Chapitre 12
Variables aléatoires discretes

Dans tout le chapitre, (2,7, P) désigne un espace probabilisé et E' un ensemble quel-
conque.

I Variables aléatoires discretes

I. A Loi d’une variable aléatoire discréte

Définition 1.1

Une variable aléatoire discréte X définie sur I'espace probabilisé (2, T,P) et &
valeurs dans F est une application X : Q@ — F telle que :

o X(Q) est au plus dénombrable;
e Vze E, X t({z}) eT.

Remarques 1.2 : ¢ La seconde condition signifie que pour tout x € E, I’ensemble
{w e Q| X(w) =z} est un événement.

e Lorsque F C R, on dit que X est une variable aléatoire discréte réelle.

Proposition 1.3)

Soit X une variable aléatoire discréte sur (2, 7,P) & valeurs dans E. Si A est une
partie quelconque de E, alors X ~1(A) est un événement noté (X € A) ou {X € A}.

Notation : Siz € F, on note (X = z) 'événement X ~*({x}).
Si X est une variable aléatoire discrete réelle et x € R, on note :

v (X <) = (X €]-00:2]), v (X3 2) = (X € [o;+00]),
o (X<uz)=(X€]-00;x[), o (X >2)= (X €]z;+00]).

Remarque 1.4 : Les variables aléatoires finies vues en sup : sur un univers € fini
sont des variables aléatoires discrétes sur (2, P(2)).

Définition 1.5

Soit X une variable aléatoire discrete, alors (X = x),¢cx () est un systeme complet
d’événements appelé systéme complet d’événements associé a X.

Définition 1.6
Soit X : Q — FE une variable aléatoire discrete.
L’application :

Px : PE) — [0;1]
A +— P(Xel

est une probabilité sur (F,P(E)) appelée loi de probabilité de X.

Remarque 1.7 : La loi de X peut étre définie sur un ensemble E contenant X (12).

’iProposition 1.8)

Soit X : 2 — F une variable aléatoire discréte, la probabilité Px est déterminée
par la distribution de probabilité discrete (P(X = c’est a dire par la
donnée de :

x))meX(Q)7

o l’ensemble au plus dénombrable X () ;

e la probabilité de chaque événement élémentaire.

\ J

Exemples 1.9 : ¢ On lance deux dés équilibrés et on appelle S la somme des ré-
sultats. Proposer une modélisation : un espace probabilisé (2, T, P), une ex-
pression pour S et la distribution de probabilité discréte associée.

¢ On suppose que X est une variable aléatoire discrete a valeurs dans N* telle
que : Vn e N*, P(X =n+1)=2P(X =n).
Donner une expression explicite de la loi de X.

Notation : Lorsque deux variables aléatoires discrétes X et Y a valeurs dans un
méme ensemble E ont la méme loi, c’est a dire lorsque Px = Py, on note
X~Y.

Remarque 1.10 : La notation X ~ Y ne suppose pas que X et Y sont égales ou
méme qu’elles sont définies sur le méme espace probabilisé.

Exemple 1.11 : On lance un dé rouge et on appelle X le résultat du dé, on lance
un dé vert et on appelle Y le résultat du dé.
Les deux expériences peuvent étre considérées séparément, X et Y sont définies
sur des univers différents, mais X ~ Y.

I. B Fonction d’une variable aléatoire discréte

Dans tout le reste du chapitre, toutes les variables aléatoires sont supposées discretes.

Proposition 1.12)

Soit X une variable aléatoire discréte définie sur (Q,7,P) & valeurs dans F et
f:E—F.
Alors fo X : Q) — F est une variable aléatoire discréte notée f(X).
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Remarque 1.13 : Laloide Y = f(X) est donnée par :
- Y(Q) = f(X(Q);
« VWWeY(Q),PY =y) =

> P(X =z).
2EX(Q)f(2)=y

Proposition 1.14)

Soit X et Y deux variables aléatoires discrétes définies sur (€1,71,P1) et

(Q2, T2, P2) a valeurs dans un méme ensemble E.
SiX~Yetf:E— F,alors f(X)~ f(Y).

