
Chapitre 12

Variables aléatoires discrètes
Dans tout le chapitre, (Ω, T , P) désigne un espace probabilisé et E un ensemble quel-
conque.

I Variables aléatoires discrètes

I. A Loi d’une variable aléatoire discrète

Une variable aléatoire discrète X définie sur l’espace probabilisé (Ω, T , P) et à
valeurs dans E est une application X : Ω −→ E telle que :
• X(Ω) est au plus dénombrable ;
• ∀x ∈ E, X−1({x}) ∈ T .

Définition 1.1

Remarques 1.2 : • La seconde condition signifie que pour tout x ∈ E, l’ensemble
{ω ∈ Ω | X(ω) = x} est un événement.

• Lorsque E ⊂ R, on dit que X est une variable aléatoire discrète réelle.

Soit X une variable aléatoire discrète sur (Ω, T , P) à valeurs dans E. Si A est une
partie quelconque de E, alors X−1(A) est un événement noté (X ∈ A) ou {X ∈ A}.

Proposition 1.3

Notation : Si x ∈ E, on note (X = x) l’événement X−1({x}).
Si X est une variable aléatoire discrète réelle et x ∈ R, on note :

• (X ⩽ x) = (X ∈ ]−∞ ; x]),
• (X < x) = (X ∈ ]−∞ ; x[),

• (X ⩾ x) = (X ∈ [x ; +∞[),
• (X > x) = (X ∈ ]x ; +∞[).

Remarque 1.4 : Les variables aléatoires finies vues en sup : sur un univers Ω fini
sont des variables aléatoires discrètes sur (Ω, P(Ω)).

Soit X une variable aléatoire discrète, alors (X = x)x∈X(Ω) est un système complet
d’événements appelé système complet d’événements associé à X.

Définition 1.5

Soit X : Ω −→ E une variable aléatoire discrète.
L’application :

PX : P(E) −→ [0 ; 1]
A 7−→ P(X ∈ A)

est une probabilité sur (E, P(E)) appelée loi de probabilité de X.

Définition 1.6

Remarque 1.7 : La loi de X peut être définie sur un ensemble E contenant X(Ω).

Soit X : Ω −→ E une variable aléatoire discrète, la probabilité PX est déterminée
par la distribution de probabilité discrète

(
P(X = x)

)
x∈X(Ω), c’est à dire par la

donnée de :
• l’ensemble au plus dénombrable X(Ω) ;
• la probabilité de chaque événement élémentaire.

Proposition 1.8

Exemples 1.9 : • On lance deux dés équilibrés et on appelle S la somme des ré-
sultats. Proposer une modélisation : un espace probabilisé (Ω, T , P), une ex-
pression pour S et la distribution de probabilité discrète associée.

• On suppose que X est une variable aléatoire discrète à valeurs dans N∗ telle
que : ∀n ∈ N∗, P(X = n + 1) = 4

n P(X = n).
Donner une expression explicite de la loi de X.

Notation : Lorsque deux variables aléatoires discrètes X et Y à valeurs dans un
même ensemble E ont la même loi, c’est à dire lorsque PX = PY , on note
X ∼ Y .

Remarque 1.10 : La notation X ∼ Y ne suppose pas que X et Y sont égales ou
même qu’elles sont définies sur le même espace probabilisé.

Exemple 1.11 : On lance un dé rouge et on appelle X le résultat du dé, on lance
un dé vert et on appelle Y le résultat du dé.
Les deux expériences peuvent être considérées séparément, X et Y sont définies
sur des univers différents, mais X ∼ Y .

I. B Fonction d’une variable aléatoire discrète
Dans tout le reste du chapitre, toutes les variables aléatoires sont supposées discrètes.

Soit X une variable aléatoire discrète définie sur (Ω, T , P) à valeurs dans E et
f : E −→ F .
Alors f ◦ X : Ω −→ F est une variable aléatoire discrète notée f(X).

Proposition 1.12
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Remarque 1.13 : La loi de Y = f(X) est donnée par :
• Y (Ω) = f

(
X(Ω)

)
;

• ∀y ∈ Y (Ω), P(Y = y) =
∑

x∈X(Ω)|f(x)=y

P(X = x).

