LYCEE VICTOR HUGO — BESANCON
PC* ANNEE 2025-2026

CORRIGE DU DEVOIR SURVEILLE 4 (sujet 2)

Probléme 1 : Etude d’une fonction de Lambert (extrait Centrale PSI 2020)
Partie | — Définition de la fonction W

Q1. La fonction f est dérivable sur R et Vo € R, f'(z) = (1 +x)e®. On obtient alors le tableau de variation suivant

z | -0 -1 0 1 +00
f(z) - 0 + + +
0 I +00
/ (&
@] T R

La fonction f est alors continue et strictement croissante de 'intervalle [—1, +00[. Appliquons le théoreme de
la bijection monotone : f réalise alors une bijection de [—1,4o0[ sur f([—1,+oo[= [—e~!, +o0].

Notons aussi (ce sera utile en question Q15.) que d’apres ce méme théoréme, la réciproque de cette bijection,
notée W dans le sujet, est continue sur [—e~!, +ool.

Partie Il — Développement en série entiere de la fonction W
Partie II.A — Le théoreme binomial d’Abel

Q2. Pour tout entier k € [0,n], le polynéme Ay est de degré k. Ainsi, la famille (Ay,..., A,) est une famille de
polynémes de C,[X] de degrés échelonnés : cette famille est donc libre, de cardinal n 4+ 1=dim C,[X].
Ainsi, la famille (A, ..., A,) est une base de C,[X].

Q3. Soit k € [1,n]. Si k=1 alors la vérification est immédiate. Supposons donc k£ > 2. On a:

AL(X) = %(X — ka)* ! 4+ lX (k= 1)(X — ka)F2

k!
= % (X —ka) + (k—1)X) (X — ka)*2
= % (kX — ka) (X — ka)*2
— X (X ) - (b D) = A (X -0

d’ou le résultat.

Q4. Soient k € [0,n] et j € [0,n]. Sij > k, alors Ag) =0 (car Ay est de degré k) donc A,(cj)(ja) =0.
Supposons a présent j < k. La question précédente implique, par une récurrence immédiate:

AP (X) = A_j(X — ja),



et donc Al ')( ja) = Ap_;(0). Or il est facile de vérifier qu’on a Ay(0) = 1si £ =0 et Ay(1) =0si ¢ e N\ {0},
donc A(J)(ja) =0si k—j >0, tandis que A( )(ja) =1sik—j5=0.

En conclusion:
Gy ) 0 sij#k,
A (Ja)_{1 sij =k

n
Q5. Soit j € [0,n]. Silon dérive j fois I'égalité P = > ai Ay et qu’on 1'évalue en ja, alors la question précédente
k=0
nous permet d’écrire:

ZakA (ja) —a]A( (ja —|—Zak><0—a],
k#j

d’ou le résultat.

Q6. Soit (a,z,y) € C3. On applique la question précédente au polynome P = (X + )™, et on a alors:
Yy

n

1
(X +y)" Z P® (ka)Ar = PO0) + > gPU“)(ka)X(X — ka)* 1,

k=1
et comme P*) = (nﬁ!k)! (X + )" * pour tout k € [0,n], on en déduit aisément:
n_ .n g n! n—=k _ n—=k
(X+y)" =y +;]M (ka+y)" F(X —ka)F ' =y +Z<> (ka4 )" F(X — ka)*~

Il reste a évaluer cette égalité en z pour en déduire le résultat voulu:
(z+y)" +Z<> (ka + )" *(x — ka)* 1.

Q7. L’identité demandée est considérée vraie par conventions si n = 0 et nous prenons donc n > 1. Dérivons la
relation de la question précédente (’égalité polynomiale, ou 1’égalité pour une variable réelle z, s’il choque de
dériver selon une variable complexe). On obtient alors, pour tout (z,a,y) € C3:

n

n(z+y)" ' => (:) (ka 4+ y)" *(x — ka)* 1 + En: < ) (ka + )" F(k — 1)(z — ka)*2.

k=1 =1
En posant x = 0 la seconde somme s’annule, et donc:

n

Y(a,y) € C3, ny" ' = (Z) (ka +y)" " (—ka)* 1,
k=1

D’ou le résultat.
Partie 11.B — Développement en série entiére

Q8. Nous allons appliquer la regle de D’Alembert. On a pour tout n € N*, a, #0 et on a :

~nl (n+1)" 1 1\"!
_(n—f—l)lx nn—1 T ’

an+1
Gn

Or, pour tout n au voisinage de +00, on a: (1 + %)n_l — (D145

implique :

(n—l)ln(l—i—l) ~ - xS — 1

n /) n—+oo n n—+oo



Qo.

Q1o0.

Q11.

