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CORRIGÉ DU DEVOIR SURVEILLÉ 4 (sujet 2)

Problème 1 : Étude d’une fonction de Lambert (extrait Centrale PSI 2020)

Partie I – Définition de la fonction W

Q1. La fonction f est dérivable sur R et ∀x ∈ R, f ′(x) = (1+x)ex. On obtient alors le tableau de variation suivant
:

x −∞ −1 0 1 +∞

f ′(x) − 0 + + +

f(x)

0

−e−1
0

e
+∞

La fonction f est alors continue et strictement croissante de l’intervalle [−1,+∞[. Appliquons le théorème de
la bijection monotone : f réalise alors une bijection de [−1,+∞[ sur f([−1,+∞[= [−e−1,+∞[.
Notons aussi (ce sera utile en question Q15.) que d’après ce même théorème, la réciproque de cette bijection,
notée W dans le sujet, est continue sur [−e−1,+∞[.

Partie II – Développement en série entière de la fonction W

Partie II.A – Le théorème binomial d’Abel

Q2. Pour tout entier k ∈ J0, nK, le polynôme Ak est de degré k. Ainsi, la famille (A0, ..., An) est une famille de
polynômes de Cn[X] de degrés échelonnés : cette famille est donc libre, de cardinal n+ 1=dim Cn[X].
Ainsi, la famille (A0, ..., An) est une base de Cn[X].

Q3. Soit k ∈ J1, nK. Si k = 1 alors la vérification est immédiate. Supposons donc k ⩾ 2. On a:

A′
k(X) =

1

k!
(X − ka)k−1 +

1

k!
X · (k − 1)(X − ka)k−2

=
1

k!
((X − ka) + (k − 1)X) (X − ka)k−2

=
1

k!
(kX − ka) (X − ka)k−2

=
1

(k − 1)!
(X − a) ((X − a)− (k − 1)a)k−2 = Ak−1(X − a),

d’où le résultat.

Q4. Soient k ∈ J0, nK et j ∈ J0, nK. Si j > k, alors A
(j)
k = 0 (car Ak est de degré k) donc A

(j)
k (ja) = 0.

Supposons à présent j ⩽ k. La question précédente implique, par une récurrence immédiate:

A
(j)
k (X) = Ak−j(X − ja),
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et donc A
(j)
k (ja) = Ak−j(0). Or il est facile de vérifier qu’on a Aℓ(0) = 1 si ℓ = 0 et Aℓ(1) = 0 si ℓ ∈ N \ {0},

donc A
(j)
k (ja) = 0 si k − j > 0, tandis que A

(j)
k (ja) = 1 si k − j = 0.

En conclusion:

A
(j)
k (ja) =

{
0 si j ̸= k,
1 si j = k.

Q5. Soit j ∈ J0, nK. Si l’on dérive j fois l’égalité P =
n∑

k=0

αkAk et qu’on l’évalue en ja, alors la question précédente

nous permet d’écrire:

P (j)(ja) =

n∑
k=0

αkA
(j)
k (ja) = αjA

(j)
j (ja) +

∑
k ̸=j

αk × 0 = αj ,

d’où le résultat.

Q6. Soit (a, x, y) ∈ C3. On applique la question précédente au polynôme P = (X + y)n, et on a alors:

(X + y)n =

n∑
k=0

P (k)(ka)Ak = P (0)(0) +

n∑
k=1

1

k!
P (k)(ka)X(X − ka)k−1,

et comme P (k) = n!
(n−k)!(X + y)n−k pour tout k ∈ J0, nK, on en déduit aisément:

(X + y)n = yn +

n∑
k=1

n!

k!(n− k)!
X(ka+ y)n−k(X − ka)k−1 = yn +

n∑
k=1

(
n

k

)
X(ka+ y)n−k(X − ka)k−1.

Il reste à évaluer cette égalité en x pour en déduire le résultat voulu:

(x+ y)n = yn +
n∑

k=1

(
n

k

)
x(ka+ y)n−k(x− ka)k−1.

Q7. L’identité demandée est considérée vraie par conventions si n = 0 et nous prenons donc n ⩾ 1. Dérivons la
relation de la question précédente (l’égalité polynomiale, ou l’égalité pour une variable réelle x, s’il choque de
dériver selon une variable complexe). On obtient alors, pour tout (x, a, y) ∈ C3:

n(x+ y)n−1 =
n∑

k=1

(
n

k

)
(ka+ y)n−k(x− ka)k−1 +

n∑
k=1

(
n

k

)
x(ka+ y)n−k(k − 1)(x− ka)k−2.

En posant x = 0 la seconde somme s’annule, et donc:

∀(a, y) ∈ C2, nyn−1 =
n∑

k=1

(
n

k

)
(ka+ y)n−k(−ka)k−1,

D’où le résultat.

Partie II.B – Développement en série entière

Q8. Nous allons appliquer la règle de D’Alembert. On a pour tout n ∈ N∗, an ̸= 0 et on a :∣∣∣∣an+1

an

∣∣∣∣ = n!

(n+ 1)!
× (n+ 1)n

nn−1
=

(
1 +

1

n

)n−1

.

Or, pour tout n au voisinage de +∞, on a:
(
1 + 1

n

)n−1
= e(n−1) ln(1+ 1

n), et l’équivalent classique ln(1 + u) ∼
u→0

u

implique :

(n− 1) ln

(
1 +

1

n

)
∼

n→+∞
(n− 1)× 1

n
−→

n→+∞
1.
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Par continuité de l’exponentielle en 1, on en déduit :

lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣ = e1.