Soit X et Y deux variables aléatoires discrètes définies sur (Ω1, T1, P1) et
(Ω2, T2, P2) à valeurs dans un même ensemble E.
Si X ∼ Y et f : E −→ F , alors f(X) ∼ f(Y ).

Proposition 1.14

I. C Loi conditionnelle

Soit X : Ω −→ E une variable aléatoire discrète et A ∈ T un événement non
négligeable. Alors :

P(E) −→ [0 ; 1]
B 7−→ PA(X ∈ B) = P(A∩(X∈B))

P(A)

est une probabilité sur (E, P(E)) appelée loi conditionnelle de X sachant A.

Définition 1.15

II Couple et famille de variables aléatoires discrètes
II. A Couple de variables aléatoires discrètes

Soit X, Y des variables aléatoires discrètes définies sur le même espace probabilisé
(Ω, T , P) à valeurs dans E et F respectivement.
Alors :

W : Ω −→ E × F
ω 7−→

(
X(ω), Y (ω)

)
est une variable aléatoire discrète à valeurs dans E × F , appelée couple de va-
riables aléatoires (X, Y ).

Définition 2.1

Exemple 2.2 : On lance deux dés. Soit X la variable aléatoire égale au plus petit
résultat des deux dés et Y au plus grand. Alors (X, Y ) est un couple de variables
aléatoires. Donner (X, Y )(Ω).

Remarque 2.3 : On n’a pas toujours : (X, Y )(Ω) = X(Ω) × Y (Ω), et dans ce cas
certains des événements

(
(X = x) ∩ (Y = y)

)
sont impossibles. On pourra tout

de même donner la loi d’une telle variable aléatoire sur X(Ω) × Y (Ω) quitte à
compléter par des 0.

Soit X, Y des variables aléatoires discrètes définies sur le même espace probabilisé
(Ω, T , P) à valeurs dans E et F respectivement. On appelle
Loi conjointe du couple : la loi de la variable aléatoire (X, Y ) ;
Lois marginales du couple : les lois des variables aléatoires X et Y .

Définition 2.4

Remarque 2.5 : La loi conjointe du couple est donc la donnée de :

• (X, Y )(Ω)

• ∀x ∈ X(Ω), ∀y ∈ Y (Ω), P(X = x, Y = y)

Si l’on connaît la loi de X et les lois conditionnelles de Y sachant les événe-
ments (X = x) pour chaque x ∈ X(Ω), on retrouve la loi conjointe du couple
par .

Méthode 2.6

Exemple 2.7 : On effectue 2 tirages successifs et sans remise dans une urne qui
contient 2 boules blanches et une boule noire. On note X (respectivement Y ) la
variable aléatoire égale à 1 lorsque la première (respectivement la seconde) boule
tirée est blanche et à 0 sinon.
Déterminer la loi conjointe du couple (X, Y ).

Soit (X, Y ) un couple de variables aléatoires discrètes. On a

∀x ∈ X(Ω), P(X = x) =
∑

y∈Y (Ω)

P
(
X = x, Y = y

)
∀y ∈ Y (Ω), P(Y = y) =

∑
x∈X(Ω)

P
(
X = x, Y = y

)

Théorème 2.8 (Lois marginales à partir de la loi conjointe)

Exemple 2.9 : Déterminer la loi de la variable aléatoire Y de l’exemple précédent.

Remarque 2.10 : On peut étendre les notions de loi conjointe et loi conditionnelles
pour un n-uplet de variables aléatoires discrètes.

Lycée Victor Hugo, Besançon 2025/2026 Chapitre 12. Variables aléatoires discrètes 2 / 9



II. B Variables aléatoires indépendantes

Deux X et Y variables aléatoires discrètes définies sur (Ω, T , P) à valeurs dans E
et F sont dites indépendantes, et on note X ⊥⊥ Y , lorsque :

∀A ∈ P(E), ∀B ∈ P(F ), P(X ∈ A, Y ∈ B) = P(X ∈ A) × P(Y ∈ B).

Définition 2.11

Deux variables aléatoires discrètes X et Y à valeurs dans E et F sont indépendantes
si et seulement si la distribution de probabilité du couple (X, Y ) est le produit des
distributions de probabilité de X et de Y :

∀x ∈ E, ∀y ∈ F, P(X = x, Y = y) = P(X = x) × P(Y = y).

