Devoir Surveillé n° 5 sujet 2.
le 9 janvier.

Exercice 2

Q1. On considere une suite de réels (a,,), une suite de complexes (b,) et on note pour tout

n n
entier naturel n : S, = Z aipb, et B, = Z by.
k=0 k=0
En remarquant que, pour k£ > 1,bp = By — Bi_1, démontrer que, pour tout entier naturel n
n—1

non nul, S,, = Z(ak — ag11) By + an B, (transformation d’Abel).
k=0

Q2. On suppose que la suite (B,,) est bornée et que la suite (a,) est décroissante de limite
nulle.

a) Démontrer que la série E (ax — ayy1) converge.
k>0

b) En déduire que la série Z a,b, converge.

n=0

Q3. Exemple.
Dans cette question, 6 est un réel différent de 2k7 (k € Z) et o € R.

a) Calculer pour n entier naturel non nul, Z e
k=1

1k0

inf

b) Discuter en fonction du réel a la nature de la série Z
n>1

ne

Q4. Si E a,z" est une série entiere de la variable complexe de rayon R > 0, rappeler le
n=0
résultat du cours concernant la convergence uniforme de cette série.

Q5. On consideére la série entiere de la variable complexe Z Z de rayon 1.
n=1 \/ﬁ
a) Onnote D={ze€C,|z] <1}

Démontrer que la série de la variable réelle Z

"
n>1 \/ﬁ

ne converge pas uniformément sur D).

ne converge pas uniformément sur | — 1, 1]

ZTL
( en particulier la série Z —
n>1 \/ﬁ
b) On pourra confondre un point de R? et son affixe.
pour o € }0, 5 [, on note D, 'ensemble des complexes z, tels que |z| < 1 et dont la partie réelle

vérifie Re(z) < cos a.
Représenter géométriquement ’ensemble D, dans un repeére orthonormé du plan.



c) Démontrer que D, est une partie fermée de C.
On pourra écrire :

D, = {(z,y) e R* 2* + y* < 1} N {(x,y) € R*,z < cosa}
et démontrer que D, est une partie fermée de R2.
En déduire que D, est une partie compacte de C.
n
d) On note pour z € C et n entier naturel, F,(z) = Z 2~
k=0
Démontrer que pour tout z € D, et tout entier naturel n, si z = Re(z) :
2 < 2
l—z 1—cosa

[Fn(2)] <

e) Démontrer que la série entiere E converge uniformément sur tous les compacts D,

Z?’L
7

(pour a € }O, %D



Critére de Schur-Cohn et généralisation au cas non inversible

Notations et objectifs du probleme

Dans tout le probleme :

n désigne un entier naturel non nul et ’ensemble {1,2,...,n} est noté [1,n].
M, (R) (respectivement S,(R), resp. D,(R), resp. GL,(R)), désigne I'ensemble
des matrices carrées (resp. symétriques, resp. diagonales, resp. inversibles) réelles

de taille n, et on confond un élément de M;(R) avec son unique coefficient ;

si M € M,(R), on note M sa transposée et pour tout (i,7) € [1,n]? on note
M; ; le coefficient de M situé a la i-eme ligne et la j-¢me colonne;

on note 7(M) le nombre de valeurs propres réelles strictement positives de M
comptées avec leur multiplicité, ainsi par exemple 7([,,) = n;

si (u1,...,u,) € R™ on note Diag(uy,...,u,) la matrice D € D,(R) telle que
D;; = u; pour tout i € [1,n];

si f et g sont deux polynémes non simultanément nuls, on note f A g leur PGCD ;
si f est un polyndéme, on note également f sa fonction polynomiale associée;

on note o(f) le nombre de racines réelles de f appartenant a U'intervalle | — 1; 1],
comptées avec leur multiplicité, ainsi par exemple o(X?(X — 1)(X + 1)) = 2;

on dit que le réel a est une racine stable de f si a # 0 et f(a) = f(a™!) =0;
si f est un polynoéme de degré m € N et s’écrit
f=ap X"+ am X"+ b X +ag= f: ap X",
k=0
on note fp son polynéme réciproque, défini par

fo=a X"+ X"+t a1 X Fam = ap X5
k=0

onnote U = (1 0 --- 0)" la matrice colonne de taille n dont le premier
coefficient est égal a 1 et les autres a 0;



— on note S la matrice de M,,(R) dont tous les coefficients sont nuls sauf les n — 1
coefficients situés juste au-dessus de la diagonale, égaux a 1 :

V(i,j) € [1,n]* Si; =6&iy1,; (symbole de Kronecker);

— pour tout polynome réel f on définit la matrice J(f) € S,(R) par

J(f) = fo(S) " fo(S) = f(S)T £(S).