Donc d’après la règle de D’Alembert, le rayon de convergence de la série entière
∑
n⩾1

anx
n est R = 1

e .

Q9. La fonction S : x 7→
+∞∑
n=1

anx
n est de classe C∞ sur

]
−1

e ,
1
e

[
en tant que somme de série entière de rayon de

convergence R = 1
e , et on a:

S(0) = 0, et: ∀n ∈ N \ {0}, S(n)(0) = n!an = n!× (−n)n−1

n!
= (−n)n−1.

Q10. Nous allons démontrer simultanément la définition et la continuité sur
[
−1

e ,
1
e

]
, en montrant que la série de

fonctions
∑
n⩾1

(x 7→ anx
n) converge normalement (donc uniformément) sur cet intervalle.

Posons ∀n ∈ N \ {0}, ∀x ∈
[
−1

e ,
1
e

]
, fn(x) = anx

n. Pour tout n ∈ N \ {0} et tout x ∈
[
−1

e ,
1
e

]
on a

|fn(x)| ⩽ |an|
(
1
e

)n
, et cette majoration est indépendante de x. Donc par définition de la borne supérieure, on

obtient : ∀n ∈ N \ {0}, ∥fn∥∞ ⩽ |an|
en .

Il reste à montrer que la série
∑
n⩾1

|an|
en

converge pour obtenir ce qu’on veut mais la règle de D’Alembert donne

le cas d’incertitude ici. Par contre nous pouvons obtenir un équivalent asymptotique du terme général grâce à
la formule de Stirling, que nous rappelons:

n! ∼
n→+∞

√
2πn

(n
e

)n
.

On a alors, pour tout n au voisinage de +∞:

|an|
en

∼
n→+∞

nn−1

√
2πn

(
n
e

)n · en
∼

n→+∞

1√
2π

× 1

n3/2
> 0.

Or la série de Riemann
∑
n⩾1

1

n3/2
est d’exposant 3/2 > 1, donc elle converge. D’après le théorème de comparaison

des séries à termes positifs, on en déduit que la série
∑
n⩾1

|an|
en

converge, et toujours par ce même théorème on

en déduit la convergence normale (et donc uniforme) sur
[
−1

e ,
1
e

]
de la série de fonctions

∑
n⩾1

fn.

Comme fn est continue sur
[
−1

e ,
1
e

]
pour tout n ∈ N \ {0}, et que la série de fonctions

∑
n⩾1

fn converge

uniformément sur
[
−1

e ,
1
e

]
, on en déduit que S est définie et continue sur

[
−1

e ,
1
e

]
.

Q11. Par commodité, posons a0 = 1. Alors:

∀x ∈
]
−1

e
,
1

e

[
, 1 + S(x) =

+∞∑
n=0

anx
n.

Comme x 7→ 1 + S(x) et x 7→ xS′(x) =
+∞∑
n=0

nanx
n sont des sommes de séries entières de rayon de convergence

1
e , leur produit de Cauchy converge absolument sur

]
−1

e ,
1
e

[
, et :

∀x ∈
]
−1

e
,
1

e

[
, (1 + S(x))xS′(x) =

+∞∑
n=0

cnx
n (1)
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où, par définition d’un produit de Cauchy, on a c0 = a0 × 0× a0 = 0 et pour tout n ∈ N∗:

cn =
n∑

k=0

ak(n− k)an−k = nan +
n−1∑
k=1

(−k)k−1

k!
· (n− k)

(−n+ k)n−k−1

(n− k)!

= nan +
1

n!

n−1∑
k=1

(
n

k

)
(−1)n−k−1(−k)k−1(n− k)n−k.

Si n ⩾ 1 alors on pose a = 1 et y = −n dans la relation obtenue à la question Q7., et on obtient:

∀n ∈ N \ {0}, n(−n)n−1 =

n−1∑
k=1

(
n

k

)
(−k)k−1(−n+ k)n−k + (−n)n−1

=
n−1∑
k=1

(
n

k

)
(−1)n−k(−k)k−1(n− k)n−k + (−n)n−1,

et donc:

∀n ∈ N \ {0},
n−1∑
k=1

(
n

k

)
(−1)n−k(−k)k−1(n− k)n−k = (n− 1)(−n)n−1.

On en déduit :

∀n ∈ N \ {0}, cn = nan − (n− 1)(−n)n−1

n!
= nan − (n− 1)an = an,

donc finalement l’égalité (1) devient :

∀x ∈
]
−1

e
,
1

e

[
, (1 + S(x))xS′(x) =

+∞∑
n=1

anx
n = S(x),

ce qu’il fallait démontrer.

Q12. Comme S est de classe C∞ sur
]
−1

e ,
1
e

[
, c’est aussi le cas de h par produit et composition de fonctions de classe

C∞, et on a :

∀x ∈
]
−1

e
,
1

e

[
, h′(x) = S′(x)eS(x) + S(x)S′(x)eS(x) = (1 + S(x))S′(x)eS(x)

En multipliant cette égalité par x, et en utilisant l’égalité (1 + S(x))xS′(x) = S(x) démontrée dans la question
précédente, on en déduit :

∀x ∈
]
−1

e
,
1

e

[
, xh′(x) = S(x)eS(x) = h(x),

donc h est solution de l’équation différentielle:

∀x ∈
]
−1

e
,
1

e

[
, xy′(x)− y(x) = 0.