Proposition 2.12

Soit X et Y deux variables aléatoires discrètes sur (Ω, T , P).
Si X et Y sont indépendantes, alors, pour toute fonction f définie sur X(Ω) et
toute fonction g définie sur Y (Ω), les variables aléatoires f(X) et g(Y ) sont indé-
pendantes.

Proposition 2.13

Les variables aléatoires discrètes X1, . . . , Xn à valeurs dans E1, . . . , En sont dites
indépendantes lorsque, pour tout (A1, . . . An) ∈ P(E1) × · · · × P(En), les événe-
ments (X1 ∈ A1), . . . , (Xn ∈ An) sont indépendants.

Définition 2.14 (famille finie de variables aléatoires indépendantes)

Remarques 2.15 : • Toute sous famille d’une famille de variables aléatoires indé-
pendante est indépendante.

• Si X1, . . . , Xn sont des variables indépendantes et f1, . . . , fn sont des fonctions
définies sur X1(Ω), . . . , Xn(Ω), alors f(X1), . . . , f(Xn) sont indépendantes.

Attention : L’indépendance implique l’indépendance deux à deux, mais la réci-
proque est fausse.

Si les variables aléatoires X1, . . . , Xn sont indépendantes, les variables aléatoires
f(X1, . . . , Xp) et g(Xp+1, . . . , Xn) sont indépendantes.

Théorème 2.16 (Lemme des coalitions)

Remarque 2.17 : On peut créer plus de deux coalitions.

II. C Suites de variables aléatoires indépendantes

Une famille quelconque (Xi)i∈I de variables aléatoires discrètes définies sur
(Ω, T , P) est dite indépendantes lorsque pour toute partie finie J de I, la sous
famille (Xi)i∈J est indépendante.

Définition 2.18 (famille quelconque de VA indépendantes)

Remarque 2.19 : Si (Xi)i∈I sont des variables indépendantes et (fi)i∈I sont des
fonctions définies sur X1(Ω), . . . , alors (fi(Xi))i∈I sont indépendantes.

Pour toute suite (Pn)n∈N de lois de probabilités discrètes, il existe un espace pro-
babilisé (Ω, T , P) et une suite de variables aléatoires discrètes, indépendantes sur
(Ω, T , P) telles que pour tout n ∈ N, la loi de la variable aléatoire Xn est Pn.

Théorème 2.20

Remarque 2.21 : En particulier, si P est une loi de probabilité discrète, il existe
un espace de probabilité (Ω, T , P) et une suite (Xn)n∈N de variables aléatoires
discrètes indépendantes telle que pour tout n ∈ N, la loi de Xn est P . On dit
alors que les variables aléatoires sont indépendantes identiquement distribuées
(abrégé en i.i.d.).

Exemple 2.22 : Si P est la loi de Bernoulli de paramètre p, on obtient une modéli-
sation du jeu de pile ou face ou toute autre suite d’épreuve de type succès-échec
indépendantes.
Pour tout n ∈ N∗, Xn est la variable aléatoire égale à 1 en cas de succès à la
nième épreuve et à 0 en cas d’échec et les (Xn)n∈N∗ sont indépendantes.

III Lois usuelles
III. A Loi uniforme

Soit X une variable aléatoire finie. Soit n ∈ N∗.
On dit que X suit la loi uniforme sur [[1; n]] et on note X ∼ U([[1; n]]) lorsque :
• X(Ω) = ;
• ∀k ∈ [[1; n]], P(X = k) =

Définition 3.1

X est une variable aléatoire à valeurs dans [[1; n]] avec équiprobabilité.
Schéma type

Exemple 3.2 : Résultat d’un lancer de dé équilibré.
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III. B Loi de Bernoulli

Soit X une variable aléatoire finie et p ∈ [0 ; 1].
On dit que X suit la loi de Bernoulli de paramètre p et on note X ∼ B(p)
lorsque :
• X(Ω) = ;
• P(X = 1) = et P(X = 0) =

Définition 3.3

On considère une épreuve Bernoulli c’est à dire une expérience aléatoire dont l’exé-
cution amène soit un succès (événement S) soit un échec (événement S) ; on note
p = P(S).

