
Devoir Surveillé n° 5 sujet 2.
le 9 janvier.

Exercice 2
Q1. On considère une suite de réels (an), une suite de complexes (bn) et on note pour tout

entier naturel n : Sn =
n∑

k=0
akbk et Bn =

n∑
k=0

bk.

En remarquant que, pour k ⩾ 1, bk = Bk − Bk−1, démontrer que, pour tout entier naturel n

non nul, Sn =
n−1∑
k=0

(ak − ak+1)Bk + anBn (transformation d’Abel).

Q2. On suppose que la suite (Bn) est bornée et que la suite (an) est décroissante de limite
nulle.
a) Démontrer que la série

∑
k⩾0

(ak − ak+1) converge.

b) En déduire que la série
∑
n⩾0

anbn converge.

Q3. Exemple.
Dans cette question, θ est un réel différent de 2kπ (k ∈ Z) et α ∈ R.

a) Calculer pour n entier naturel non nul,
n∑

k=1
eikθ

b) Discuter en fonction du réel α la nature de la série
∑
n⩾1

einθ

nα
.

Q4. Si
∑
n⩾0

anzn est une série entière de la variable complexe de rayon R > 0, rappeler le

résultat du cours concernant la convergence uniforme de cette série.

Q5. On considère la série entière de la variable complexe
∑
n⩾1

zn

√
n

de rayon 1.

a) On note D = {z ∈ C, |z| < 1}.
Démontrer que la série de la variable réelle

∑
n⩾1

xn

√
n

ne converge pas uniformément sur ] − 1, 1[

( en particulier la série
∑
n⩾1

zn

√
n

ne converge pas uniformément sur D).

b) On pourra confondre un point de R2 et son affixe.
pour α ∈

]
0, π

2
[
, on note Dα l’ensemble des complexes z, tels que |z| ⩽ 1 et dont la partie réelle

vérifie Re(z) ⩽ cos α.
Représenter géométriquement l’ensemble Dα dans un repère orthonormé du plan.



c) Démontrer que Dα est une partie fermée de C.
On pourra écrire :

Dα = {(x, y) ∈ R2, x2 + y2 ⩽ 1} ∩ {(x, y) ∈ R2, x ⩽ cos α}

et démontrer que Dα est une partie fermée de R2.
En déduire que Dα est une partie compacte de C.

d) On note pour z ∈ C et n entier naturel, Fn(z) =
n∑

k=0
zk.

Démontrer que pour tout z ∈ Dα et tout entier naturel n, si x = Re(z) :

|Fn(z)| ⩽ 2
1 − x

⩽
2

1 − cos α

e) Démontrer que la série entière
∑ zn

√
n

converge uniformément sur tous les compacts Dα

(pour α ∈
]
0, π

2
[
).



Critère de Schur-Cohn et généralisation au cas non inversible

Notations et objectifs du problème
Dans tout le problème :

— n désigne un entier naturel non nul et l’ensemble {1, 2, . . . , n} est noté J1, nK.

— Mn(R) (respectivement Sn(R), resp. Dn(R), resp. GLn(R)), désigne l’ensemble
des matrices carrées (resp. symétriques, resp. diagonales, resp. inversibles) réelles
de taille n, et on confond un élément de M1(R) avec son unique coefficient ;

— si M ∈ Mn(R), on note M⊤ sa transposée et pour tout (i, j) ∈ J1, nK2, on note
Mi,j le coefficient de M situé à la i-ème ligne et la j-ème colonne ;

— on note π(M) le nombre de valeurs propres réelles strictement positives de M
comptées avec leur multiplicité, ainsi par exemple π(In) = n ;

— si (u1, . . . , un) ∈ Rn on note Diag(u1, . . . , un) la matrice D ∈ Dn(R) telle que
Di,i = ui pour tout i ∈ J1, nK ;

— si f et g sont deux polynômes non simultanément nuls, on note f ∧ g leur PGCD ;

— si f est un polynôme, on note également f sa fonction polynomiale associée ;

— on note σ(f) le nombre de racines réelles de f appartenant à l’intervalle ] − 1; 1[,
comptées avec leur multiplicité, ainsi par exemple σ(X2(X − 1)(X + 1)) = 2 ;

— on dit que le réel α est une racine stable de f si α ̸= 0 et f(α) = f(α−1) = 0 ;

— si f est un polynôme de degré m ∈ N et s’écrit

f = amXm + am−1X
m−1 + · · · + a1X + a0 =

m∑

k=0
akXk,

on note f0 son polynôme réciproque, défini par

f0 = a0X
m + a1X

m−1 + · · · + am−1X + am =
m∑

k=0
am−kXk;

— on note U = (1 0 · · · 0)⊤ la matrice colonne de taille n dont le premier
coefficient est égal à 1 et les autres à 0 ;
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— on note S la matrice de Mn(R) dont tous les coefficients sont nuls sauf les n − 1
coefficients situés juste au-dessus de la diagonale, égaux à 1 :

∀(i, j) ∈ J1, nK2 Si,j = δi+1,j (symbole de Kronecker);

— pour tout polynôme réel f on définit la matrice J(f) ∈ Sn(R) par

J(f) = f0(S)⊤f0(S) − f(S)⊤f(S).