Q13. Posons I =
]
−1

e , 0
[
ou

]
0, 1e

[
. Comme x ̸= 0 pour tout x ∈ I, l’équation différentielle ci-dessus équivaut à :

∀x ∈ I, y′(x) − 1

x
y(x) = 0. Comme x 7→ − ln |x| est une primitive de x 7→ −1

x
sur I, la théorie des équations

différentielles linéaires du premier ordre implique donc que les solutions sur I sont de la forme :

y : x 7→ αeln(|x|) = α|x|.

Quitte à changer α en −α, on en déduit que sur les deux intervalles possibles, les solutions sont de la forme
x 7→ αx.
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À présent, soit y une application dérivable sur
]
−1

e ,
1
e

[
et qui soit solution de (E) xy′ − y = 0 sur

]
−1

e ,
1
e

[
. En

particulier, par restriction, cela définit une solution de (E) ur
]
−1

e , 0
[
et

]
0, 1e

[
. Donc, d’après ce qui précède,

il existe (α, β) ∈ R2 tel que:

∀x ∈
]
−1

e
, 0

[
, y(x) = αx, ∀x ∈

]
0,

1

e

[
, y(x) = βx.

Par continuité de y en 0, on doit avoir y(0) = lim
x→0+

y(x) = lim
x→0−

y(x) = 0. De plus y est dérivable en 0, ce qui

impose : lim
x→0+

y(x)−y(0)
x−0 = lim

x→0−

y(x)−y(0)
x−0 , c’est-à-dire: β = α.

De cela on déduit finalement que si y est une solution de (E) sur
]
−1

e ,
1
e

[
, alors y est de la forme x 7→ αx sur]

−1
e ,

1
e

[
avec α ∈ R. Réciproquement, cette application est bien une solution de (E) sur

]
−1

e ,
1
e

[
.

Ainsi, les solutions de (E) sur
]
−1

e ,
1
e

[
sont les fonctions de la forme : x 7→ αx pour αinR.

Q14. Nous avons montré que h : x 7→ S(x)eS(x) est solution de (E) sur
]
−1

e ,
1
e

[
. Donc, d’après la question précédente,

il existe α ∈ R tel que:

∀x ∈
]
−1

e
,
1

e

[
, h(x) = αx.

Pour déterminer α, on note qu’en utilisant la dérivée calculée en Q12., on a : h′(0) = (1 + S(0))S′(0)eS(0) = 1
(en effet S(0) = 0 et S′(0) = 1 d’après Q9.). On a aussi h′ = α donc α = 1. Ainsi :

∀x ∈
]
−1

e
,
1

e

[
, S(x)eS(x) = x.

Cette égalité peut se réécrire:

∀x ∈
]
−1

e
,
1

e

[
, f(S(x)) = x. (2)

Or, si x ∈
]
−1

e
,
1

e

[
, l’équation f(t) = x a une unique solution t ∈ [−1,+∞[, qui est W (x).

Soit x ∈
]
−1

e
,
1

e

[
. Vérifions qu’on a bien S(x) ⩾ −1.

Considérons d’abord le cas x ⩾ 0.
Montrons que la série alternée

∑
n⩾1 anx

n vérifie les hypothèses du critère spécial des séries alternées. En
reprenant le calcul fait à la question Q8., il vient, pour tout n ⩾ 1,∣∣∣∣an+1x

n+1

anxn

∣∣∣∣ = (
1 +

1

n

)n−1

|x| = exp

[
(n− 1) ln

(
1 +

1

n

)]
|x| ⩽ exp

(
n− 1

n

)
|x| ⩽ 1.

On en déduit que la suite (|anxn|) est décroissante et elle converge vers 0 (puisque x est dans l’intervalle ouvert
de convergence de la série entière). Le critère spécial donne alors

∣∣S(x)∣∣ ⩽ |a1x| ⩽ e−1 < 1, ce qui permet de
conclure.
Considérons maintenant le cas x < 0.

Pour cela, on note que l’égalité (2) donne, quand x → −1

e
(et parce que S est continue en −1

e
d’après la

question Q10 et f est continue sur R) : f

(
S

(
−1

e

))
= −1

e
. Comme −1 est l’unique solution réelle à

l’équation f(t) = −1

e
(voir le tableau de variations établi en Q1.), on en déduit : S

(
−1

e

)
= −1.

Alors, pour tout x ∈
]
−1

e
, 0

[
on a:

S(x) =
+∞∑
n=1

(−n)n−1

n!
xn =

+∞∑
n=1

−nn−1

n!
(−x)n >

+∞∑
n=1

−nn−1

n!

(
1

e

)n

=
+∞∑
n=1

(−n)n−1

n!

(
−1

e

)n

,
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c’est-à-dire : ∀x ∈
]
−1

e
, 0

]
, S(x) > S

(
−1

e

)
= −1, ce qu’on voulait démontrer.

En conclusion, pour tout x ∈
]
−1

e
,
1

e

[
, S(x) est l’unique solution de l’équation f(t) = x d’inconnue t ⩾ −1.

Donc :

∀x ∈
]
−1

e
,
1

e

[
, W (x) = S(x).

Q15. Les applications S et W sont continues sur

[
−1

e
,
1

e

]
: nous l’avons démontré dans la question Q10 pour S

et mentionné dans la question Q1 pour W . Par conséquent, leurs limites en ±1

e
égalent leurs valeurs en ±1

e
.