X est la v.a. finie définie par
{

X = 1 si S est réalisé
X = 0 sinon

Schéma type

Remarque 3.4 : La variable aléatoire X est alors la fonction indicatrice de l’en-
semble S : X = 1S .

III. C Loi binomiale

Soit X une variable aléatoire finie. Soit n ∈ N∗ et p ∈ [0 ; 1].
On dit que X suit la loi binomiale de paramètres n et p et on note X ∼ B(n, p)
lorsque :
• X(Ω) =
• ∀k ∈ [[0; n]], P(X = k) =

Définition 3.5

Soit n ∈ N∗ fixé.
• On répète n fois (n fixé) une épreuve de Bernoulli ;
• la probabilité de S (succès) reste identique à chaque réalisation de l’épreuve ;
• les réalisations successives de l’épreuve sont indépendantes ;
• X est la variable aléatoire égale au nombre de succès obtenus lors de ces n

épreuves.

Schéma type

Exemple 3.6 : On lance 3 fois un dé équilibré et on note X le nombre de 6 obtenus.
Déterminer la loi de X.

Remarques 3.7 : • On connaît le nombre de réalisations de l’épreuve à l’avance.
• Si n = 1, on retrouve la loi de Bernoulli de paramètre p.
• On peut en déduire la formule du binôme de Newton dans le cas où a > 0 et

b > 0 en posant p = a
a+b .

Soit n ∈ N∗, p ∈ [0 ; 1] et X1, . . . , Xn des variables aléatoires discrètes indépen-
dantes et identiquement distribuées de loi de Bernoulli de paramètre p.
Alors X = X1 + · · · + Xn ∼ B(n, p).

Proposition 3.8

III. D Loi géométrique

Soit p ∈ ]0 ; 1[, on pose q = 1 − p. On dit qu’une variable aléatoire X suit la loi
géométrique de paramètre p et on note X ∼ G(p) lorsque :
• X(Ω) = N∗ ou X(Ω) = N∗ ∪ {+∞} ;
• ∀k ∈ N∗, P(X = k) = pqk−1.

Définition 3.9

On considère une suite infinie d’épreuves de Bernoulli indépendantes de même pro-
babilité de succès p ∈ ]0 ; 1[ et X est le rang du premier succès (+∞ s’il n’y a aucun
succès).

Schéma type

Exemples 3.10 : • Dans un jeu de pile ou face infini avec un pièce qui donne pile
avec probabilité p = ]0 ; 1[, le rang X du premier pile est une variable géomé-
trique de paramètre p.

• Pour la même expérience aléatoire, on note Y le rang du deuxième pile. Dé-
terminer la loi conjointe de X et Y et en déduire la loi de Y .

III. E Loi de Poisson

Soit λ > 0. On dit qu’une variable aléatoire discrète X suit la loi de Poisson de
paramètre λ et on note X ∼ P(λ) lorsque :
• X(Ω) = N ;
• ∀k ∈ N, P(X = k) = λk

k! e−λ.

Définition 3.11
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Soit (Xn)n∈N une suite de variables aléatoires discrètes telles que pour tout
n ∈ N, Xn suit la loi binomiale de paramètres (n, pn). Si : n × pn −−−−−→

n→+∞
λ ∈ R∗

+,
alors, pour tout k ∈ N :

lim
n→+∞

P(Xn = k) = λk

k! e−λ.

Proposition 3.12

Remarques 3.13 : • Si la variable aléatoire X suit une loi binomiale de paramètres
(n, p) avec n grand et λ = n × p « pas trop grand », on peut approcher la loi
de X par la loi de Poisson de paramètre λ (événements rares).

• La loi de Poisson de paramètre λ est souvent utilisée pour décrire le nombre
d’événements dans un intervalle de temps lorsque ces événements sont indé-
pendants et qu’il y en a λ en moyenne.

Exemple 3.14 : Nombre d’appels reçus entre 15h et 16h par un standard télépho-
nique : il y a un grand nombre de personnes qui peuvent appeler, mais chacune
avec une probabilité faible. On sait qu’en moyenne le standard reçoit 20 appels
par heures.