Par continuité de ’exponentielle en 1, on en déduit :

an41
an

:61.

lim
n——+o0o

Donc d’apres la regle de D’Alembert, le rayon de convergence de la série entiere Z an,x" est R = %

n>1
+oo
La fonction S : = — E a,x" est de classe C* sur ]—g, é[ en tant que somme de série entiere de rayon de
n=1

convergence R = %, et on a:

S(0)=0, et: VYneN\{0}, SM™(0)=nla,=n!x (_7;)'n1 = (—n)" L.

Nous allons démontrer simultanément la définition et la continuité sur [—%, %], en montrant que la série de

fonctions Z (x — apx™) converge normalement (donc uniformément) sur cet intervalle.

n=1
Posons Vn € N;{O}, vz € [-1 1] f.(z) = aza™. Pour tout n € N\ {0} et tout z € [-1,1] on a
| fn(@)] < lan| (2)", et cette majoration est indépendante de z. Donc par définition de la borne supérieure, on

obtient : ¥n € N\ {0}, || fn]loo < 1221,
. a . . . ,
Il reste & montrer que la série Z # converge pour obtenir ce qu’on veut mais la regle de D’Alembert donne
n=1
le cas d’incertitude ici. Par contre nous pouvons obtenir un équivalent asymptotique du terme général grace a

la formule de Stirling, que nous rappelons:

On a alors, pour tout n au voisinage de +oo:

lan| nnt 1 1

~

e n—stoo 4 /21 (%)n el n—t00 /o X n3/2

1
Or la série de Riemann g 7 est d’exposant 3/2 > 1, donc elle converge. D’apres le théoréme de comparaison
n
n=>1

> 0.

PRSI . P - Qn, . A PR
des séries a termes positifs, on en déduit que la série E % converge, et toujours par ce méme théoreme on
e
n=>1
en déduit la convergence normale (et donc uniforme) sur [—%, 5 de la série de fonctions E fn-
n=1

Comme f, est continue sur [—%, %] pour tout n € N\ {0}, et que la série de fonctions Z fn converge
n>1
11

uniformément sur [_E7 E]? on en déduit que S est définie et continue sur [—%, é]

Par commodité, posons ag = 1. Alors:

11
Vxe} e’e[’ + S(z) E anT

+o00
Comme z — 1+ S(z) et & — x5'(z) = Z napz" sont des sommes de séries entieres de rayon de convergence
n=0
%, leur produit de Cauchy converge absolument sur ]—%,

@ [

[, et :

400
Y E}—i,i[, (1+ S(z)zS (z) = ch:v” (1)

n=0



Q12.

Q13.

oll, par définition d’un produit de Cauchy, on a cg = ag X 0 X ag = 0 et pour tout n € N*:

k 1 (_n+k)n—k—1
Zakn— ank—nan—i-z —k)W

= nay + ,Z< ) )R (k) (e — )R

Sin > 1 alors on pose a = 1 et y = —n dans la relation obtenue a la question Q7., et on obtient:

VYn e N\ {0}, n(-n)"!= ¥ <n> (=k)* Y =n+ k)" F 4+ (—n)" !

et donc:
n—1
e\ ok Y ()0 R R = - e
k=1
On en déduit :

—1)(= n—1
Vn € N\ {0}, ¢, =na, — (n )T(L' n) =na, — (n—1)a, = an,
donc finalement 1’égalité (1) devient :
Vo € 11 (14 S(x))zS'(z Zax
67 e ) n 7

ce qu’il fallait démontrer.

Comme S est de classe C*° sur ] —é, % [, c’est aussi le cas de h par produit et composition de fonctions de classe
C>®, et ona:

Vi € ] Tele [ W (z) = §'(2)e5® + S(2)§'(2)e5® = (1 + S(2))S' ()5

En multipliant cette égalité par x, et en utilisant I’égalité (1 + S(z))zS’(z) = S(x) démontrée dans la question
précédente, on en déduit :

V€ } 1l [ o (2) = S(2)e5® = h(z),

11
voe |-l a0 -y =0
Posons I = ]—%, 0[ ou ]0, % [ Comme z # 0 pour tout z € I, ’équation différentielle ci-dessus équivaut a :
1
Ve e I, y'(x) — —y(x) = 0. Comme x — —In |z| est une primitive de 2 — —— sur I, la théorie des équations

x
différentielles linéaires du premier ordre implique donc que les solutions sur I sont de la forme :
y x> ae™®) = oz

Quitte a changer a en —q, on en déduit que sur les deux intervalles possibles, les solutions sont de la forme
T ar.



Q14.

A présent, soit y une application dérivable sur ]—%, %[ et qui soit solution de (F) xy’ —y = 0 sur ]—%, é [ En
. . .. fO s . 1 1 ) N . s
particulier, par restriction, cela définit une solution de (F) ur ]—g, 0[ et }O, < [ Donc, d’apres ce qui précede,

il existe (a, B) € R? tel que:
1 1
Vxe}—e,O[,y(x):aa:, Vme]o,e[,y(x):,ﬁx.