Prendre la limite quand x → ±1

e
dans l’égalité de la question précédente permet donc de démontrer qu’elle

reste valable si x = ±1

e
. On en déduit que la réponse à la question posée est affirmative, et on a:

∀x ∈
[
−1

e
,
1

e

]
, W (x) = S(x).

Partie III – Approximation de W

Q16. Soit x ⩾ 0. On a :

ϕx(W (x)) = xe−xe−W (x)
.

Or, on sait que W (x)eW (x) = x donc W (x) = xe−W (x). On en déduit :

ϕx(W (x)) = xe−W (x) = W (x)

donc W (x) est un point fixe de ϕx.

Q17. La fonction ϕx est de classe C2 sur R par composée d’applications de classe C2.

De plus, pour tout t ∈ R, ϕ′
x(t) = x2e−t exp (−xe−t) ⩾ 0.

On peut utiliser Q1. en remarquant que ϕ′
x(t) = −xf(−xe−t) et en utilisant la minoration de f par −e−1, on

obtient ϕ′
x(t) ⩽ −x(−e−1) =

x

e
.

On peut aussi calculer ϕ′′
x(t) = x2e−t exp (−xe−t)(−1+xe−t) qui est positive si et seulement si x ⩾ et c’est-à-dire

lnx ⩾ t.

On obtient alors le tableau de variation suivant :

t −∞ lnx +∞
ϕ′′
x(t) + 0 −

ϕ′
x

On en déduit que ϕ′
x a un maximum atteint en t = lnx et que ce maximum vaut ϕ′

x(lnx) = x exp(−xe− lnx) =

x exp(−x/x) =
x

e
. Ainsi :

∀t ∈ R, 0 ⩽ ϕ′
x(t) ⩽

x

e
.
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Q18. Soient x ∈ [0, e] et n ∈ N. On a :

|wn+1(x)−W (x)| Q16.
= |ϕx(wn(x))− ϕx(W (x))| .

Or ϕx est de classe C1 sur R, et |ϕ′
x| ⩽ x

e d’après la question précédente.
D’après l’inégalité des accroissements finis, on a :

|wn+1(x)−W (x)| = |ϕx(wn(x))− ϕx(W (x))| ⩽ x

e
|wn(x)−W (x)|.

Ceci vaut pour tout x ∈ [0, e] et tout n ∈ N. Donc, par une récurrence facile, on obtient :

∀x ∈ [0, e], ∀n ∈ N, |wn(x)−W (x)| ⩽
(x
e

)n
|w0(x)−W (x)| (3)

et par définition on a w0(x) = 1 d’où le résultat.

Q19. Soit a ∈]0, e[. L’application 1 − W est bornée sur [0, a] en tant qu’application continue sur un segment (le
majorant est facile à expliciter mais ce n’est pas important pour ce qui suit). L’inégalité de la question
précédente implique :

∀n ∈ N, ∀x ∈ [0, a], |wn(x)−W (x)| ⩽
(a
e

)n
∥1−W∥[0,a]∞ .

Cette majoration est indépendante de x. Donc, par propriété de la borne supérieure :

∀n ∈ N, 0 ⩽ ∥wn −W∥[0,a]∞ ⩽
(a
e

)n
∥1−W∥[0,a]∞ .

Comme a
e ∈]0, 1[, on a lim

n→+∞

(
a
e

)n
= 0. Donc d’après le théorème des gendarmes : lim

n→+∞
∥wn −W∥[0,a]∞ = 0.

Ceci démontre que la suite de fonctions (wn)n∈N converge uniformément sur [0, a] vers W .

Q20. La réponse est positive. Montrons que :

∀ε > 0, ∃n0 ∈ N, ∀n ⩾ n0, ∀x ∈ [0, e], |wn(x)−W (x)| ⩽ ε.

Soit ε > 0. Comme W est continue en e, il existe η > 0 avec η < e tel que:

∀x ∈ [e− η, e], |W (x)−W (e)| ⩽ ε.

Posons a = e− η. On a W (e) = 1 donc, d’après Q18. et l’inégalité ci-dessus:

∀n ∈ N, ∀x ∈ [a, e], |wn(x)−W (x)| ⩽
(x
e

)n
|1−W (x)| ⩽ |1−W (x)| ⩽ ε.

Sur [0, a], nous savons que la suite (wn)n∈N converge uniformément vers W . Donc, par définition, il existe un
rang n0 ∈ N tel que:

∀n ⩾ n0, ∀x ∈ [0, a], |wn(x)−W (x)| ⩽ ε.

En combinant cette inégalité et celle sur [a, e], on a donc l’existence d’un rang n0 tel que pour tout entier
n ⩾ n0, on ait :

∀x ∈ [0, e], |wn(x)−W (x)| ⩽ ε,

ce qui démontre que la suite (wn)n∈N converge uniformément sur [0, e] vers W .
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Problème 1 : Sur les matrices et endomorphismes nilpotents (extrait Centrale
PSI 2019)

Q1. Soit B une base de E et u un endomorphisme de E, notons M = MatB(u). Si u est nilpotent d’indice 1, cela
signifie d’après l’énoncé que M1 = M = 0 donc que u = 0. En conclusion :
il y a donc un unique endomorphisme nilpotent d’indice de nilpotence égal à 1 et c’est l’endomorphisme nul.