I. C Loi conditionnelle

_(Définition 1.15)
Soit X : 0 — FE une variable aléatoire discréte et A € 7 un événement non
négligeable. Alors :

~

P(E) — [0:1]

B~ Pa(X € B)= PANXEE)

est une probabilité sur (E,P(FE)) appelée loi conditionnelle de X sachant A.

\. J

II Couple et famille de variables aléatoires discretes

II. A Couple de variables aléatoires discretes

(Définition 2.1) .
Soit X, Y des variables aléatoires discretes définies sur le méme espace probabilisé

(Q,7,P) a valeurs dans E et F' respectivement.
Alors :

w : Q — ExF
W — (X(w)7Y(w))

est une variable aléatoire discrete a valeurs dans E x F', appelée couple de va-
riables aléatoires (X,Y).

\. J

Exemple 2.2 : On lance deux dés. Soit X la variable aléatoire égale au plus petit
résultat des deux dés et Y au plus grand. Alors (X,Y) est un couple de variables
aléatoires. Donner (X,Y)(Q).

Remarque 2.3 : On n’a pas toujours : (X,Y)(2) = X(2) x Y(Q), et dans ce cas
certains des événements ((X = z) N (Y = y)) sont impossibles. On pourra tout
de méme donner la loi d’une telle variable aléatoire sur X () x Y () quitte a
compléter par des 0.

Définition 2.4
Soit X, Y des variables aléatoires discretes définies sur le méme espace probabilisé
(Q, T,P) a valeurs dans E et F respectivement. On appelle

Loi conjointe du couple : la loi de la variable aléatoire (X,Y);

Lois marginales du couple : les lois des variables aléatoires X et Y.

Remarque 2.5 : La loi conjointe du couple est donc la donnée de :
¢ (X,Y)(Q)
e Yz e X(Q),VyeY(Q),P(X =2,Y =y)

(Méthode 2.6)

Si l'on connait la loi de X et les lois conditionnelles de Y sachant les événe-
ments (X = z) pour chaque xz € X (), on retrouve la loi conjointe du couple

par

Exemple 2.7 : On effectue 2 tirages successifs et sans remise dans une urne qui
contient 2 boules blanches et une boule noire. On note X (respectivement Y) la
variable aléatoire égale & 1 lorsque la premiére (respectivement la seconde) boule
tirée est blanche et a 0 sinon.

Déterminer la loi conjointe du couple (X,Y).

’iThéoréme 2.8 (Lois marginales a partir de la loi conjointe))

Soit (X,Y") un couple de variables aléatoires discrétes. On a

VeeX(Q), PX=2)= ) P(X=zY=y)
yeY ()

VyeY(Q), PY=y= > PX=zY=y)
zEX(Q)

Exemple 2.9 : Déterminer la loi de la variable aléatoire Y de ’exemple précédent.

Remarque 2.10 : On peut étendre les notions de loi conjointe et loi conditionnelles
pour un n-uplet de variables aléatoires discretes.
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II. B Variables aléatoires indépendantes

Définition 2.11)

Deux X et Y variables aléatoires discretes définies sur (2,7, P) a valeurs dans F
et F sont dites indépendantes, et on note X I Y, lorsque :

VA € P(E),VB € P(F),P(X €AY € B)=P(X € A) x P(Y € B).

Proposition 2.12)
Deux variables aléatoires discretes X et Y a valeurs dans E et F' sont indépendantes

si et seulement si la distribution de probabilité du couple (X,Y) est le produit des
distributions de probabilité de X et de Y :

Vee EVye F,P(X =2,Y =y) =P(X =2) x P(Y =y).