Remarque 3.15 : Une loi conditionnelle peut être une loi usuelle.

Exemple 3.16 : On suppose que le nombre de voitures arrivant à un péage auto-
routier en une heure suit une loi de Poisson de paramètre λ ∈ ]0 ; +∞[, il y a k
caisses et on suppose que chaque voiture choisit aléatoirement et indépendam-
ment des autres une des caisse. Déterminer la loi de la variable aléatoire donnant
le nombre de voitures qui passent à la caisse numéro 1 en une heure.

IV Espérance d’une variable aléatoire réelle ou com-
plexe

IV. A Définitions et propriétés

Soit X une variable aléatoire discrète à valeurs dans R+ ∪ {+∞}. L’espérance de
X, notée E(X) est la somme dans [0 ; +∞] de la famille

(
x P(X = x)

)
x∈X(Ω) :

E(X) =
∑

x∈X(Ω)

x P(X = x).

Définition 4.1 (Espérance d’une VA positive)

Remarque 4.2 : Par convention, si P (X = +∞) = 0, alors +∞×P(X = +∞) = 0.

Soit X une variable aléatoire discrète à valeurs dans N ∪ {+∞}, alors :

E(X) =
+∞∑
n=1

P(X ⩾ n).

Proposition 4.3

Soit X une variable aléatoire discrète à valeurs dans R ou C. On dit que X est
d’espérance finie lorsque la famille

(
x P(X = x)

)
x∈X(Ω) est sommable.

Dans ce cas, on appelle espérance de X la somme de cette famille :

E(X) =
∑

x∈X(Ω)

x P(X = x).

Définition 4.4

Notation : On note X ∈ L1 lorsque X est une variable aléatoire discrète réelle ou
complexe d’espérance finie.

Remarques 4.5 : • Soit X une variable aléatoire discrète. Si X est positive, alors
elle possède une espérance finie ou infinie. Si X est à valeurs dans R ou C
alors soit elle a une espérance finie, soit elle n’a pas d’espérance.

• Si X est une variable aléatoire fini (en particulier si Ω est fini), alors X a une
espérance finie.

Une variable aléatoire discrète est dite centrée lorsqu’elle est d’espérance finie et
que son espérance est nulle.

Définition 4.6

Exemples 4.7 : • Espérance des loi usuelles finies.
• On pose pour tout n ∈ N∗, pn = 1

n(n+1) . Alors (pn)n∈N est une distribution de
probabilité discrète. Une variable aléatoire discrète X de loi associée à cette
distribution de probabilité a-t-elle une espérance ?

IV. B Espérance des lois usuelles

Si une variable aléatoire discrète X suit la loi géométrique de paramètre p ∈ ]0 ; 1[,
alors X a une espérance finie et E(X) = 1

p .

Proposition 4.8

Si une variable aléatoire discrète X suit la loi de Poisson de paramètre λ ∈ R∗
+,

alors X a une espérance finie et E(X) = λ.

Proposition 4.9
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IV. C Propriétés de l’espérance

Soit X une variable aléatoire discrète et f : X(Ω) −→ C.
La variable aléatoire f(X) est d’espérance finie si et seulement si la famille(
f(x) P(X = x)

)
x∈X(Ω) est sommable et dans ce cas :

E
(
f(X)

)
=

∑
x∈X(Ω)

f(x) P(X = x).

Théorème 4.10 (Formule de transfert)

Remarques 4.11 : • La formule de transfert permet le calcul de l’espérance de
f(X) sans avoir à déterminer sa loi, il suffit de connaître la loi de X.

• Si f est définie sur un ensemble E qui contient X(Ω), on peut remplacer la
famille

(
f(x) P(X = x)

)
x∈X(Ω) par la famille

(
f(x) P(X = x)

)
x∈E

(on ajoute
des éléments nuls).

• Dans ce théorème f est à valeurs dans C, mais X est une variable aléatoire
discrète quelconque, elle peut en particulier être un couple de variables aléa-
toires discrètes (cf espérance du produit).

Soit X est une variable aléatoire discrète complexe.
Alors X est d’espérance finie si et seulement si |X| est d’espérance finie et dans ce
cas : ∣∣E(X)

∣∣ ⩽ E
(

|X|
)
.