Par continuité de y en 0, on doit avoir y(0) = lim+ y(x) = lim y(z) = 0. De plus y est dérivable en 0, ce qui
z—0 z—0~

impose : xli)rélJr %:g(m = ml_ifélf y(a:xizg(())’ c’est-a-dire: 5 = a.

De cela on déduit finalement que si y est une solution de (E) sur ]—%, % [, alors y est de la forme x — ax sur
]—%, %[ avec a € R. Réciproquement, cette application est bien une solution de (F) sur ]—%, % [

Ainsi, les solutions de (E) sur ]—%, %[ sont les fonctions de la forme : x — ax pour ainkR.

Nous avons montré que h : z +— S(x)e5®) est solution de (E) sur ]-1,1[. Donc, d’apres la question précédente,

il existe a € R tel que:
11
Va E]—, - [, h(z) = ax.
e’ e
Pour déterminer o, on note qu’en utilisant la dérivée calculée en Q12., on a : h'(0) = (14 5(0))S’(0)e5® =1
(en effet S(0) =0 et S'(0) =1 d’apres Q9.). On a aussi b’ = « donc @ = 1. Ainsi :

11
Vr € ] -, = [, S(z)e’® = g,
e e
Cette égalité peut se réécrire:
11
voe|-22], s = 2

11
Or,six € ] -, = [, Iéquation f(t) = x a une unique solution t € [—1, +oo[, qui est W (z).
e e

e e
Considérons d’abord le cas x > 0.

Montrons que la série alternée Zn>1 anx™ vérifie les hypotheses du critere spécial des séries alternées. En
reprenant le calcul fait a la question Q8., il vient, pour tout n > 1,

1\"! 1 —1
— | = (1 + ) |z| = exp [(n— 1)In <1 + >} |z| < exp <n> lz] < 1.
n n n

On en déduit que la suite (Japz™|) est décroissante et elle converge vers 0 (puisque = est dans U'intervalle ouvert
de convergence de la série entiere). Le critére spécial donne alors |S(z)| < Jaiz| < e7! < 1, ce qui permet de
conclure.

Considérons maintenant le cas = < 0.

11
Soit x € } —=, = [ Vérifions qu’on a bien S(z) > —1.

1 1
Pour cela, on note que 1’égalité (2) donne, quand 2z — —— (et parce que S est continue en —— d’apres la
e

1 1
question Q10 et f est continue sur R) : f <S (—>> = ——. Comme —1 est 'unique solution réelle a
e e
1 1
I’équation f(t) = —— (voir le tableau de variations établi en Q1.), on en déduit : S <—) =-1
e e
1
Alors, pour tout = € ] —,0[ on a:
e
too -1 too n—1 too n—1 n  +o n—1 n
N = n n n 1\ _ (=) 1
)= e =2 >y e () = ()
n=1 n=1 n=1 n=1



Q15.

1 1
c’est-a~dire : Va € ] -, 0], S(z) > S <—) = —1, ce qu’on voulait démontrer.
e e

11
En conclusion, pour tout = € ]—, - [, S(z) est 'unique solution de I'équation f(t) = = d’inconnue ¢t > —1.
e e

Donc : .
Vee|——,—|, W) =Sk
|- W =sw
L . 1 ) , :
Les applications S et W sont continues sur |——,—| : nous l'avons démontré dans la question Q10 pour S
e e

1 1
et mentionné dans la question Q1 pour W. Par conséquent, leurs limites en +— égalent leurs valeurs en +—.
e e

1
Prendre la limite quand x — +— dans ’égalité de la question précédente permet donc de démontrer qu’elle
e

1
reste valable si z = ==—. On en déduit que la réponse a la question posée est affirmative, et on a:
e

V€ [—i i] W) = S(a).

Partie Il — Approximation de W

Q16.

Q17.

Soit x > 0. On a :
e*W(w)

b (W(x)) =ze™®

Or, on sait que W(z)e"'®) =z donc W (z) = ze="*). On en déduit :

donc W (x) est un point fixe de ¢,.

La fonction ¢, est de classe C? sur R par composée d’applications de classe C2.

De plus, pour tout t € R, ¢ (t) = x%e "t exp (—xe~t) > 0.

On peut utiliser Q1. en remarquant que ¢, (t) = —zf(—xe~") et en utilisant la minoration de f par —e~!, on
x

obtient ¢/ (t) < —z(—e~!) = =.
e

On peut aussi calculer ¢ () = z2e ! exp (—ze™!)(—1+ze™t) qui est positive si et seulement si z > e! c’est-a-dire
Inx >t.