Dans ce probleme p désigne un polyndéme a coefficients réels, scindé sur R de degré n,

p=a X"+ a1 X" "+ taXta=Y X", a,#0,
k=0

et on note a1 < --- < a, ses racines toutes réelles, comptées avec leurs multiplicités.

L’objectif du probleme est d’établir I’égalité o(p) = 7(J(p)) (critere de Schur-Cohn)
dans le cas ou J(p) est inversible, puis de proposer une démarche générale permettant
de compter les racines de p dans | — 1; 1], lorsque la matrice J(p) n’est pas inversible.

Ces résultats, généralisables aux polynomes a coefficients complexes, sont utiles dans
I’étude de la stabilité de certains systemes dynamiques.

A. Propriétés du polynéme p, et stabilité des racines
1 > Montrer que pg, le polynéme réciproque de p, vérifie
Ve e R" po(x) = a"p(1/x)

et en déduire que

7=1

2 > Montrer que p A py = 1 si et seulement si p ne possede pas de racine stable.

Jusqu’a la fin de la partie A. on suppose que toutes les racines de p sont stables et
d’ordre de multiplicité 1.

3 > Justifier qu'il existe A € {—1, 1} tel que p = Apy.

Soit A le polynome de degré n défini par h(X) = Xp', ou p’ est le polynéme dérivé de p.
On note hg et (p')o les polyndmes réciproques respectifs de h et p'.



4 > Montrer que h = np — A(p')o, puis que hy = A(np — Xp').

5 > Vérifier que p’ est scindé sur R puis montrer que h A hg = 1 et en déduire que p’
n’admet pas de racine stable.

B. Liberté d’une famille de polynomes

Pour tout entier j € [1,n], on note f; le polynéme

fi=a,(1—0,X) - (1= X)(X—ajq) - (X—q) =a, ﬁ (1—osz)]1i[(X—ozk)

k=j+1
n 0
avec, selon les conventions habituelles, ] (1 —axX) = [[(X —ax) = 1.
k=n+1 k=1

6 > Montrer que s’il existe deux entiers 7, k tels que 1 <i < k < n et o = 1, alors
a; est racine de chaque polynéme f;, ou j € [1,n], et que la famille (fi,..., f,)
est liée.

Jusqu’a la fin de la partie B. on suppose qu’aucune racine de p n’est stable.

On note E le sous-espace vectoriel des fractions rationnelles a coefficients réels dont les
éventuels poles sont des inverses de racines de p (on ne demande pas de justifier que
E est un espace vectoriel). Les éléments de E sont donc les fractions rationnelles dont
le dénominateur peut s’écrire comme produit fini, éventuellement égal a 1, de facteurs
(1-—a;X)oul<i<n,.

Pour tout j € [1,n], on définit la fraction rationnelle g; € E par

f.
9i = 7 ’

=1

et I'application P}, qui a une fraction rationnelle f € E associe la fraction rationnelle

(1-a;X)f —(1-a)f(ay)
i(f) = X—a :

7 > Montrer que pour tout j € [1,n], 'application P; est un endomorphisme de E et
déterminer son noyau.



8 > Pour tout j € [1,n] et tout g € E, calculer P; (

o)

9 > En déduire que la famille (fy,..., f,) est libre.

C. Expression de la matrice J(p)

10 > Montrer que la famille ((S7){U)o<i<,_1 est une base de M,, ;(R). Les matrices S
et U ont été définies dans la partie préliminaire du probleme.

Pour tout entier j € [1,n], on définit les matrices

Bj:S—O./jIn et C'j:]n—ozj S.
11 > Démontrer que

T0) = 3 1(8)T(CTC; — BB F(S)

Les polynémes f,..., f, ont été définis dans le préambule de la partie B.
12 > Soit j € [1,n]. Montrer que C} C; — B] B; = (1 —a3)UU .

13 > On note D la matrice diagonale de taille n :
D = Diag((1 — a;*)1<j<n)

et V€ M,(R) la matrice telle que pour tout j € [1,n], la j-éme colonne de V'
est V; = f;(ST) U. Montrer que

J(p)=VDV'.