Partie I – Réduction d’une matrice de M2(C) nilpotente d’indice 2

Q2. Avec les notations de la question 1, puisque MatB(u
k) = Mk pour tout entier naturel k, le fait que u soit

nilpotent d’indice p signifie que M l’est donc que Mp = 0 et Mp−1 ̸= 0 (par minimalité de p). Ainsi, up−1 ̸= 0. On
en déduit (par définition de ce qu’est l’endomorphisme nul)

l’existence d’un vecteur x de E tel que up−1(x) ̸= 0.

Q3. Soit une famille de scalaires (λk)0⩽k⩽p−1 ∈ Cp telle que

p−1∑
k=0

λku
k(x) = 0 (∗).

Si on avait (λ0, . . . , λp−1) ̸= (0, . . . , 0), on pourrait définir l’entier i = min({0 ⩽ k ⩽ p − 1 | λk ̸= 0}) de sorte que
λ0 = · · · = λi−1 = 0 et λi ̸= 0. En composant la relation (∗) par up−1−i (on le peut car p−1−i ⩾ 0 par construction),

on aurait donc, par linéarité de u,

p−1∑
k=0

λku
p−1−i+k(x) = up−1−i(0) = 0, d’où

p−1∑
k=i

λku
p−1−i+k(x) = 0.

Comme up = 0, il ne reste dans cette somme que λiu
p−1(x) = 0. C’est impossible puisque λi ̸= 0 et up−1(x) ̸= 0

d’après la question 2. On conclut ce raisonnement par l’absurde : (λ0, . . . , λp−1) = (0, . . . , 0). Ainsi,(
uk(x)

)
0⩽k⩽p−1

est libre.

Cette famille libre admet p vecteurs dans l’espace E de dimension n = 2. On sait d’après le cours que le nombre de
vecteurs de cette famille est inférieur à la dimension de l’espace : p ⩽ 2. Or par hypothèse, p ⩾ 2, d’où

p = 2.

Q4. Comme u est nilpotent d’indice 2 d’après la question précédente, u ̸= 0 et u2 = u ◦ u = 0.
On a alors pour tout x ∈ E, u(x) ∈ Ker(u) (puisque u(u(x)) = 0) d’où Im(u) ⊂ Ker(u).
Ainsi, dim(Im(u)) = rg(u) ⩽ dim(Ker(u)). Or, d’après la formule du rang appliquée à l’endomorphisme
u de R2, il vient 2 = dim(Im(u)) + dim(Ker(u)). Puisque rg(u) > 0 car u ̸= 0, on ne peut avoir que
dim(Im(u)) = dim(Ker(u)) = 1. Par inclusion et égalité des dimensions, on peut conclure que

Im(u) = Ker(u).

Q5. D’après les questions 2 et 3, il existe un vecteur x de E tel que (x, u(x)) soit libre dans E de dimension 2, le
cours nous apprend alors que B = (x, u(x)) est une base de E.
En posant y = u(x), on a u(x) = y et u(y) = u(u(x)) = u2(x) = 0, la matrice de u dans la base B vérifie donc

MatB(u) =

(
0 0
1 0

)
= J2.

Q6. (=⇒) Soit A ∈ M2(C) nilpotente et u l’endomorphisme de C2 canoniquement associé à A. Comme A, u est
nilpotent d’indice p ∈ N∗. On traite les deux cas des questions précédentes avec E = C2.
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• Si p = 1, d’après la question 1, u = 0 donc A = 0 et on a bien tr(A) = det(A) = 0.
• Si p ⩾ 2, on a vu en question 5 qu’il existait une base B de C2 telle que MatB(u) = J2. Comme A et J2 représentent
le même endomorphisme dans deux bases différentes, elles sont semblables (plus précisément si on note P la matrice
de passage de la base canonique de C2 à B, on a A = PJ2P

−1) donc elles ont même trace et même déterminant.
Comme tr(J2) = det(J2) = 0, on a encore tr(A) = det(A) = 0.
(⇐=) Soit A ∈ M2(C) telle que tr(A) = det(A) = 0. On sait d’après le cours que χA = X2− tr(A)X+det(A) = X2.
D’après le théorème de Cayley-Hamilton, on a donc A2 = 0 car χA annule A : A est bien nilpotente d’indice p ⩽ 2.
Par conséquent, on conclut par double implication que

A ∈ M2(C) est nilpotente ⇐⇒ (tr(A) = det(A) = 0).

Partie II – Réduction d’une matrice de Mn(C) nilpotente d’indice 2

Q7. À nouveau, comme u est nilpotent d’indice 2, on a u2 = u ◦ u = 0 donc

Im(u) ⊂ Ker(u).

Il vient donc rg(u) ⩽ dim(Ker(u)). On ajoute rg(u) de part et d’autre de cette inégalité pour avoir, avec la formule
du rang, l’inégalité

2 rg(u) = 2r ⩽ n = dim(E) = rg(u) + dim(Ker(u)).

Q8. Comme Im(u) est de dimension r = rg(u), il existe une base (w1, . . . , wr) de Im(u). Par définition de l’image,
il existe des vecteurs e1, . . . , er tels que u(e1) = w1, . . . , u(er) = wr.
Vérifions que B = (e1, u(e1), e2, u(e2), . . . , er, u(er)) est une base de E. Soit (λ1, µ1, λ2, µ2, . . . , λr, µr) ∈ C2r telle que

λ1e1 + µ1u(e1) + λ2e2 + µ2u(e2) + · · ·+ λrer + µru(er) = 0 (∗).