Proposition 2.13)
Soit X et Y deux variables aléatoires discrétes sur (2,7, P).
Si X et Y sont indépendantes, alors, pour toute fonction f définie sur X (Q2) et
toute fonction g définie sur Y (), les variables aléatoires f(X) et g(Y') sont indé-
pendantes.

Définition 2.14 (famille finie de variables aléatoires indépendantes)

Les variables aléatoires discretes X, ..., X,, a valeurs dans Fy,..., E, sont dites
indépendantes lorsque, pour tout (A4y,...A4,) € P(Ey) X --- x P(Ey), les événe-
ments (X7 € Ay),..., (X, € A,,) sont indépendants.

Remarques 2.15 : « Toute sous famille d’une famille de variables aléatoires indé-
pendante est indépendante.

e Si Xy,..., X, sont des variables indépendantes et f1, ..., f, sont des fonctions
définies sur X1(2),..., X, (), alors f(X7),..., f(X,) sont indépendantes.

Attention : L’indépendance implique l'indépendance deux a deux, mais la réci-
proque est fausse.

Théoréme 2.16 (Lemme des coalitions))

Si les variables aléatoires Xy, ..., X, sont indépendantes, les variables aléatoires
f(X1,...,X}) et g(Xpy1,...,X,,) sont indépendantes.

Remarque 2.17 : On peut créer plus de deux coalitions.

II. C Suites de variables aléatoires indépendantes

Définition 2.18 (famille quelconque de VA indépendantes))

Une famille quelconque (X;);e; de variables aléatoires discrétes définies sur
(Q,T,P) est dite indépendantes lorsque pour toute partie finie J de I, la sous
famille (X;);cs est indépendante.

Remarque 2.19 : Si (X;);c; sont des variables indépendantes et (f;);c; sont des
fonctions définies sur X;(Q),..., alors (fi(X;))icr sont indépendantes.

Théoréme 2.20)
Pour toute suite (P, )nen de lois de probabilités discrétes, il existe un espace pro-
babilisé (2, T, P) et une suite de variables aléatoires discretes, indépendantes sur
(Q, T, P) telles que pour tout n € N, la loi de la variable aléatoire X,, est P,.

Remarque 2.21 : En particulier, si P est une loi de probabilité discrete, il existe
un espace de probabilité (€2, 7,P) et une suite (X,,)nen de variables aléatoires
discretes indépendantes telle que pour tout n € N, la loi de X, est P. On dit
alors que les variables aléatoires sont indépendantes identiquement distribuées
(abrégé en i.i.d.).

Exemple 2.22 : Si P est la loi de Bernoulli de parametre p, on obtient une modéli-
sation du jeu de pile ou face ou toute autre suite d’épreuve de type succés-échec
indépendantes.

Pour tout n € N*, X, est la variable aléatoire égale a 1 en cas de succes a la
ni®me épreuve et & 0 en cas d’échec et les (X, ),en+ sont indépendantes.

IIT Lois usuelles

ITI. A Loi uniforme

(Définition 3.1)

Soit X une variable aléatoire finie. Soit n € N*.
On dit que X suit la loi uniforme sur [1;n] et on note X ~ U([1;n]) lorsque :

. )((f)) = 3
. Vke[lin], P(X =k) =

Schéma type
X est une variable aléatoire a valeurs dans [1;n] avec équiprobabilité. ]

Exemple 3.2 : Résultat d’'un lancer de dé équilibré.
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ITI. B Loi de Bernoulli
(Définition 3.3)

' N

Soit X une variable aléatoire finie et p € [0;1].
On dit que X suit la loi de Bernoulli de parameétre p et on note X ~ B(p)
lorsque :

. )((S)) = 3
e P(X=1)=

\. J

Schéma type

On considére une épreuve Bernoulli ¢’est a dire une expérience aléatoire dont I'exé-
cution ameéne soit un succes (événement S) soit un échec (événement S); on note
p = P(S).