14 > En déduire, a l'aide de la question 6, que si p posseéde une racine stable alors J(p)
n’est pas inversible.

D. Cas ou J(p) est inversible : critere de Schur-Cohn

On rappelle que si M € M, (R) alors m(M) désigne le cardinal de I'ensemble de ses
valeurs propres strictement positives, comptées avec leurs multiplicités.

On munit M, ;(R) de sa structure euclidienne canonique. On dit qu'un sous-espace
vectoriel F de M, ;(R) vérifie la condition (Cps) quand

VX € F\{0,,} X'MX >0.



On note d(M) la dimension maximale d'un sous-espace vectoriel F' de M,, ;(R) véri-
fiant la condition (Cps), c’est-a-dire :

d(M) = max{dim F' | F’ s.e.v de M,,1(R) vérifiant (Cps)}.

15 > Soit deux matrices A, B € M, (R) telles qu’il existe une matrice P € GL,(R)
vérifiant A = P"BP. Montrer que d(B) > d(A) puis que d(B) = d(A).

16 > Pour toute matrice M € S, (R) construire un sous-espace vectoriel Fi; de M,, 1(R)
de dimension 7(M) vérifiant la condition (Cp). On a donc d(M) > w(M).

17 > On veut montrer que pour toute matrice M € S,(R) on a (M) = d(M). Par
I'absurde, en supposant l'existence d'un sous-espace vectoriel G de M, ;(R) de
dimension dim G' > 7(M) vérifiant la condition (Cy), montrer dim(Fy; N G) > 1,
en déduire une contradiction et conclure.

18 > Démontrer le critére de Schur-Cohn :

Si J(p) est inversible alors p ne possede aucune racine stable et o(p) = 7(J(p)).

E. Condition nécessaire et suffisante d’inversibilité

19 > Montrer, a I'aide des questions 9 et 13, que si p n’admet pas de racine stable et si
J(p) n’est pas inversible alors il existe un polynéme ¢ non nul a coefficients réels
de degré au plus n — 1 tel que ¢(ST)U = 0,,;.

20 > En déduire que la matrice J(p) est inversible si et seulement si p n’admet aucune
racine stable.

F. Un cas particulier

On suppose dans cette partie, comme on 'a fait aux questions 3 a 5, que toutes les
racines de p sont stables et de multiplicité 1 et on note h = Xp' (ou p’ est le polynéme
dérivé de p) et hy le polynéme réciproque de h. On rappelle que, d’apres la question 3,
il existe un réel A € {—1,1} tel que p = Apy.

21 > Montrer que J(h) est inversible.

22 > Montrer qu'il existe un réel n > 0 tel que pour tout r €]1—n; 1[, le polynéme p(rX)



est scindé, admet exactement o(p) racines a U'intérieur de U'intervalle | — 1; 1] et ne
possede aucune racine stable.

Pour tout réel r > 0, on note F(r) = J(p(rX)).

23 > Montrer que

lim 7 <2()F(r)) =n—o(p).

r—1— r—1

24 > Justifier que I'application F': R% — S,(R) est dérivable et que

F'(1) = 2n(p(S)) "p(S) = 28" (1/(5)) "p(S) = 2(p(S)) "¥'(S)S.

25 > En déduire, a I'aide des résultats de la question 4, que

n

mF(T) = J(h) + o(1).

r—1

On admet que Papplication définie sur S, (R) & valeurs dans R™ qui & une matrice symé-
trique associe le n-uplet de ses valeurs propres réelles comptées avec leurs multiplicités,
rangées dans I'ordre décroissant, est continue.

26 > En déduire que o(p) =n—1—n(J(p')).

G. Méthode générale.

On se place dans le cas général, sans disposer d’information sur la stabilité et la multi-

plicité des racines de p, et on cherche a calculer o(p).

On construit les deux polynomes f et g vérifiant f = p A pg et p = fg.

27 > Montrer que o(g) = w(J(g)).

28 > Proposer une méthode permettant de construire un nombre fini (éventuellement
nul) de polynémes gy, . .., gs, dont les racines sont stables et de multiplicité 1, tels

que f = g1 - - - go. Exprimer o(p) a 'aide de n,deg g, 7w(J(g)), ¢, 7(J(g)) ainsi que
ﬂ-(‘](gl))7 ce 77T(J(gé))

FIN DU PROBLEME