On obtient alors le tableau de variation suivant :

t | —o0 Inx +00

(1) + 0 -

& /\

On en déduit que #". a un maximum atteint en £ = Inx et que ce maximum vaut ¢, (Inx) = z exp(—ze™"%) =
xexp(—z/r) = —. Ainsi :
e

Wt R, 0< gl(t) <

VRS



Q18. Soient z € [0,e] et n € N. On a :

i1 () = W(@)| B [dp(wn(2)) — 6. (W (2))].

Or ¢, est de classe C! sur R, et |¢| < 2 d’apres la question précédente.
D’apres 'inégalité des accroissements finis, on a :

[wny1(2) = W(z)| = |¢z(wn(z)) — ¢2(W(2))] < %\wn(w) — W(z)l.

Ceci vaut pour tout = € [0, €] et tout n € N. Donc, par une récurrence facile, on obtient :

Ve e 0e], VneN, |wn(z) — W(z)| < (g)" lwo () — W (z)] (3)

et par définition on a wp(xz) = 1 d’ou le résultat.

Q19. Soit a €]0,e[. L’application 1 — W est bornée sur [0,a] en tant qu’application continue sur un segment (le
majorant est facile a expliciter mais ce n’est pas important pour ce qui suit). L’inégalité de la question
précédente implique :

a

n
VneN, Vz €[0,a], |wp(zx)—W(z)|l < (f) 11— W0,
e
Cette majoration est indépendante de x. Donc, par propriété de la borne supérieure :
_wilod < (211 — ol
vrneN, 0<flw, = W™ < () 1= Wl

Comme ¢ €]0,1[, on a lim (%)" = 0. Donc d’apres le théoreme des gendarmes : lim |lw, — W||<[>Oo’a] = 0.
n—-+00 n—-+00

Ceci démontre que la suite de fonctions (wy,)nen converge uniformément sur [0, a] vers W.

Q20. La réponse est positive. Montrons que :
Ve >0, dng € N, Vn > ng, Vx € [0,¢], |w,(x)—W(z)| <e.
Soit € > 0. Comme W est continue en e, il existe n > 0 avec n < e tel que:
Ve € le—mn,e], |W(z)—W(e)| <e.
Posons a = e —1n. On a W(e) = 1 donc, d’aprés Q18. et I'inégalité ci-dessus:
VneN, Vz € laye], |wa(z) - W(z)| < (g)" 11— W(z) < |1 - W(2)| <e.

Sur [0, a], nous savons que la suite (wy),en converge uniformément vers W. Donc, par définition, il existe un
rang ng € N tel que:
Vn = ng, Yo € [0,a], |wp(z)—W(z)| <e.

En combinant cette inégalité et celle sur [a,e], on a donc l'existence d’un rang ng tel que pour tout entier
n = ng, on ait :
Va e [an]a \wn(x) - W(I’)‘ < &

ce qui démontre que la suite (wy,)nen converge uniformément sur [0, e] vers W.



Probleme 1 : Sur les matrices et endomorphismes nilpotents (extrait Centrale
PSI 2019)

Q1. Soit B une base de E et u un endomorphisme de E, notons M = Matg(u). Si u est nilpotent d’indice 1, cela
signifie d’apres ’énoncé que M = M = 0 donc que u = 0. En conclusion :
‘il y a donc un unique endomorphisme nilpotent d’indice de nilpotence égal a 1 et c’est I’endomorphisme nul. ‘

Partie | — Réduction d’une matrice de M5 (C) nilpotente d’indice 2

Q2. Avec les notations de la question 1, puisque Matg(uk) = MP* pour tout entier naturel k, le fait que w soit
nilpotent d’indice p signifie que M 'est donc que MP = 0 et MP~! # 0 (par minimalité de p). Ainsi, uP~! # 0. On
en déduit (par définition de ce qu’est 'endomorphisme nul)

Iexistence d'un vecteur = de E tel que uP~!(z) # 0.

p—1
Q3. Soit une famille de scalaires (A;)o<i<p—1 € CP telle que Z MeuF (2) = 0 ().

Si on avait (Mg, ..., A\p—1) # (0,...,0), on pourrait définir l'entier ¢ = min({0 < k¥ < p—1 | Ay # 0}) de sorte que

A =---=M\_1=0et )\ #0. En composant la relation (*) par «?~!1~% (on le peut car p—1—1i > 0 par construction),
p—1

on aurait donc, par linéarité de u, Z NP 1R () = wP71H(0) = 0, dott
k=0

p—1
Z AP~ R () = 0.
k=i

Comme uP = 0, il ne reste dans cette somme que \;uP~!(x) = 0. C’est impossible puisque A\; # 0 et uP~!(z) # 0
d’apres la question 2. On conclut ce raisonnement par I’absurde : (Ao, ..., A\p—1) = (0,...,0). Ainsi,

(uk(x))ogkgp—1 est libre.