On compose (∗) par u donc, comme u2 = 0, il vient λ1w1 + λ2w2 + · · · + λrwr = 0. Mais on sait que (w1, . . . , wr)
est libre donc λ1 = λ2 = · · · = λr = 0. Il ne reste donc plus dans (∗) que µ1w1 + µ2w2 + · · · + µrwr = 0 qui amène
encore la conclusion µ1 = µ2 = · · · = µr = 0 car (w1, . . . , wr) est libre. On vient de prouver que B est libre.
Or dim(E) = n = 2r = rg(u)+dim(Ker(u)) par la formule du rang donc B admet autant de vecteurs que la dimension
de E. On peut conclure que

B = (e1, u(e1), e2, u(e2), . . . , er, u(er)) est une base de E.

Q9. Pour k tel que 1 ⩽ k ⩽ r, u(u(ek)) = u2(ek) = 0 donc, par construction de B, la matrice de u dans B vaut

MatB(u) = diag(J2, . . . , J2) ∈ M2r(C).

Q10. On raisonne comme en question 8. Comme rg(u) = r, il existe une base (w1, . . . , wr) de Im(u), puis des
vecteurs e1, . . . , er tels que u(e1) = w1, . . . , u(er) = wr. Comme Im(u) ⊂ Ker(u), (w1, . . . , wr) est une famille libre de
vecteurs de Ker(u). D’après le théorème de la base incomplète, comme dim(Ker(u)) = dim(E)− rg(u) = n− r ⩾ r
par la formule du rang, on peut trouver des vecteurs v1, . . . , vn−2r dans Ker(u) pour compléter (w1, . . . , wr) en une
base B′ = (w1, . . . , wr, v1, . . . , vn−2r) de Ker(u). Vérifions que B = (e1, u(e1), e2, u(e2), . . . , er, u(er), v1, . . . , vn−2r) est
une base de E. Soit (λ1, µ1, λ2, µ2, . . . , λr, µr, η1, . . . , ηn−2r) ∈ C2r telle que

λ1e1 + µ1u(e1) + λ2e2 + µ2u(e2) + . . .+ λrer + µru(er) + η1v1 + . . .+ ηn−2rvn−2r = 0 (∗).

On compose (∗) par u pour obtenir λ1w1+λ2w2+. . .+λrwr = 0. Or (w1, . . . , wr) est libre donc λ1 = λ2 = . . . = λr = 0.
Il ne reste donc plus dans (∗) que µ1w1+µ2w2+. . .+µrwr+η1v1+. . .+ηn−2rvn−2r = 0 qui amène encore la conclusion
µ1 = µ2 = . . . = µr = η1 = . . . = ηn−2r = 0 car B′ est libre (c’est une base de Ker(u)). Ainsi, B est libre.
Comme B admet autant de vecteurs que la dimension de E. On peut conclure que

B = (e1, u(e1), e2, u(e2), . . . , er, u(er), v1, . . . , vn−2r) est une base de E.
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Q 11. Pour k tel que 1 ⩽ k ⩽ r, on a u(u(ek)) = u2(ek) = 0. Pour k tel que 1 ⩽ k ⩽ n − 2r, on a u(vk) = 0 car
vk ∈ Ker(u) donc, par construction de B, la matrice de u dans B vaut

MatB(u) = diag(J2, . . . , J2, 0n−2r) ∈ Mn(C).

Partie III – Valeurs propres, polynôme caractéristique, polynômes annulateurs d’une matrice nilpotente

Q12. Les valeurs propres de A sont les racines de χA d’après le cours. Comme tout polynôme complexe admet au
moins une racine d’après le théorème de d’Alembert-Gauss, le spectre de A n’est pas vide.
Si A est nilpotente d’indice p, on a Ap = 0. Ainsi, Xp est un polynôme annulateur de A. On sait alors que la spectre
de A est inclus dans l’ensemble des racines de Xp qui est {0}. On en déduit :

Si A est nilpotente, alors 0 est l’unique valeur propre de A.

Q13. Soit A ∈ Mn(C) telle que A est nilpotente et diagonalisable. On vient de voir que Sp(A) = {0}. Mais on sait

que si A est diagonalisable,
∏

λ∈Sp(A)

(X − λ) est annulateur de A, ce qui donne ici X annulateur de A d’où A = 0.

Réciproquement, la matrice nulle est à la fois nilpotente et diagonalisable (toute base est une base de vecteurs propres).

La seule matrice A ∈ Mn(C) à la fois nilpotente et diagonalisable est la matrice nulle.

Q14. (=⇒) Si A ∈ Mn(C) est nilpotente, alors Sp(A) = {0} d’après la question 12. La seule valeur propre de A est
donc 0 et elle est forcément de multiplicité n dans χA qui est de degré n et scindé sur C. Ainsi, χA = Xn.
(⇐=) Si χA = Xn, d’après le théorème de Cayley-Hamilton, χA(A) = 0 donc An = 0 et A est bien nilpotente.
Par double implication, on vient de montrer que pour A ∈ Mn(C),

A est nilpotente ⇐⇒ χA = Xn.

Q15. Soit A ∈ Mn(C) dont 0 est l’unique valeur propre. Comme à la question précédente, l’ordre de multiplicité
de 0 dans χA ne peut être que n donc χA = Xn ce qui justifie que χA = Xn donc que A est nilpotente d’après la
question 14. On a donc avec 12 et 15, pour A ∈ Mn(C) :

A est nilpotente ⇐⇒ Sp(A) = {0}.

