
Classe de PSI

Devoir surveillé no 4+ jeudi 23 janvier 2025
4 heures · 12h45-16h45

Problème
d’après Centrale TSI 2024 épr. 1

Nombres de Fubini

Dans tout ce sujet, on note R[X ] l’ensemble des polynômes à
coefficients réels et Rn[X ] l’espace vectoriel des polynômes
à coefficients réels de degré au plus n (n entier). Pour un po-
lynôme P de R[X ], on note P ′ son polynôme dérivé et P( j) le
polynôme dérivé d’ordre j de P de telle sorte que P = P(0),
P ′ = P(1), P ′′ = P(2), etc.

On pourra confondre un polynôme et sa fonction polyno-
miale associée. De même, on pourra confondre le polynôme
dérivé P ′ avec la fonction dérivée de la fonction polyno-
miale P.

On rappelle également que la partie entière d’un réel x est
un entier, noté ⌊x⌋, et que celle-ci vérifie la double inégalité
⌊x⌋⩽ x < ⌊x⌋+ 1.

I — Préliminaires

On considère la suite (Gn)n∈N de polynômes définie par
G0 = 1 et par la relation de récurrence :

∀n ∈N, Gn+1(X ) = X
�

Gn(X ) + (1+ X )G′n(X )
�

.

1) Justifier que G1 = X puis donner la forme développée
du polynôme G2.

2) Donner sans justification le rayon de convergence R0 de
la série entière

∑

k⩾0
x k et exprimer sa fonction somme,

notée D0, à l’aide des fonctions usuelles.

Pour tout entier naturel n, on note Rn le rayon de
convergence de la série entière

∑

k⩾1
kn x k et on note

Dn : ]−Rn,Rn [→ R sa fonction somme donnée par

Dn : x 7−→
+∞
∑

k=1

kn x k.

3) Justifier que la suite (Rn)n∈N est constante et en déduire
la valeur de Rn pour tout entier naturel n.

4) Montrer que, pour tout entier naturel n et tout
x ∈ ]−Rn,Rn [, on a Dn+1(x) = x D′n(x).

5) Prouver par récurrence que, pour tout entier naturel n
et tout x ∈ ]−Rn,Rn [, on a

Dn(x) =
1

1− x
Gn

� x
1− x

�

.

II — Nombres de Fubini

On considère la suite (Fn)n∈N définie par F0 = 1 et la relation
de récurrence :

∀n ∈N∗, Fn =
n−1
∑

k=0

�

n
k

�

Fk.

Dénombrement

6) Justifier que F1 = 1 et déterminer les entiers F2 et F3.

On rappelle qu’une partition d’un ensemble E non vide est
un ensemble de parties de E non vides, deux à deux dis-
jointes et dont la réunion constitue l’ensemble de départ E.
Une partition ordonnée de E est un p-uplet

�

X1, . . . , X p

�

tel
que
�

X1, . . . , X p

	

est une partition de E.
Par exemple, les trois partitions ordonnées de l’ensemble
{1, 2} sont :
�

{1} , {2}
�

,
�

{2} , {1}
�

et
�

{1, 2}
�

.

Par convention, on pose qu’il existe une seule partition or-
donnée de l’ensemble vide. Pour n ∈ N∗, on note un le
nombre de partitions ordonnées de l’ensemble {1, . . . , n}.
7) Déterminer les partitions ordonnées de l’ensemble
{1, 2,3}, puis leur nombre.

8) Justifier que pour tout entier n ∈N∗, on a

un =
n
∑

k=1

�

n
k

�

un−k.

Pour construire une partition ordonnée, on pourra com-
mencer par choisir le cardinal de la première partie for-
mant cette partition.

9) En conclure que les suites (Fn)n∈N et (un)n∈N sont
égales.

Majoration des nombres de Fubini

10) Rappeler le développement en série entière de la fonc-
tion exponentielle avec son domaine de validité et jus-

tifier que
n
∑

k=1

(ln2)k

k!
⩽ 1 pour tout entier naturel n non

nul.

11) En raisonnant par récurrence forte, démontrer que :

∀n ∈N, 0⩽
Fn

n!
⩽

1
(ln2)n

.

12) En déduire une minoration du rayon de convergence R

de la série entière
∑

n⩾0

Fn

n!
zn.
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Interprétation probabiliste et minoration des nombres
de Fubini

Pour x ∈ ]−R, R[, on pose f (x) =
+∞
∑

n=0

Fn

n!
xn.

On peut montrer que f est de classe C∞ sur ]−R,R[ et que
ses dérivées successives s’expriment à l’aide des polynômes
Gn définis dans la partie Préliminaires sous la forme :

∀ x ∈ ]−R, R[ , f (n)(x) = Gn

�

1
2e−x − 1

�

f (x).