Cette famille libre admet p vecteurs dans l'espace E de dimension n = 2. On sait d’apres le cours que le nombre de
vecteurs de cette famille est inférieur a la dimension de I’espace : p < 2. Or par hypothese, p > 2, d’ou

Q4. Comme u est nilpotent d’indice 2 d’apres la question précédente, u # 0 et u> = wowu = 0.

On a alors pour tout = € E, u(x) € Ker(u) (puisque u(u(z)) = 0) d’ou Im(u) C Ker(u).

Ainsi, dim(Im(u)) = rg( ) < dim(Ker(u)). Or, d’apres la formule du rang appliquée a l’endomorphisme
u de R? il vient 2 = dim(Im(u)) + dim(Ker(u)). Puisque rg(u) > 0 car u # 0, on ne peut avoir que
dim(Im(u)) = dim(Ker(u ) 1. Par inclusion et égalité des dimensions, on peut conclure que

‘Im(u) = Ker(u). ‘

Q5. D’apres les questions 2 et 3, il existe un vecteur x de E tel que (z,u(z)) soit libre dans E de dimension 2, le
cours nous apprend alors que B = (z,u(z)) est une base de E.
En posant y = u(x), on a u(x) = y et u(y) = u(u(z)) = u*(x) = 0, la matrice de u dans la base B vérifie donc

Matg (1) = (? 8) — Jy.

Q6. (=) Soit A € M3(C) nilpotente et u 'endomorphisme de C? canoniquement associé & A. Comme A, u est
nilpotent d’indice p € N*. On traite les deux cas des questions précédentes avec E = C2.




e Sip=1, d’apres la question 1, u = 0 donc A =0 et on a bien tr(A) = det(A) = 0.

e Sip > 2, on a vu en question 5 qu'’il existait une base B de C? telle que Matg(u) = Jo. Comme A et J; représentent
le méme endomorphisme dans deux bases différentes, elles sont semblables (plus précisément si on note P la matrice
de passage de la base canonique de C? & B, on a A = P.JoP~!) donc elles ont méme trace et méme déterminant.
Comme tr(J2) = det(J2) = 0, on a encore tr(A) = det(A) = 0.

(<=) Soit A € M3(C) telle que tr(A) = det(A) = 0. On sait d’apres le cours que x4 = X2 —tr(A)X +det(A) = X2
D’apres le théoreme de Cayley-Hamilton, on a donc A? = 0 car x4 annule A : A est bien nilpotente d’indice p < 2.
Par conséquent, on conclut par double implication que

‘A € M3 (C) est nilpotente <= (tr(A) = det(A) = 0). ‘

Partie Il — Réduction d’une matrice de M,,(C) nilpotente d’indice 2

2

Q7. A nouveau, comme u est nilpotent d’indice 2, on a u* = uwou = 0 donc

Im(u) C Ker(u).

11 vient donc rg(u) < dim(Ker(u)). On ajoute rg(u) de part et d’autre de cette inégalité pour avoir, avec la formule
du rang, l'inégalité
2rg(u) =|2r < n|=dim(F) = rg(u) + dim(Ker(u)).

Q8. Comme Im(u) est de dimension r = rg(u), il existe une base (wy,...,w,) de Im(u). Par définition de I'image,
il existe des vecteurs ey, ..., e, tels que u(e1) = wy, ..., u(e,) = wy.
Vérifions que B = (e1,u(e1), ez, u(ea), ..., e, u(e,)) est une base de E. Soit (A1, g1, Ao, 12, - - - » Ay i) € C? telle que

Arer + pru(er) + Agea + pou(e) + - -+ + Avep + ppule,) =0 (x).

On compose (*) par u donc, comme u? = 0, il vient \jwy 4+ Aows + - - + Aw, = 0. Mais on sait que (wr,...,w,)
est libre donc A\; = A2 = --- = A, = 0. Il ne reste donc plus dans (%) que pywy + pows + -+ + prw, = 0 qui amene
encore la conclusion p; = pg =+ = p, =0 car (wy,...,w,) est libre. On vient de prouver que B est libre.