X =1 si 8§ estréalisé

X =0 sinon

\. J

X est la v.a. finie définie par {

Remarque 3.4 : La variable aléatoire X est alors la fonction indicatrice de l’en-
semble S : X = 1g.

ITI. C Loi binomiale

(Définition 3.5)

Soit X une variable aléatoire finie. Soit n € N* et p € [0;1].

On dit que X suit la loi binomiale de parameétres n et p et on note X ~ B(n, p)
lorsque :

e X (Q) =

e Vke[0;n], P(X =k) =

\. J

Schéma type
Soit n € N* fixé.

o On répete n fois (n fixé) une épreuve de Bernoulli;

o la probabilité de S (succes) reste identique & chaque réalisation de I’épreuve;
e les réalisations successives de I'épreuve sont indépendantes ;

e X est la variable aléatoire égale au nombre de succes obtenus lors de ces n
épreuves.

\. J

Exemple 3.6 : On lance 3 fois un dé équilibré et on note X le nombre de 6 obtenus.
Déterminer la loi de X.

Remarques 3.7 : ¢ On connait le nombre de réalisations de ’épreuve a I’avance.
e Sin =1, on retrouve la loi de Bernoulli de parameétre p.
e On peut en déduire la formule du binéme de Newton dans le cas ot a > 0 et

b > 0 en posant p = GL%.

Proposition 3.8)

Soit n € N*,p € [0;1] et X4,...,X,, des variables aléatoires discretes indépen-
dantes et identiquement distribuées de loi de Bernoulli de parametre p.
Alors X = X1 +--- 4+ X, ~ B(n,p).

III. D Loi géométrique

Définition 3.9
Soit p € ]0;1[, on pose ¢ = 1 — p. On dit qu’une variable aléatoire X suit la loi
géométrique de parametre p et on note X ~ G(p) lorsque :

o X(2) =N*ou X(2) = N*U {+00};
. Vk e N*,P(X = k) = pg* 1.

Schéma type

On considére une suite infinie d’épreuves de Bernoulli indépendantes de méme pro-
babilité de succés p € ]0;1[ et X est le rang du premier succeés (+oo s’il n’y a aucun
succes).

Exemples 3.10 : ¢ Dans un jeu de pile ou face infini avec un piéce qui donne pile
avec probabilité p =]0;1[, le rang X du premier pile est une variable géomé-
trique de parametre p.

e Pour la méme expérience aléatoire, on note Y le rang du deuxieme pile. Dé-
terminer la loi conjointe de X et Y et en déduire la loi de Y.

ITI. E Loi de Poisson

Définition 3.11)
Soit A > 0. On dit qu’'une variable aléatoire discrete X suit la loi de Poisson de
parameétre X et on note X ~ P(A) lorsque :

. X(Q)ZN;
e VEEN,P(X = k) = Are.

Lycée Victor Hugo, Besangon

Chapitre 12. Variables aléatoires discretes 4 / 9



’_[Proposition 3.12)

Soit (X, )nen une suite de variables aléatoires discrétes telles que pour tout
n € N, X, suit la loi binomiale de paramétres (n,p,). Si : n X p, —+> AeRy,
n—-+0oo

~

alors, pour tout £ € N :

)\k

. _ -2
lim P(X, = ¢

n—-+oo

k)

Remarques 3.13 : « Sila variable aléatoire X suit une loi binomiale de parametres
(n,p) avec n grand et A =n X p « pas trop grand », on peut approcher la loi
de X par la loi de Poisson de parameétre A (événements rares).

e La loi de Poisson de parametre A est souvent utilisée pour décrire le nombre
d’événements dans un intervalle de temps lorsque ces événements sont indé-
pendants et qu’il y en a A en moyenne.

Exemple 3.14 : Nombre d’appels recus entre 15h et 16h par un standard télépho-
nique : il y a un grand nombre de personnes qui peuvent appeler, mais chacune
avec une probabilité faible. On sait qu’en moyenne le standard regoit 20 appels

par heures.
Remarque 3.15 : Une loi conditionnelle peut étre une loi usuelle.