Q16. Soit A ∈ Mn(C) une matrice triangulaire à diagonale nulle. Pour λ ∈ C, la matrice λIn − A est aussi
triangulaire avec des λ sur la diagonale donc χA(λ) = λn ce qui justifie que χA = Xn. D’après la question 14, la
matrice A est donc nilpotente.

A ∈ Mn(C) triangulaire à diagonale nulle est nilpotente.

Soit A ∈ Mn(C) nilpotente. On sait d’après le cours que A est trigonalisable car χA = Xn est scindé dans C[X].
La matrice A est donc semblable à une matrice triangulaire supérieure T (par exemple) avec les valeurs propres de
A sur la diagonale (car A et T sont semblables et elles ont donc le même polynôme caractéristique) . Mais comme 0
est la seule valeur propre de A,

A ∈ Mn(C) nilpotente est semblable à une matrice triangulaire à diagonale nulle.

10



Q17. Soit A ∈ Mn(C) nilpotente d’indice p et P = XpQ ∈ C[X] avec Q ∈ C[X].
Alors, comme P (A) = ApQ(A) et que Ap = 0, on a bien P (A) = 0. Par conséquent,

si P ∈ C[X] est multiple de Xp et A nilpotente d’indice p, alors P (A) = 0.

Q 18. Comme P est un polynôme annulateur de A, on sait d’après le cours que toute valeur propre de A est racine
de P . Or 0 est valeur propre de A nilpotente d’après la question 12. Ainsi,

Si A est nilpotente et P annulateur de A, alors 0 est racine de P .

Q19. D’après le théorème de d’Alembert-Gauss, on peut écrire Q = α

q∏
k=1

(X−λk)
mk où λ1, . . . , λq sont les différentes

racines de Q et m1, . . . ,mq leurs multiplicités respectives, et α complexe non nul. Comme Q(0) ̸= 0, aucune de ces

racines n’est nulle. On a par ailleurs Q(A) = α

q∏
k=1

(A− λkIn)
mk d’après les relations sur les polynômes de matrice.

Or, pour k tel que 1 ⩽ k ⩽ q, le complexe λk n’est pas valeur propre de A puisque Sp(A) = {0} d’après la question
12, ainsi la matrice A− λkIn est inversible. En tant que produit de puissances de matrices inversibles :

Q(A) est inversible.

Comme P (A) = AmQ(A) = 0, en multipliant à droite par Q(A)−1, on obtient Am = 0. Mais par définition de l’indice
de nilpotence de A, A ̸= 0, A2 ̸= 0, . . . , Ap−1 ̸= 0 et Ap = 0, ce qui justifie que m ⩾ p. Ainsi,

P = XmQ = Xp(Xm−pQ) est bien un multiple de Xp.

Partie IV – Racines carrées de matrices nilpotentes

Q20. Comme les deux dernières colonnes de A sont respectivement 3 fois et −7 fois la première qui est non nulle,
on a rg(A) = 1. Il vient donc

rg(A) = 1 et tr(A) = 1 + 6− 7 = 0.

D’après le cours, on sait que l’ordre de multiplicité de 0 dans χA est supérieur ou égal à dim(E0(A)) = dim(Ker(A))
or dim(Ker(A)) = 3− rg(A) = 3 − 1 = 2 par la formule du rang. Ainsi, (X − 0)2 = X2 divise χA. Par conséquent,
comme χA est de degré 3 et unitaire, on a χA = X3 + aX2. De plus, le cours nous apprend que a = −tr(A) = 0 car
χA = X3 − tr(A)X2 + . . .− det(A). Finalement,

χA = X3.

Par le théorème de Cayley-Hamilton, A3 = 0 donc A est nilpotente. Un calcul élémentaire montre que A2 = 0 et
A ̸= 0 d’où

A est nilpotente d’indice 2.

Q21. On cherche à montrer que A est semblable à diag(J2, J1) =

0 0 0
1 0 0
0 0 0

 = T ce qui revient, par la formule de

changement de base, à trouver une base B = (v1, v2, v3) de C3 telle que MatB(u) = T .
Il s’agit donc de trouver v1, v2, v3 linéairement indépendants tels que u(v1) = v2, u(v2) = u(v3) = 0.
Procédons par ordre :
• on cherche v2 tel que v2 = u(v1) ̸= 0 or, comme rg(u) = 1 et Im(u) = vect(X), il suffit de prendre v2 = X = (1, 2, 1).
• on cherche v1 tel que u(v1) = v2 ce qui nous conduit à prendre par exemple v1 = e1 = (1, 0, 0) d’après la matrice A.
• on cherche v3 tel que u(v3) donc v3 ∈ Ker(u) et on montre facilement que Ker(u) = Vect((3,−1, 0), (7, 0, 1)), il
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suffit de prendre n’importe quel vecteur de ce plan qui n’est pas colinéaire à v2, par exemple v3 = (3,−1, 0).