Or dim(E) = n = 2r = rg(u)+dim(Ker(u)) par la formule du rang donc B admet autant de vecteurs que la dimension
de E. On peut conclure que

‘B = (e1,u(er),e2,u(e2), ..., er,u(er)) est une base de E‘

Q9. Pour k tel que 1 < k < 7, u(u(er)) = u?(ex) = 0 donc, par construction de B, la matrice de u dans B vaut

‘Matlg(u) = diag(J2,...,J2) € MQT((C).‘

Q10. On raisonne comme en question 8. Comme rg(u) = r, il existe une base (wi,...,w,) de Im(u), puis des
vecteurs e, . .., e, tels que u(e1) = wi, ..., u(e,) = wy. Comme Im(u) C Ker(u), (wr,...,w,) est une famille libre de
vecteurs de Ker(u). D’apres le théoreme de la base incomplete, comme dim(Ker(u)) = dim(E) —rg(u) =n—r >r
par la formule du rang, on peut trouver des vecteurs vy, ..., v,_9, dans Ker(u) pour compléter (ws,...,w,) en une
base B = (w1, ..., wp,v1,...,0,—2,) de Ker(u). Vérifions que B = (e1,u(e1), ez, u(ez), ..., eq uler),vi, ..., vp—2,) est
une base de E. Soit (A1, 11, A2y 42y -« - Ay frs M5 - - -5 n—2r) € C?7 telle que

Ae1 + ,ulu(el) + Agesg + /Lgu(eg) + .o 4+ Aer + uru(er) + v+ ...+ P—2rVn—2r =0 (*)

On compose (%) par u pour obtenir A\jw;+Aawa+. . .+A\w, = 0. Or (wy,...,w,)estlibredonc A} = Ay =... =\, = 0.
I1 ne reste donc plus dans (%) que pywy +powa+. . .+ prwe +mv1+. . .+ Mp—2,Up—2, = 0 qui amene encore la conclusion
P1=p2=...=lp =M1 =...="Np_2, = 0 car B est libre (c’est une base de Ker(u)). Ainsi, B est libre.

Comme B admet autant de vecteurs que la dimension de E. On peut conclure que

‘B = (e1,u(er), ez, ule2), ..., e ule,),vy,...,v,—2,) est une base de E. ‘
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Q 11. Pour k tel que 1 < k < 7, on a u(u(e)) = u?(ex) = 0. Pour k tel que 1 < k < n—2r, on a u(v) = 0 car
v, € Ker(u) donc, par construction de B, la matrice de u dans B vaut

|Matg(u) = diag(Ja, .., J2,0n2:) € My(C).|

Partie 11l — Valeurs propres, polyndme caractéristique, polyndmes annulateurs d’'une matrice nilpotente

Q12. Les valeurs propres de A sont les racines de x4 d’apres le cours. Comme tout polynéme complexe admet au
moins une racine d’apres le théoréeme de d’Alembert-Gauss, le spectre de A n’est pas vide.

Si A est nilpotente d’indice p, on a AP = 0. Ainsi, X? est un polyndéme annulateur de A. On sait alors que la spectre
de A est inclus dans l'ensemble des racines de X? qui est {0}. On en déduit :

‘Si A est nilpotente, alors 0 est 'unique valeur propre de A. ‘

Q13. Soit A € M,,(C) telle que A est nilpotente et diagonalisable. On vient de voir que Sp(A4) = {0}. Mais on sait
que si A est diagonalisable, H (X — )\) est annulateur de A, ce qui donne ici X annulateur de A d’ott A = 0.

AESP(A)
Réciproquement, la matrice nulle est a la fois nilpotente et diagonalisable (toute base est une base de vecteurs propres).

‘La seule matrice A € M,,(C) a la fois nilpotente et diagonalisable est la matrice nulle.

Q14. (=) Si A € M,,(C) est nilpotente, alors Sp(A4) = {0} d’apres la question 12. La seule valeur propre de A est
donc 0 et elle est forcément de multiplicité n dans x4 qui est de degré n et scindé sur C. Ainsi, x4 = X"

(<) Si x4 = X", d’apres le théoreme de Cayley-Hamilton, x4(A) = 0 donc A™ = 0 et A est bien nilpotente.

Par double implication, on vient de montrer que pour A € M,,(C),

A est nilpotente <= y4 = X”.‘

Q15. Soit A € M,,(C) dont 0 est 'unique valeur propre. Comme & la question précédente, 'ordre de multiplicité
de 0 dans x4 ne peut étre que n donc x4 = X" ce qui justifie que x4 = X" donc que A est nilpotente d’aprés la
question 14. On a donc avec 12 et 15, pour A € M,,(C) :

‘A est nilpotente <= Sp(A) = {0}. ‘

Q16. Soit A € M, (C) une matrice triangulaire a diagonale nulle. Pour A € C, la matrice A\l[,, — A est aussi
triangulaire avec des A sur la diagonale donc x4(A) = A" ce qui justifie que y4 = X". D’apres la question 14, la
matrice A est donc nilpotente.

