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le 9 janvier.

Exercice 1
Dans cet exercice, il est inutile de reproduire tous les calculs sur la copie.

On considère la matrice A =

 2 1 1
1 2 1
1 1 2


Q1. Justifier, sans calcul, que la matrice A est diagonalisable puis déterminer une matrice D
diagonale réelle et une matrice P ∈ GL3(R) telles que A = PDP −1

Q2. Déterminer une matrice B de M3(R), que l’on explicitera, vérifiant B2 = A

Q3. Déterminer, pour tout entier naturel non nul n, les 9 coefficients de la matrice An en
utilisant la matrice de passage P

Q4. Donner le polynôme minimal de la matrice A et en déduire, a l’aide d’une division eucli-
dienne de polynômes, la matrice An comme une combinaison linéaire des matrices A et I2.

Exercice 2
Q5. On considère une suite de réels (an), une suite de complexes (bn) et on note pour tout

entier naturel n : Sn =
n∑

k=0

akbk et Bn =
n∑

k=0

bk.

En remarquant que, pour k ⩾ 1, bk = Bk − Bk−1, démontrer que, pour tout entier naturel n

non nul, Sn =
n−1∑
k=0

(ak − ak+1)Bk + anBn (transformation d’Abel).

Q6. On suppose que la suite (Bn) est bornée et que la suite (an) est décroissante de limite
nulle.
a) Démontrer que la série

∑
k⩾0

(ak − ak+1) converge.

b) En déduire que la série
∑
n⩾0

anbn converge.

Q7. Exemple.
Dans cette question, θ est un réel différent de 2kπ (k ∈ Z) et α ∈ R.

a) Calculer pour n entier naturel non nul,
n∑

k=1

eikθ

b) Discuter en fonction du réel α la nature de la série
∑
n⩾1

einθ

nα
.



Q8. Si
∑
n⩾0

anzn est une série entière de la variable complexe de rayon R > 0, rappeler le

résultat du cours concernant la convergence uniforme de cette série.

Q9. On considère la série entière de la variable complexe
∑
n⩾1

zn

√
n

de rayon 1.

a) On note D = {z ∈ C, |z| < 1}.
Démontrer que la série de la variable réelle

∑
n⩾1

xn

√
n

ne converge pas uniformément sur ] − 1, 1[

( en particulier la série
∑
n⩾1

zn

√
n

ne converge pas uniformément sur D).

b) On pourra confondre un point de R2 et son affixe.
pour α ∈

]
0, π

2

[
, on note Dα l’ensemble des complexes z, tels que |z| ⩽ 1 et dont la partie réelle

vérifie Re(z) ⩽ cos α.
Représenter géométriquement l’ensemble Dα dans un repère orthonormé du plan.

c) Démontrer que Dα est une partie fermée de C.
On pourra écrire :

Dα = {(x, y) ∈ R2, x2 + y2 ⩽ 1} ∩ {(x, y) ∈ R2, x ⩽ cos α}

et démontrer que Dα est une partie fermée de R2.
En déduire que Dα est une partie compacte de C.

d) On note pour z ∈ C et n entier naturel, Fn(z) =
n∑

k=0

zk.

Démontrer que pour tout z ∈ Dα et tout entier naturel n, si x = Re(z) :

|Fn(z)| ⩽ 2
1 − x

⩽
2

1 − cos α

e) Démontrer que la série entière
∑ zn

√
n

converge uniformément sur tous les compacts Dα

(pour α ∈
]
0, π

2

[
).



Problème
Introduction

Dans ce sujet, une série de fonctions La est une série de fonctions
∑
n⩾1

an
xn

1 − xn
où (an)n⩾1 est

une suite de réels telle que la série entière
∑
n⩾1

anxn soit de rayon 1.

Partie I - Propriétés

Soit une série de fonctions La :
∑
n⩾1

an
xn

1 − xn

Q10. Soit x ∈ ]−1 ; 1[, donner un équivalent de 1 − xn pour n au voisinage de +∞.

Démontrer que pour tout x ∈ ]−1 ; 1[, la série
∑
n⩾1

an
xn

1 − xn
converge absolument.

Remarque : la série La peut parfois converger en dehors de l’intervalle ]−1 ; 1[. Donner un
exemple de suite (an)n⩾1 telle que la série La converge en au moins un point x0 n’appartenant
pas à l’intervalle ]−1 ; 1[.

Q11. Démontrer que la série de fonctions
∑
n⩾1

an
xn

1 − xn
converge uniformément sur tout seg-

ment [−b, b] inclus dans l’intervalle ]−1 ; 1[.

Q12. On pose, pour tout x ∈ ]−1 ; 1[, f(x) =
+∞∑
n=1

an
xn

1 − xn
.

Justifier que la fonction f est continue sur l’intervalle ]−1 ; 1[ et démontrer ensuite que la
fonction f est de classe C1 sur l’intervalle ]−1 ; 1[. Donner la valeur de f ′(0).

Q13. Expression sous forme de série entière.
On note A = N∗ × N∗.
Lorsque (un,p)(n,p)∈A est une famille sommable de réels, justifier que

+∞∑
n=1

(
+∞∑
p=1

un,p

)
=

+∞∑
n=1

 ∑
(k,p)∈In

uk,p

 où In = {(k, p) ∈ A, kp = n}.

Démontrer que pour tout x ∈ ]−1 ; 1[, la famille (anxnp)(n,p)∈A est sommable.

En déduire que pour tout x ∈ ]−1 ; 1[,
+∞∑
n=1

an
xn

1 − xn
=

+∞∑
n=1

bnxn où bn =
∑
d|n

ad.

(d|n signifiant d divise n).

Partie II - Exemples
Q14. Dans cette question, pour n ⩾ 1, an = 1 et on note dn le nombre de diviseurs de n.

Exprimer pour x ∈ ]−1 ; 1[, f(x) =
+∞∑
n=1

an
xn

1 − xn
comme la somme d’une série entière.

Q15. Dans cette question, pour n ⩾ 1, an = φ(n) où φ(n) est le nombre d’entiers naturels
premiers à n et inférieurs à n.
Justifier que la série entière

∑
n⩾1

anxn est de rayon 1.



On admet que pour n ⩾ 1, n =
∑
d|n

φ(d). Vérifier ce résultat pour n = 12.

Pour x ∈ ]−1 ; 1[, exprimer
+∞∑
n=1

φ(n) xn

1 − xn
sous forme d’un quotient de deux polynômes.

Q16. En utilisant le théorème de la double limite, établir à l’aide du développement en série

entière de la fonction x 7→ ln(1 + x) sur l’intervalle ]−1 ; 1[, la valeur de la somme
+∞∑
n=1

(−1)n

n
.

Q17. Dans cette question et la suivante, pour n ⩾ 1, an = (−1)n et pour tout x ∈ ]−1 ; 1[,

f(x) =
+∞∑
n=1

an
xn

1 − xn
.

En utilisant le théorème de la double limite calculer lim
x→0

f(x)
x

et donner un équivalent de f(x)
au voisinage de 0. Retrouver le dernier résultat de la question Q6.

Q18. Démontrer qu’au voisinage de 1, f(x) ∼ − ln 2
1 − x

.

On pourra remarquer que pour x ∈ ]0 ; 1[, 1 − x

1 − xn
= 1

1 + x + x2 + · · · + xn−1 .