Théorème 4.12 (Inégalité triangulaire)

Soit X et Y deux variables aléatoires discrètes, respectivement complexes et posi-
tives telles que |X| ⩽ Y .
Si Y est d’espérance finie, alors X est d’espérance finie.

Proposition 4.13

Soit X et Y des variables aléatoires discrètes complexes d’espérance finie et
λ, µ ∈ C, alors la variable aléatoire λX + µY est d’espérance finie et :

E(λX + µY ) = λ E(X) + µ E(Y ).

Théorème 4.14 (Linéarité de l’espérance)

Soit X une variable aléatoire discrète positive, alors : E(X) ⩾ 0.
De plus, si X est positive et E(X) = 0, alors X = 0 presque sûrement.

Proposition 4.15 (Positivité de l’espérance)

Soit X, Y deux variables aléatoires réelles discrètes d’espérance finie telles que
X ⩽ Y . Alors :

E(X) ⩽ E(Y ).

De plus si E(X) = E(Y ), alors X = Y presque sûrement.

Proposition 4.16 (Croissance de l’espérance)

Attention : Soit X, Y sont deux variables aléatoires réelles discrètes :

X ⩽ Y et Y est d’espérance finie ̸ ⇒ X est d’espérance finie.

Soit X et Y des variables aléatoires discrètes complexes indépendantes et d’es-
pérance finie.
Alors XY est d’espérance finie et :

E(XY ) = E(X) × E(Y ).

Théorème 4.17 (Espérance du produit de variables indépendantes)

Généralisation à n variables aléatoires indépendantes.

Soit X1, . . . , Xndes variables aléatoires discrètes complexes d’espérance finie et in-
dépendantes.
Alors

n∏
k=1

Xk est d’espérance finie et :

E
(

n∏
k=1

Xk

)
=

n∏
k=1

E(Xk)

Proposition 4.18

V Variance d’une variable aléatoire réelle
Dans cette section, les variables aléatoires sont réelles.

V. A Définition et propriétés

Soit X une variable aléatoire discrète réelle.
Si X2 est d’espérance finie, alors X est d’espérance finie.

Proposition 5.1

Notation : On note X ∈ L2 lorsque X est une variable aléatoire discrète réelle telle
que X2 est d’espérance finie.
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Soit X et Y des variables aléatoires discrètes réelles, si X et Y sont dans L2, alors
XY est dans L1 et :

E(XY )2 ⩽ E(X2) × E(Y 2)

avec égalité si et seulement si il existe λ ∈ R tel que X = λY ou Y = λX presque
sûrement.

Théorème 5.2 (Inégalité de Cauchy-Schwarz)

Soit X ∈ L2, on appelle variance de X le réel positif :

V(X) = E
(
(X − E(X))2) .

Définition 5.3

Remarque 5.4 : La variance mesure la dispersion de X par rapport à sa moyenne.

Soit X ∈ L2 ; V(X) = 0 si et seulement si X est constante presque sûrement, i.e.
si et seulement si il existe a ∈ R tel que P(X = a) = 1.

Proposition 5.5

Soit X ∈ L2 :
V(X) = E(X2) − E(X)2.

Théorème 5.6 (Formule de Koenig-Huygens)

Soit X ∈ L2 et a, b ∈ R, alors aX + b ∈ L2 et :

V(aX + b) = a2 V(X).

Proposition 5.7

Soit X ∈ L2, on appelle écart type de X le réel positif σ(X) =
√

V(X).
Définition 5.8

Soit X ∈ L2, on dit que X est réduite lorsque V(X) = 1.
Définition 5.9

Soit X ∈ L2, si σ(X) > 0, alors la variable aléatoire X − E(X)
σ(X) est centrée réduite.

Proposition 5.10

V. B Variance des lois usuelles

Si une variable aléatoire discrète X suit la loi géométrique de paramètre p ∈ ]0 ; 1[,
alors X ∈ L2 et V(X) = 1−p

p2 .

Proposition 5.11

Si une variable aléatoire discrète X suit la loi de Poisson de paramètre λ ∈ R∗
+,

alors X ∈ L2 et V(X) = λ.