Exemple 3.16 : On suppose que le nombre de voitures arrivant a un péage auto-
routier en une heure suit une loi de Poisson de parametre A € |0; 400, il y a k
caisses et on suppose que chaque voiture choisit aléatoirement et indépendam-
ment des autres une des caisse. Déterminer la loi de la variable aléatoire donnant
le nombre de voitures qui passent a la caisse numéro 1 en une heure.

IV Espérance d’une variable aléatoire réelle ou com-
plexe

IV. A Définitions et propriétés

Définition 4.1 (Espérance d’une VA positive))

Soit X une variable aléatoire discréte a valeurs dans RT U {+00}. L’espérance de

X, notée E(X) est la somme dans [0;+0c] de la famille (z P(X = m))weX(Q) :

E(X)

Z zP(X = x).

zEX ()

Remarque 4.2 : Par convention, si P(X = 400) = 0, alors +00 x P(X = +00) = 0.

fiProposition 4.3)

Soit X une variable aléatoire discréte & valeurs dans NU {400}, alors :

B(X) = fp(x > n).

(Définition 4.4) .
Soit X une variable aléatoire discréte a valeurs dans R ou C. On dit que X est
d’espérance finie lorsque la famille (z P(X = z)) est sommable.

zeX ()
Dans ce cas, on appelle espérance de X la somme de cette famille :

Z zP(X = x).

zeX ()

\. J

E(X)

Notation : On note X € L' lorsque X est une variable aléatoire discréte réelle ou
complexe d’espérance finie.

Remarques 4.5 : « Soit X une variable aléatoire discrete. Si X est positive, alors
elle possede une espérance finie ou infinie. Si X est a valeurs dans R ou C
alors soit elle a une espérance finie, soit elle n’a pas d’espérance.

e Si X est une variable aléatoire fini (en particulier si  est fini), alors X a une
espérance finie.

Définition 4.6
Une variable aléatoire discrete est dite centrée lorsqu’elle est d’espérance finie et
que son espérance est nulle.

Exemples 4.7 : ¢ Espérance des loi usuelles finies.
e On pose pour tout n € N* p,, = m Alors (pn)nen est une distribution de
probabilité discrete. Une variable aléatoire discrete X de loi associée a cette

distribution de probabilité a-t-elle une espérance ?

IV. B Espérance des lois usuelles

fiProposition 4.8)

Si une variable aléatoire discréte X suit la loi géométrique de parametre p € ]0;1],

alors X a une espérance finie et E(X) = %

\. J

~

fiProposition 4.9)

Si une variable aléatoire discrete X suit la loi de Poisson de parameétre A € R* |
alors X a une espérance finie et E(X) = .

\. J
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IV. C Propriétés de ’espérance

’_[Théoréme 4.10 (Formule de transfert) )

Soit X une variable aléatoire discréte et f: X (£2) — C.
La variable aléatoire f(X) est d’espérance finie si et seulement si la famille
(f(z)P(X = x))meX(Q) est sommable et dans ce cas :

E(f(X)= Y [f@PX=a).
z€X ()

\. J

Remarques 4.11 : « La formule de transfert permet le calcul de l'espérance de
f(X) sans avoir & déterminer sa loi, il suffit de connaitre la loi de X.

e Si f est définie sur un ensemble E qui contient X ({2), on peut remplacer la
famille (f(z)P(X = x))meX(Q) par la famille (f(z)P(X = x))reE (on ajoute
des éléments nuls).

e Dans ce théoreme f est a valeurs dans C, mais X est une variable aléatoire
discrete quelconque, elle peut en particulier étre un couple de variables aléa-
toires discretes (cf espérance du produit).

Théoréme 4.12 (Inégalité triangulaire) )

Soit X est une variable aléatoire discréte complexe.
Alors X est d’espérance finie si et seulement si | X| est d’espérance finie et dans ce
cas :

|E(X)| <E(|X]).