Dans ce problème p désigne un polynôme à coefficients réels, scindé sur R de degré n,

p = anXn + an−1X
n−1 + · · · + a1X + a0 =

n∑

k=0
akXk, an ̸= 0,

et on note α1 ≤ · · · ≤ αn ses racines toutes réelles, comptées avec leurs multiplicités.

L’objectif du problème est d’établir l’égalité σ(p) = π(J(p)) (critère de Schur-Cohn)
dans le cas où J(p) est inversible, puis de proposer une démarche générale permettant
de compter les racines de p dans ] − 1; 1[, lorsque la matrice J(p) n’est pas inversible.

Ces résultats, généralisables aux polynômes à coefficients complexes, sont utiles dans
l’étude de la stabilité de certains systèmes dynamiques.

A. Propriétés du polynôme p0 et stabilité des racines
1 ▷ Montrer que p0, le polynôme réciproque de p, vérifie

∀x ∈ R∗ p0(x) = xnp(1/x)

et en déduire que
p0 = an

n∏

j=1
(1 − αjX).

2 ▷ Montrer que p ∧ p0 = 1 si et seulement si p ne possède pas de racine stable.

Jusqu’à la fin de la partie A. on suppose que toutes les racines de p sont stables et
d’ordre de multiplicité 1.

3 ▷ Justifier qu’il existe λ ∈ {−1, 1} tel que p = λp0.

Soit h le polynôme de degré n défini par h(X) = Xp′, où p′ est le polynôme dérivé de p.
On note h0 et (p′)0 les polynômes réciproques respectifs de h et p′.
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4 ▷ Montrer que h = np − λ(p′)0, puis que h0 = λ(np − Xp′).

5 ▷ Vérifier que p′ est scindé sur R puis montrer que h ∧ h0 = 1 et en déduire que p′

n’admet pas de racine stable.

B. Liberté d’une famille de polynômes
Pour tout entier j ∈ J1, nK, on note fj le polynôme

fj = an(1−αnX) · · · (1−αj+1X)(X −αj−1) · · · (X −α1) = an

n∏

k=j+1
(1−αkX)

j−1∏

k=1
(X −αk)

avec, selon les conventions habituelles,
n∏

k=n+1
(1 − αkX) =

0∏

k=1
(X − αk) = 1.

6 ▷ Montrer que s’il existe deux entiers i, k tels que 1 ≤ i < k ≤ n et αiαk = 1, alors
αi est racine de chaque polynôme fj, où j ∈ J1, nK, et que la famille (f1, . . . , fn)
est liée.

Jusqu’à la fin de la partie B. on suppose qu’aucune racine de p n’est stable.
On note E le sous-espace vectoriel des fractions rationnelles à coefficients réels dont les
éventuels pôles sont des inverses de racines de p (on ne demande pas de justifier que
E est un espace vectoriel). Les éléments de E sont donc les fractions rationnelles dont
le dénominateur peut s’écrire comme produit fini, éventuellement égal à 1, de facteurs
(1 − αiX) où 1 ≤ i ≤ n.

Pour tout j ∈ J1, nK, on définit la fraction rationnelle gj ∈ E par

gj = fj
n∏

i=1
(1 − αiX)

et l’application Pj, qui à une fraction rationnelle f ∈ E associe la fraction rationnelle

Pj(f) =
(1 − αjX)f − (1 − α2

j )f(αj)
X − αj

.

7 ▷ Montrer que pour tout j ∈ J1, nK, l’application Pj est un endomorphisme de E et
déterminer son noyau.
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8 ▷ Pour tout j ∈ J1, nK et tout g ∈ E, calculer Pj

(
(X − αj)g
1 − αjX

)
.

9 ▷ En déduire que la famille (f1, . . . , fn) est libre.

C. Expression de la matrice J(p)
10 ▷ Montrer que la famille ((S⊤)iU)0≤i≤n−1 est une base de Mn,1(R). Les matrices S

et U ont été définies dans la partie préliminaire du problème.

Pour tout entier j ∈ J1, nK, on définit les matrices

Bj = S − αjIn et Cj = In − αj S.

11 ▷ Démontrer que
J(p) =

n∑

j=1
fj(S)⊤(C⊤

j Cj − B⊤
j Bj)fj(S).

Les polynômes f1, . . . , fn ont été définis dans le préambule de la partie B.