Réciproquement, B = (v1, v2, v3) est bien une base de C3 car en posant P =

1 1 3
0 2 −1
0 1 0

 qui est la matrice de la

famille B dans la base canonique de C3, on a det(P ) = 1 ̸= 0 donc P est inversible.
Par construction, u(v1) = v2, u(v2) = u(v3) = 0 donc MatB(u) = T . Comme A est la matrice de u dans la base
canonique, A et T représentent le même endomorphisme dans deux bases différentes donc elles sont semblables. Plus
précisément, la matrice P définie ci-dessus étant la matrice de passage de la base canonique à B, on a

A = PTP−1 avec T =

0 0 0
1 0 0
0 0 0

 = diag(J2, J1) ; de plus P−1 =

1 3 −7
0 0 1
0 −1 2


car on a clairement e1 = v1, e2 = 3v1 − v3 et e3 = v2 − 2e2 − e1 = v2 + 2v3 − 6v1 − v1 = −7v1 + v2 + 2v3.

Q22. Si R2 = A, comme A2 = 0, il vient R4 = (R2)2 = A2 = 0 donc R est nilpotente. Puisque R2 = A, on a ρ2 = u.
Ainsi, ρ ◦ u = ρ3 = u ◦ ρ donc ρ et u commutent. On sait d’après le cours qu’alors

Im(u) et Ker(u) sont stables par ρ et ρ est nilpotent car R l’est.

Q23. Soit toujours R ∈ M3(C) telle que R2 = A, posons R′ = P−1RP comme proposé par l’énoncé avec la matrice
P de la question 21. Par la formule de changement de base, R′ est la matrice de ρ dans la base B.
- Comme Im(u) est stable par ρ, il existe d ∈ C tel que ρ(v2) = dv2.
- Comme Ker(u) est stable par ρ, il existe (e, f) ∈ C2 tel que ρ(v3) = ev2 + fv3.
- Il existe aussi (a, b, c) ∈ C3 tel que ρ(v1) = av1 + bv2 + cv3.

Ainsi, R′ =

a 0 0
b d e
c 0 f

. Soit λ ∈ C, en développant le déterminant χR′(λ) = det(λI3−R′) par rapport à la première

ligne, on obtient directement χR′(λ) = (λ− a)(λ− d)(λ− f) donc χR′ = (X − a)(X − d)(X − f). Mais comme R′ est
nilpotente, car ρ l’est, d’après la question 22, on a χR = X3 d’après la question 14. Par conséquent : a = d = f = 0

d’où R′ =

0 0 0
b 0 e
c 0 0

. On calcule alors R′2 =

 0 0 0
ce 0 0
0 0 0

. Comme R2 = A équivaut à R′2 = P−1R2P = P−1AP =

T , la condition R2 = A se traduit par ce = 1. On obtient donc R′ =

0 0 0
b 0 1/c
c 0 0

 avec b ∈ C et c ∈ C∗.

Réciproquement, si R′ est de la forme précédente, alors R′2 = T (par calcul) donc R2 = PR′2P−1 = PTP−1 = A.
Ainsi, par double implication, pour R ∈ M3(C), on a l’équivalence :

R2 = A ⇐⇒ R′ =

0 0 0
b 0 1/c
c 0 0

 avec b ∈ C et c ∈ C∗.

Comme R = PR′P−1, on a la nouvelle équivalence grâce à la question 21, toujours pour R ∈ M3(C) :

R2 = A ⇐⇒ R =

b+ 3c 3b+ 9c− (1/c) (2/c)− 7b− 21c
2b− c 6b− 3c− (2/c) (4/c)− 14b+ 7c

b 3b− (1/c) (2/c)− 7b

 avec b ∈ C et c ∈ C∗.

Q24. Soit R ∈ M3(C) telle que R2 = J3, alors R4 = (R2)2 = J2
3 =

0 0 0
0 0 0
1 0 0

 = E3,1 (matrice élémentaire) donc

R6 = R4R2 = J3E3,1 = 0. Comme R est nilpotente, χR = X3 d’après la question 14, donc R3 = 0 d’après le
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théorème de Cayley-Hamilton. On en déduit que R4 = R3R = 0 ce qui est incompatible avec R4 = E3,1.

Il n’existe donc aucune solution de l’équation R2 = J3 dans M3(C).

Q25. On raisonne par l’absurde en considérant une matrice R ∈ Mn(C) telle que R2 = V . Comme V p = 0, on a
R2p = (R2)p = V p = 0 donc R est nilpotente. À nouveau, d’après la question 14, χR = Xn donc Rn = 0 (toujours
Cayley-Hamilton). Or, par hypothèse, on a 2p − 1 > n donc 2p − 2 ⩾ n. Mais V est nilpotente d’indice p donc
V p−1 = (R2)p−1 = R2p−2 ̸= 0. Ceci est impossible car 2p− 2− n ⩾ 0 et R2p−2 = RnR2p−2−n = 0×R2p−2−n = 0.

Si V ∈ Mn(C) est nilpotente d’indice p tel que 2p− 1 > n, V n’a pas de racine carrée dans Mn(C).

Q26. Soit n ⩾ 3. Posons V = diag(A, 0n−3) où A est la matrice définie en IV.1).
Par calcul sur les matrices blocs, on a V 2 = diag(A2, 02n−3) = 0n car A est nilpotente d’indice 2 d’après Q20. Ainsi,
V est nilpotente d’indice p = 2 (car V ̸= 0n).
Par ailleurs, par Q23, on sait que A admet au moins une racine carrée. Notons R une racine carrée de A.
Alors (diag(R, 0n−3))

2 = diag(R2, 02n−3) = diag(A, 0n−3) = V donc diag(R, 0n−3) est une racine carrée de V .

V = diag(A, 0n−3) répond au problème posé.
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