Proposition 4.13)

Soit X et Y deux variables aléatoires discrétes, respectivement complexes et posi-
tives telles que | X| < Y.
Si Y est d’espérance finie, alors X est d’espérance finie.

~

’iThéoréme 4.14 (Linéarité de I’espérance) )

Soit X et Y des variables aléatoires discretes complexes d’espérance finie et
A, € C, alors la variable aléatoire AX + uY est d’espérance finie et :

E\X + 1Y) = AE(X) + pE(Y).

’iProposition 4.15 (Positivité de ’espérance))

Soit X une variable aléatoire discréte positive, alors : E(X) > 0.
De plus, si X est positive et E(X) = 0, alors X = 0 presque slirement.

Proposition 4.16 (Croissance de I’espérance) )

Soit X,Y deux variables aléatoires réelles discretes d’espérance finie telles que
X <Y. Alors :
E(X) < E(Y).

De plus si E(X) = E(Y), alors X =Y presque stirement.

Attention : Soit X,Y sont deux variables aléatoires réelles discretes :

X <Y et Y est d’espérance finie 7 X est d’espérance finie.

Théoréme 4.17 (Espérance du produit de variables indépendantes)

Soit X et Y des variables aléatoires discrétes complexes indépendantes et d’es-
pérance finie.
Alors XY est d’espérance finie et :

E(XY) = E(X) x E(Y).

Généralisation a n variables aléatoires indépendantes.

fiProposition 4.18)

Soit X1,..., X, des variables aléatoires discretes complexes d’espérance finie et in-
dépendantes.
n
Alors [] X} est d’espérance finie et :
k=1
n n
E (H Xk> = H E(X})
k=1 k=1

V Variance d’une variable aléatoire réelle

Dans cette section, les variables aléatoires sont réelles.

V. A Définition et propriétés

Proposition 5.1)

Soit X une variable aléatoire discrete réelle.
Si X2 est d’espérance finie, alors X est d’espérance finie.

Notation : On note X € L? lorsque X est une variable aléatoire discréte réelle telle
que X? est d’espérance finie.

Lycée Victor Hugo, Besangon

Chapitre 12. Variables aléatoires discretes 6 / 9



_(Théoreme 5.2 (Inégalité de Cauchy-Schwarz))

Soit X et Y des variables aléatoires discretes réelles, si X et Y sont dans L?, alors
XY est dans L' et :

~

E(XY)? < E(X?) x E(Y?)

avec égalité si et seulement si il existe A € R tel que X = AY ou Y = AX presque
Lsﬁrement.

(Définition 5.3) .

Soit X € L?, on appelle variance de X le réel positif :

V(X)=E ((X - E(X))?).

\. J

Remarque 5.4 : La variance mesure la dispersion de X par rapport a sa moyenne.

Proposition 5.5)

Soit X € L?; V(X) = 0 si et seulement si X est constante presque stirement, i.e.
si et seulement si il existe a € R tel que P(X =a) = 1.

’_[Théoréme 5.6 (Formule de Koenig-Huygens) )
Soit X € L? :

V(X) = E(X?) -E(X)2

’_[Proposition 5.7]
Soit X € L? et a,b € R, alors aX +b € L? et :

V(aX +b) = a®> V(X).

\. J

(Définition 5.8) \

Soit X € L?, on appelle écart type de X le réel positif o(X) = /V(X).

_(Définition 5.9)
Soit X € L?, on dit que X est réduite lorsque V(X) = 1. ]

’iProposition 5.10)

X —-EX
Soit X € L2, si 0(X) > 0, alors la variable aléatoire (X())
o

\.

est centrée réduite. ]

V. B Variance des lois usuelles

Proposition 5.11)

Si une variable aléatoire discréte X suit la loi géométrique de parameétre p € |0; 1[,]

alors X € L? et V(X) = %.