Proposition 5.12

V. C Covariance

Soit X et Y dans L2. Alors
(
X −E(X)

)(
Y −E(Y )

)
∈ L1 et on appelle covariance

de X et Y le réel :

Cov(X, Y ) = E
((

X − E(X)
)(

Y − E(Y )
))

.

Définition 5.13

Remarque 5.14 : Pour X ∈ L2, Cov(X, X) = V(X).

Soit X et Y dans L2, alors :

Cov(X, Y ) = E(XY ) − E(X) E(Y ).

Théorème 5.15 (Formule de Koenig-Huygens)

Si X et Y sont dans L2 et sont indépendantes, alors Cov(X, Y ) = 0.
Proposition 5.16

Remarque 5.17 : La réciproque est fausse.

Contre exemple 5.18 : Soit X une variable aléatoire de loi uniforme sur {−1, 0, 1}
et Y la variable aléatoire indicatrice de l’événement (X = 0). Alors X et Y ne
sont pas indépendantes ((X = 0) et (Y = 0) ne sont pas indépendants) mais
décorrélées.

Deux variable aléatoire X et Y sont dites décorrélées lorsqu’elles sont dans L2 et
que leur covariance est nulle.

Définition 5.19
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V. D Variance d’une somme

Soit X1, X2, . . . , Xn dans L2, alors la variable aléatoire X1 + · · · + Xn est dans L2

et :
V(X1 + · · · + Xn) =

n∑
k=1

V(Xk) + 2
∑

1⩽i<j⩽n

Cov(Xi, Xj).

Théorème 5.20

Soit X1, X2, . . . , Xn dans L2 deux à deux décorrélées, alors la variable aléatoire
X1 + · · · + Xn est dans L2 et :

V(X1 + · · · + Xn) =
n∑

k=1
V(Xk).

Proposition 5.21

Remarque 5.22 : La formule est vraie en particulier si les variables aléatoires sont
deux à deux indépendantes, et a fortiori si elles sont indépendantes.

VI Inégalités probabilistes et loi faible des grands
nombres

VI. A Inégalités probabilistes

Soit X une variable aléatoire discrète réelle positive d’espérance finie et a > 0,
alors :

P(X ⩾ a) ⩽ E(X)
a

.

Théorème 6.1 (Inégalité de Markov)

Soit X une variable aléatoire discrète réelle dans L2 et ε > 0, alors :

P
(

|X − E(X)| ⩾ ε
)
⩽

V(X)
ε2

Théorème 6.2 (Inégalité de Bienaymé-Tchebychev)

Remarque 6.3 : On retrouve le fait que la variance mesure la dispersion de la va-
riable aléatoire.

VI. B Loi faible des grands nombres

Soit (Xn)n⩾1 une suite de variables aléatoires discrètes réelles i.i.d. (indépendantes
de même loi) sur le même espace probabilisé et de variance finie.
On pose m = E(X1) et pour tout n ∈ N∗, Sn =

n∑
k=1

Xk. Alors :

∀ε > 0, P
(∣∣∣∣Sn

n
− m

∣∣∣∣ ⩾ ε

)
−−−−−→
n→+∞

0.

Théorème 6.4 (Loi faible des grands nombres)

Remarque 6.5 : La loi faible des grands nombres fait le lien entre la moyenne théo-
rique E(X1) et les moyennes observables pour n répétitions.

VII Fonctions génératrices
VII. A Définition et propriétés

Soit X une variable aléatoire à valeurs dans N, on appelle fonction génératrice
de X la fonction GX de la variable réelle définie par :

GX(t) = E(tX) =
+∞∑
n=0

P(X = n)tn.

Définition 7.1

Soit X une variable aléatoire à valeurs dans N.
La série entière

∑
P(X = n)tn

• est de rayon de convergence supérieur (ou égal) à 1 ;
• elle converge normalement sur [−1 ; 1] ;
• GX est continue sur [−1 ; 1].
• GX est de classe C∞ sur son disque ouvert de convergence.

Proposition 7.2

Remarque 7.3 : Si X est une variable aléatoire fini à valeurs entières, alors GX est
une fonction polynomiale.