’A € M, (C) triangulaire & diagonale nulle est nilpotente. ‘

Soit A € M,;,(C) nilpotente. On sait d’apres le cours que A est trigonalisable car y4 = X" est scindé dans C[X].
La matrice A est donc semblable & une matrice triangulaire supérieure 7' (par exemple) avec les valeurs propres de
A sur la diagonale (car A et T sont semblables et elles ont donc le méme polynéme caractéristique) . Mais comme 0
est la seule valeur propre de A,

‘A € M,,(C) nilpotente est semblable & une matrice triangulaire a diagonale nulle. ‘
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Q17. Soit A € M,,(C) nilpotente d’indice p et P = XPQ € C[X] avec Q € C[X].
Alors, comme P(A) = APQ(A) et que AP =0, on a bien P(A) = 0. Par conséquent,

‘si P € C[X] est multiple de XP? et A nilpotente d’indice p, alors P(A) = O.‘

Q 18. Comme P est un polynéme annulateur de A, on sait d’apres le cours que toute valeur propre de A est racine
de P. Or 0 est valeur propre de A nilpotente d’apres la question 12. Ainsi,

Si A est nilpotente et P annulateur de A, alors 0 est racine de P.

q
Q19. D’apres le théoreme de d’Alembert-Gauss, on peut écrire Q = « H(X — k)™ ot A, ..., Ag sont les différentes
k=1
racines de @ et my,...,my leurs multiplicités respectives, et o complexe non nul. Comme Q(0) # 0, aucune de ces
q

racines n’est nulle. On a par ailleurs Q(4) = « H(A — M\el,)™ d’apres les relations sur les polynémes de matrice.
k=1

Or, pour k tel que 1 < k < g, le complexe \; n’est pas valeur propre de A puisque Sp(A) = {0} d’apres la question

12, ainsi la matrice A — A1, est inversible. En tant que produit de puissances de matrices inversibles :

‘Q(A) est inversible. ‘

Comme P(A) = A™Q(A) = 0, en multipliant & droite par Q(A)~!, on obtient A™ = 0. Mais par définition de I'indice
de nilpotence de A, A #0,A%2#0,...,AP~1 £ 0 et AP =0, ce qui justifie que m > p. Ainsi,

P =X"0Q = XP(X™PQ) est bien un multiple de X?.

Partie IV — Racines carrées de matrices nilpotentes

Q20. Comme les deux dernieres colonnes de A sont respectivement 3 fois et —7 fois la premiere qui est non nulle,
on a rg(A) = 1. Il vient donc

‘rg(A):1ettr(A):1+6—7:O.‘

D’apres le cours, on sait que 'ordre de multiplicité de 0 dans x 4 est supérieur ou égal a dim(FEp(A)) = dim(Ker(A))
or dim(Ker(A)) = 3 —1g(A) = 3 — 1 = 2 par la formule du rang. Ainsi, (X —0)? = X2 divise x4. Par conséquent,
comme Y 4 est de degré 3 et unitaire, on a Y4 = X3 + aX?. De plus, le cours nous apprend que a = —tr(A4) = 0 car

xa = X3 —tr(A) X2 + ... —det(A). Finalement,

Par le théoréme de Cayley-Hamilton, A% = 0 donc A est nilpotente. Un calcul élémentaire montre que A2 = 0 et
A #0 dou

‘A est nilpotente d’indice 2. ‘

0 00
Q21. On cherche & montrer que A est semblable a diag(J2,J1) = [1 0 0| =T ce qui revient, par la formule de
0 00

changement de base, & trouver une base B = (v1, ve,v3) de C3 telle que Matpg(u) = T.

Il s’agit donc de trouver vy, vy, v3 linéairement indépendants tels que u(v1) = v, u(ve) = u(vg) = 0.

Procédons par ordre :

e on cherche vs tel que v2 = u(vy) # 0 or, comme rg(u) = 1 et Im(u) = vect(X), il suffit de prendre vs = X = (1,2, 1).
e on cherche v; tel que u(v1) = vy ce qui nous conduit a prendre par exemple v; = e; = (1,0,0) d’apres la matrice A.
e on cherche vz tel que u(v3) donc vz € Ker(u) et on montre facilement que Ker(u) = Vect((3,—1,0),(7,0,1)), il
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suffit de prendre n’importe quel vecteur de ce plan qui n’est pas colinéaire a vy, par exemple vz = (3, —1,0).

1 1 3
Réciproquement, B = (v1, vz, v3) est bien une base de C3 car en posant P = | 0 2 —1| qui est la matrice de la
01 0

famille B dans la base canonique de C3, on a det(P) = 1 # 0 donc P est inversible.