On pourra librement utiliser cette expression admise de f (n)

valable pour tout entier naturel n.

13) Rappeler le lien existant entre les dérivées successives

de f et les coefficients de la série entière
∑

n⩾0

Fn

n!
xn puis

prouver que, pour tout entier naturel n, on a

Fn =
1
2

+∞
∑

k=0

kn

2k
. (∗)

Soit X une variable aléatoire sur un espace probabilisé
(Ω,A , P) qui suit une loi géométrique de paramètre 1

2 .
Pour tout entier naturel n, on note gn la fonction définie sur
[0,+∞[ par

gn : t 7−→ tn e−t ln2.

14) Rappeler quel est l’ensemble X (Ω) des valeurs prises
par X et rappeler la valeur de P(X = k) pour k ∈ X (Ω).

15) Décrire une expérience aléatoire simple où une variable
aléatoire X va suivre une loi géométrique de para-
mètre 1

2 . Sous les hypothèses ainsi posées, démontrer
que X suit effectivement cette loi.

16) Soit a un réel strictement positif que l’on suppose non
entier. Montrer que

P(X ⩾ a) =
1

2 ⌊a⌋
.

Le théorème de transfert affirme que si Y est une variable
aléatoire discrète et que f est une fonction définie sur Y (Ω),
à valeurs dans R+, alors la variable aléatoire f (Y ) admet
pour espérance :

E
�

f (Y )
�

=
∑

k∈Y (Ω)

f (k)P(Y = k).

17) Dans la formule ci-dessus, justifier l’existence de la
somme dans le membre de droite, et dire à quel en-
semble elle appartient.

18) Soit n un entier naturel non nul.
Montrer que E(X n) = 2 Fn.

19) Pour n non nul, justifier que gn admet un maximum sur
[0,+∞[, noté Mn, que l’on explicitera.

20) Soit n un entier naturel non nul. Montrer que

E(X n)⩾ an P(X ⩾ a)

pour tout réel a strictement positif.

21) En déduire la minoration

Fn ⩾
1
2

� n
e ln 2

�n
.

On pourra admettre que ln 2 n’est pas un nombre ration-
nel.

III — Équivalent de Fn

On rappelle que la fonction gn a été définie juste avant la
question Q14, pour tout entier naturel n, par :

gn : [0,+∞[ −→ R

t 7−→ tn e−t ln2

et que quelques résultats la concernant, qui peuvent direc-
tement être réinvestis, ont déjà été établis dans la ques-
tion Q19.

Valeur d’une intégrale
On rappelle le théorème d’intégration par parties pour les
intégrales généralisées :

Soit u, v deux fonctions de classe C 1 sur un in-
tervalle I d’extrémités a < b (finies ou infinies),
à valeurs dans K.
Si le produit u v admet une limite finie aux ex-
trémités de I qui n’appartiennent pas à I , alors

les intégrales
∫ b

a u v′ et
∫ b

a u′ v sont de même na-
ture.
En cas de convergence, on a la relation :
∫ b

a

u(t) v′(t)dt =
h

u(t) v(t)
ib

a
−
∫ b

a

u′(t) v(t)dt,

où la valeur de u(t) v(t) en a est remplacée par
sa limite en a si a /∈ I ; même chose en b.

22) Montrer par récurrence que pour tout tout n ∈ N, l’in-
tégrale
∫ +∞

0 gn(t)dt est convergente et vaut :
∫ +∞

0

gn(t)dt =
n!

(ln 2)n+1
.

Comparaison série/intégrale
Dans toute la suite de cette partie, n désigne un entier natu-
rel non nul.

23) Justifier qu’il existe un entier N ⩾ 1, dépendant de n,
tel que gn est croissante sur [0 ; N ] et décroissante sur
[N + 1 ; +∞[.

24) Justifier que :
N−1
∑

k=0

gn(k)⩽
∫ N

0

gn(t)dt ⩽
N
∑

k=1

gn(k).

25) Justifier que la série
∑

k⩾N+1
gn(k) converge puis établir

l’encadrement
+∞
∑

k=N+2

gn(k)⩽
∫ +∞

N+1

gn(t)dt ⩽
+∞
∑

k=N+1

gn(k).

26) En utilisant la relation (∗), déduire des encadrements
précédents que

−
∫ N+1

N

gn(t)dt ⩽ 2 Fn −
n!

(ln2)n+1

⩽ gn(N) + gn(N + 1)−
∫ N+1

N

gn(t)dt.

27) Justifier que : ∀n ∈N∗, −
Mn

2
⩽ Fn −

n!
2(ln2)n+1

⩽ Mn

puis en déduire l’équivalent suivant :

Fn ∼n→+∞

n!
2 (ln2)n+1

.
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