Proposition 5.12)
Si une variable aléatoire discréte X suit la loi de Poisson de parametre A € R ,]

alors X € L? et V(X) = \.

V. C Covariance

Définition 5.13)

Soit X et Y dans L?. Alors (X —E(X))(Y —E(Y)) € L' et on appelle covariance
de X et Y le réel :

Cov(X,Y) = E (X ~ E(X)) (Y - E(V))).

Remarque 5.14 : Pour X € L? Cov(X,X) = V(X).

Théoréme 5.15 (Formule de Koenig-Huygens)
Soit X et Y dans L2, alors :

Cov(X,Y) = E(XY) — E(X)E(Y).

Proposition 5.16)
Si X et Y sont dans L? et sont indépendantes, alors Cov(X,Y) = 0. ]

Remarque 5.17 : La réciproque est fausse.

Contre exemple 5.18 : Soit X une variable aléatoire de loi uniforme sur {—1,0,1}
et Y la variable aléatoire indicatrice de I’événement (X = 0). Alors X et Y ne
sont pas indépendantes ((X = 0) et (Y = 0) ne sont pas indépendants) mais
décorrélées.

Définition 5.19)

Deux variable aléatoire X et Y sont dites décorrélées lorsqu’elles sont dans L? et
que leur covariance est nulle.
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V. D Variance d’une somme

Théoréme 5.20)

Soit X1, X, ..., X, dans L?, alors la variable aléatoire X; + - -- + X, est dans L?
et :

V(X1 4+ X,) = zn:V(Xk) +2 ) Cov(Xy, X;).

k=1 1<i<j<n

Proposition 5.21)

Soit X1, Xs,..., X, dans L? deux & deux décorrélées, alors la variable aléatoire
X1+ -+ X, est dans L? et :

V(Xl + -+ Xn) = Xn:V(Xk)
k=1

Remarque 5.22 : La formule est vraie en particulier si les variables aléatoires sont
deux & deux indépendantes, et a fortiori si elles sont indépendantes.

VI Inégalités probabilistes et loi faible des grands
nombres

VI. A Inégalités probabilistes

Théoréme 6.1 (Inégalité de Markov) )

Soit X une variable aléatoire discrete réelle positive d’espérance finie et a > 0,
alors :

Théoréme 6.2 (Inégalité de Bienaymé-Tchebychev))

Soit X une variable aléatoire discréte réelle dans L? et € > 0, alors :

V(X)
62

P(IX-BX)|><) <

Remarque 6.3 : On retrouve le fait que la variance mesure la dispersion de la va-
riable aléatoire.

VI. B Loi faible des grands nombres

’iThéoréme 6.4 (Loi faible des grands nombres))

Soit (X,,)n>1 une suite de variables aléatoires discretes réelles i.i.d. (indépendantes
de méme loi) sur le méme espace probabilisé et de variance finie.

X Alors :
k=1

V€>O,P(‘€:m‘ 25)

~

On pose m = E(X7) et pour tout n € N*/ S, =

— 0.
n—-+o0o

Remarque 6.5 : La loi faible des grands nombres fait le lien entre la moyenne théo-
rique E(X1) et les moyennes observables pour n répétitions.

VII Fonctions génératrices

VII. A Définition et propriétés

(Définition 7.1)

Soit X une variable aléatoire a valeurs dans N, on appelle fonction génératrice
de X la fonction G x de la variable réelle définie par :

~

+o0o
Gx(t) =B(@t¥) =Y P(X =n)t".

n=0
\ 7

’_[Proposition 7.2)

Soit X une variable aléatoire a valeurs dans N.
La série entiere Y P(X = n)t"

est de rayon de convergence supérieur (ou égal) a 1;

« elle converge normalement sur [—1;1];

Gx est continue sur [—1;1].

e Gx est de classe C*™ sur son disque ouvert de convergence.

