et qu’une
matrice nilpotente est semblable à une matrice triangulaire à diagonale nulle.

Q17. Démontrer que, si A est une matrice nilpotente d’indice p, alors tout polynôme de C[X]multiple
de Xp est un polynôme annulateur de A.

On suppose que P est un polynôme annulateur de A nilpotente.

Q18. Démontrer que 0 est racine de P .

Q19. On note m la multiplicité de 0 dans P , ce qui permet d’écrire P =XmQ où Q est un polynôme
de C[X] tel que Q(0) /= 0. Démontrer que Q(A) est inversible puis que P est un multiple de
Xp dans C[X].

Partie IV - Racines carrées de matrices nilpotentes

Pour une matrice V ∈ Mn(C) donnée, on dit qu’une matrice R ∈ Mn(C) est une racine carrée de V
si R2 = V .

On se propose d’étudier l’existence et les valeurs de racines carrées éventuelles de certaines matrices
nilpotentes.

IV.1) On note A =
⎛
⎜
⎝

1 3 −7
2 6 −14
1 3 −7

⎞
⎟
⎠

et u l’endomorphisme de C3 canoniquement associé à A.

Q20. Calculer la trace et le rang de A. En déduire, sans aucun calcul, le polynôme caractéristique
de A. Montrer que A est nilpotente et donner son indice de nilpotence.

Q21. Démontrer que A est semblable à la matrice diag(J2, J1). Donner la valeur d’une matrice P
inversible telle que A = P diag(J2, J1)P −1.

On cherche à déterminer l’ensemble des matrices R ∈ M3(C) telles que R2 = A. On note
ρ l’endomorphisme canoniquement associé à R.

Q22. Démontrer que Im(u) et Ker(u) sont stables par ρ et que ρ est nilpotent.
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Q23. En déduire l’ensemble des racines carrées de A.
On pourra considérer R′ = P −1RP.

IV.2) On se propose dans cette question d’étudier l’équation matricielle R2 = J3.

Q24. Soit R une solution de cette équation. Donner les valeurs de R4 et R6, puis l’ensemble des
solutions de l’équation.

IV.3) En général, soit V ∈ Mn(C) une matrice nilpotente d’indice p. On se propose d’étudier
l’équation R2 = V .

Q25. Montrer que, si 2p − 1 > n, alors il n’existe aucune solution.

Q26. Pour toute valeur de l’entier n ⩾ 3, exhiber une matrice V ∈ Mn(C), nilpotente d’indice p ⩾ 2
et admettant au moins une racine carrée.

6