Par construction, u(v1) = va, u(ve) = u(vs) = 0 donc Matp(u) = T. Comme A est la matrice de u dans la base
canonique, A et T représentent le méme endomorphisme dans deux bases différentes donc elles sont semblables. Plus
précisément, la matrice P définie ci-dessus étant la matrice de passage de la base canonique a B, on a

0 0 0 1 3 -7
A=PTPltavecT=|1 0 0] =diag(Js,J1) ;deplus Pt=[0 0 1
0 0 0 0o -1 2
car on a clairement e; = vy, eg = 3v] — v3 et e3 = Vo — 2e5 — €1 = vy + 2v3 — 6V — v = —TV + V2 + 2v3.

Q22. Si R? = A, comme A? = 0, il vient R* = (R?)? = A% = 0 donc R est nilpotente. Puisque R?> = A, on a p? = .
Ainsi, pou = p? = uop donc p et u commutent. On sait d’apres le cours qu’alors

’Im(u) et Ker(u) sont stables par p et p est nilpotent car R l'est.

Q23. Soit toujours R € M3(C) telle que R? = A, posons R’ = P~ RP comme proposé par 1’énoncé avec la matrice
P de la question 21. Par la formule de changement de base, R’ est la matrice de p dans la base B.

- Comme Im(u) est stable par p, il existe d € C tel que p(ve) = dvs.

- Comme Ker(u) est stable par p, il existe (e, f) € C2 tel que p(v3) = eva + fuvs.

- 11 existe aussi (a, b, c) € C3 tel que p(vy) = avy + bvg + cvs.

a 0 0
Ainsi, R = [ b d e |. Soit A € C, en développant le déterminant x g/ (A) = det(A3— R’) par rapport a la premiére
c 0 f

ligne, on obtient directement yg/(A) = (A —a)(A—d)(A— f) donc xg = (X —a)(X —d)(X — f). Mais comme R’ est
nilpotente, car p 'est, d’apres la question 22, on a ygr = X3 d’apres la question 14. Par conséquent : a=d = f =0

0 00 0 00
douR' =|b 0 e|.Oncalculealors R?=|ce 0 0. Comme R?> = A équivaut & R?> = P"'R?P = P~'AP =
c 00 0 00
0 0 O
T, la condition R? = A se traduit par ce = 1. On obtient donc ' = | b 0 1/c| avec b€ Cet c € C*.
c 0 O

Réciproquement, si R’ est de la forme précédente, alors R”? = T (par calcul) donc R? = PR?P~! = PTP~! = A.
Ainsi, par double implication, pour R € M3(C), on a I’équivalence :

0
RZ=A<—= R =150
C

o O O

0
1/c | avec b e Cet c € C*.
0

Comme R = PR'P~! on a la nouvelle équivalence grace a la question 21, toujours pour R € M3(C) :

b+3c 3b+9—(1/c) (2/c)—"Tb—21c
RP=A<=R=|[2b—c 6b—3c—(2/c) (4/c)—14b+Tc| avec b€ C et c € C*.
b 3b—(1/c) (2/c) —Tb

0
Q24. Soit R € M3(C) telle que R? = J3, alors |R* = (R?)?=J2 = |0
1

o O O

0
0 | = E31 | (matrice élémentaire) donc
0

RS = R'R? = J3E31 =0.| Comme R est nilpotente, xp = X3 d’apres la question 14, donc R?® = 0 d’apres le
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théoreme de Cayley-Hamilton. On en déduit que R* = R3R = 0 ce qui est incompatible avec R* = E3;.

Il n’existe donc aucune solution de 1’équation R? = .J3 dans M3(C).

Q25. On raisonne par I'absurde en considérant une matrice R € M, (C) telle que R? = V. Comme V? = 0, on a
R* = (R%*)P = VP = 0 donc R est nilpotente. A nouveau, d’apres la question 14, yg = X" donc R"™ = 0 (toujours
Cayley-Hamilton). Or, par hypotheése, on a 2p — 1 > n donc 2p — 2 > n. Mais V est nilpotente d’indice p donc
VPl = (R?)P~1 = R%=2 £ (. Ceci est impossible car 2p —2 —n > 0 et R?P72 = R"R?P~27" = () x R?P~27" = (.

‘Si V € M, (C) est nilpotente d’indice p tel que 2p — 1 > n, V n’a pas de racine carrée dans M,,(C). ‘

Q26. Soit n > 3. Posons V' = diag(A4,0,,—3) ou A est la matrice définie en IV.1).

Par calcul sur les matrices blocs, on a V2 = diag(A%,02_5) = 0,, car A est nilpotente d’indice 2 d’apres Q20. Ainsi,
V est nilpotente d’indice p = 2 (car V # 0y,).

Par ailleurs, par Q23, on sait que A admet au moins une racine carrée. Notons R une racine carrée de A.

Alors (diag(R, 0,3))? = diag(R?,02_;) = diag(A4,0,_3) = V donc diag(R, 0,,_3) est une racine carrée de V.

‘ V = diag(A4, 0,_3) répond au probleme posé. ‘
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