\. J

Remarque 7.3 : Si X est une variable aléatoire fini a valeurs entiéres, alors G x est
une fonction polynomiale.

Remarque 7.4 :
X

D’apres la formule de transfert, pour ¢ € R la variable aléatoire
a une espérance finie si et seulement si la famille (t" P(X = n)),ex (o) est
sommable et dans ce cas,

E(t¥) = io P(X = n)t".
n=0

Lycée Victor Hugo, Besangon

2025/2026

8/9

Chapitre 12. Variables aléatoires discrétes



’_[Proposition 7.5)

<
Soit X une variable aléatoire a valeurs dans N, alors la loi de X est déterminée de
maniere unique par Gx. Plus précisément :

G (0)
n!

Vn € N,P(X =n) =

Deux variable aléatoire a valeurs dans N ont la méme loi si et seulement si elles ont
la méme fonction génératrice.

\.

Théoréme 7.6

Une variable aléatoire X a valeurs dans N est d’espérance fini si et seulement si
G x est dérivable en 1 et dans ce cas :

~

B(X) = G (1).

\. J

JProposition 7.7)

Une X une variable aléatoire & valeurs dans N est dans L2 si et seulement si Gx
est deux fois dérivable en 1 et dans ce cas, G”(1) = E(X(X — 1)).

~

\.

(Corollaire 7.8)

Si la fonction génératrice d’une variable aléatoire X a valeurs dans N est deux fois
dérivable en 1, alors X € L? et :

V(X) = GX (1) + Gx (1) - G (1)*.

VII. B Fonctions génératrices des lois usuelles

Les formules ne sont pas nécessairement a connaitre, mais a savoir calculer rapidement.

e Si X ~ B(p), alors Gx(t) = q + pt.
Donc, pour tout ¢t € R, G (t) = p et G (t)
et on retrouve, E(X) =p, V(X) = p(1 — p).
e Si X ~ B(n,p), variable aléatoire finie, donc Gx définie sur R et V¢t € R,Gx(t) =
(q+pt)"
D'ou, Vt € R, G’ (t) = np(q + pt)" =1, G%(t) = n(n — 1)p*(q + pt)" 2.
Et : E(X) = np, V(X) = np(1 — p).

e Si X ~G(p), lasérie > P(X =n)t" = > pt(qt)"~! a pour rayon de convergence
n=1

0

R:%>1et

t
Vt€]-R;R[,Gx(t) = 1%@

et Vt € |—-R; R|,

Donc :

E(X) =G (1) = ]1), E(X(X —1)) = G%(1) = % ot V(X) = 2P,

o Si X ~ P(N), la série Y P(X =n)t" = Ze*)‘@i?n a pour rayon de convergence
400 et Vt € R,

Gx(t) =e M =MD G (1) = XM et G% (1) = A2,
Dot : B(X) = G (1) = A, E(X(X — 1)) = G% (1) = A2 et V(X) = A.

VII. C Somme de variables aléatoires indépendantes

(Théoréme 7.9)

Soit X1, ..., X, des variables aléatoires indépendantes & valeurs dans N.
On pose S, = >, Xj. Alors, pour tout t tel que Gy, (t) est défini pour tout
k=1
ke [1;n],
Gs, () = [T Gx. ().
k=1
Exemples 7.10 : o Soit Xi,..., X, des variables aléatoires indépendantes telles
k
que : Vi € [1;k], X; ~ B(n;,p) et X = > X;. Montrer que X ~ B(n,p) avec
i=1
k
n=>.n.
i=1
e Soit Xi,...,X) des variables aléatoires indépendantes telles que : Vi €
k k
[1;k], X; ~P(N\;) et X = > X;. Montrer que X ~ P(A) avec A= > \;.
i=1 i=1

Exemple 7.11 : Montrer que 'on ne peut pas truquer deux dés a 6 faces pour que
la somme suive une loi uniforme sur [2;12].

VIII Bilan lois usuelles
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