Remarque 7.4 : D’après la formule de transfert, pour t ∈ R la variable aléatoire
tX a une espérance finie si et seulement si la famille (tn P(X = n))n∈X(Ω) est
sommable et dans ce cas,

E(tX) =
+∞∑
n=0

P(X = n)tn.
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Soit X une variable aléatoire à valeurs dans N, alors la loi de X est déterminée de
manière unique par GX . Plus précisément :

∀n ∈ N, P(X = n) = G
(n)
X (0)
n! .

Deux variable aléatoire à valeurs dans N ont la même loi si et seulement si elles ont
la même fonction génératrice.

Proposition 7.5

Une variable aléatoire X à valeurs dans N est d’espérance fini si et seulement si
GX est dérivable en 1 et dans ce cas :

E(X) = G′
X(1).

Théorème 7.6

Une X une variable aléatoire à valeurs dans N est dans L2 si et seulement si GX

est deux fois dérivable en 1 et dans ce cas, G′′(1) = E(X(X − 1)).

Proposition 7.7

Si la fonction génératrice d’une variable aléatoire X à valeurs dans N est deux fois
dérivable en 1, alors X ∈ L2 et :

V(X) = G′′
X(1) + G′

X(1) − G′
X(1)2.

Corollaire 7.8

VII. B Fonctions génératrices des lois usuelles
Les formules ne sont pas nécessairement à connaître, mais à savoir calculer rapidement.
• Si X ∼ B(p), alors GX(t) = q + pt.

Donc, pour tout t ∈ R, G′
X(t) = p et G′′

X(t) = 0
et on retrouve, E(X) = p, V(X) = p(1 − p).

• Si X ∼ B(n, p), variable aléatoire finie, donc GX définie sur R et ∀t ∈ R, GX(t) =
(q + pt)n.
D’où, ∀t ∈ R, G′

X(t) = np(q + pt)n−1, G′′
X(t) = n(n − 1)p2(q + pt)n−2.

Et : E(X) = np, V(X) = np(1 − p).
• Si X ∼ G(p), la série

∑
P(X = n)tn =

∑
n⩾1

pt(qt)n−1 a pour rayon de convergence

R = 1
q > 1 et

∀t ∈ ]−R ; R[, GX(t) = pt

1 − qt

et ∀t ∈ ]−R ; R[,
G′

X(t) = p

(1 − qt)2 et G′′
X(t) = 2pq

(1 − qt)3

Donc :

E(X) = G′
X(1) = 1

p
, E(X(X − 1)) = G′′

X(1) = 2q

p2 et V(X) = 1 − p

p2 .

• Si X ∼ P(λ), la série
∑

P(X = n)tn =
∑

e−λ (λt)n

n! a pour rayon de convergence
+∞ et ∀t ∈ R,

GX(t) = e−λeλt = eλ(t−1), G′
X(t) = λeλ(t−1) et G′′

X(t) = λ2eλ(t−1).

D’où : E(X) = G′
X(1) = λ, E(X(X − 1)) = G′′

X(1) = λ2 et V(X) = λ.

VII. C Somme de variables aléatoires indépendantes

Soit X1, . . . , Xn des variables aléatoires indépendantes à valeurs dans N.
On pose Sn =

n∑
k=1

Xk. Alors, pour tout t tel que GXk
(t) est défini pour tout

k ∈ J1 ; nK,

GSn(t) =
n∏

k=1
GXk

(t).

Théorème 7.9

Exemples 7.10 : • Soit X1, . . . , Xk des variables aléatoires indépendantes telles

que : ∀i ∈ J1 ; kK, Xi ∼ B(ni, p) et X =
k∑

i=1
Xi. Montrer que X ∼ B(n, p) avec

n =
k∑

i=1
ni.

• Soit X1, . . . , Xk des variables aléatoires indépendantes telles que : ∀i ∈

J1 ; kK, Xi ∼ P(λi) et X =
k∑

i=1
Xi. Montrer que X ∼ P(λ) avec λ =

k∑
i=1

λi.

Exemple 7.11 : Montrer que l’on ne peut pas truquer deux dés à 6 faces pour que
la somme suive une loi uniforme sur J2 ; 12K.

VIII Bilan lois usuelles
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