12 ▷ Soit j ∈ J1, nK. Montrer que C⊤
j Cj − B⊤

j Bj = (1 − α2
j )UU⊤.

13 ▷ On note D la matrice diagonale de taille n :
D = Diag((1 − αj

2)1≤j≤n)
et V ∈ Mn(R) la matrice telle que pour tout j ∈ J1, nK, la j-ème colonne de V
est Vj = fj(S⊤) U. Montrer que

J(p) = V DV ⊤.

14 ▷ En déduire, à l’aide de la question 6, que si p possède une racine stable alors J(p)
n’est pas inversible.

D. Cas où J(p) est inversible : critère de Schur-Cohn
On rappelle que si M ∈ Mn(R) alors π(M) désigne le cardinal de l’ensemble de ses

valeurs propres strictement positives, comptées avec leurs multiplicités.

On munit Mn,1(R) de sa structure euclidienne canonique. On dit qu’un sous-espace
vectoriel F de Mn,1(R) vérifie la condition (CM) quand

∀X ∈ F \ {0n,1} X⊤MX > 0.
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On note d(M) la dimension maximale d’un sous-espace vectoriel F de Mn,1(R) véri-
fiant la condition (CM), c’est-à-dire :

d(M) = max{dim F | F s.e.v de Mn,1(R) vérifiant (CM)}.

15 ▷ Soit deux matrices A, B ∈ Mn(R) telles qu’il existe une matrice P ∈ GLn(R)
vérifiant A = P ⊤BP . Montrer que d(B) ≥ d(A) puis que d(B) = d(A).

16 ▷ Pour toute matrice M ∈ Sn(R) construire un sous-espace vectoriel FM de Mn,1(R)
de dimension π(M) vérifiant la condition (CM). On a donc d(M) ≥ π(M).

17 ▷ On veut montrer que pour toute matrice M ∈ Sn(R) on a π(M) = d(M). Par
l’absurde, en supposant l’existence d’un sous-espace vectoriel G de Mn,1(R) de
dimension dim G > π(M) vérifiant la condition (CM), montrer dim(F ⊥

M ∩ G) ≥ 1,
en déduire une contradiction et conclure.

18 ▷ Démontrer le critère de Schur-Cohn :

Si J(p) est inversible alors p ne possède aucune racine stable et σ(p) = π(J(p)).

E. Condition nécessaire et suffisante d’inversibilité
19 ▷ Montrer, à l’aide des questions 9 et 13, que si p n’admet pas de racine stable et si

J(p) n’est pas inversible alors il existe un polynôme q non nul à coefficients réels
de degré au plus n − 1 tel que q(S⊤) U = 0n,1.

20 ▷ En déduire que la matrice J(p) est inversible si et seulement si p n’admet aucune
racine stable.

F. Un cas particulier
On suppose dans cette partie, comme on l’a fait aux questions 3 à 5, que toutes les
racines de p sont stables et de multiplicité 1 et on note h = Xp′ (où p′ est le polynôme
dérivé de p) et h0 le polynôme réciproque de h. On rappelle que, d’après la question 3,
il existe un réel λ ∈ {−1, 1} tel que p = λp0.

21 ▷ Montrer que J(h) est inversible.

22 ▷ Montrer qu’il existe un réel η > 0 tel que pour tout r ∈]1−η; 1[, le polynôme p(rX)
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est scindé, admet exactement σ(p) racines à l’intérieur de l’intervalle ] − 1; 1[ et ne
possède aucune racine stable.

Pour tout réel r > 0, on note F (r) = J(p(rX)).

23 ▷ Montrer que

lim
r→1−

π

(
n

2(r − 1)F (r)
)

= n − σ(p).

24 ▷ Justifier que l’application F : R∗
+ → Sn(R) est dérivable et que

F ′(1) = 2n(p(S))⊤p(S) − 2S⊤(p′(S))⊤p(S) − 2(p(S))⊤p′(S)S.

25 ▷ En déduire, à l’aide des résultats de la question 4, que
n

2(r − 1)F (r) =
r→1

J(h) + o(1).

On admet que l’application définie sur Sn(R) à valeurs dans Rn qui à une matrice symé-
trique associe le n-uplet de ses valeurs propres réelles comptées avec leurs multiplicités,
rangées dans l’ordre décroissant, est continue.

26 ▷ En déduire que σ(p) = n − 1 − π(J(p′)).

G. Méthode générale.
On se place dans le cas général, sans disposer d’information sur la stabilité et la multi-
plicité des racines de p, et on cherche à calculer σ(p).
On construit les deux polynômes f et g vérifiant f = p ∧ p0 et p = fg.

27 ▷ Montrer que σ(g) = π(J(g)).

28 ▷ Proposer une méthode permettant de construire un nombre fini (éventuellement
nul) de polynômes g1, . . . , gℓ, dont les racines sont stables et de multiplicité 1, tels
que f = g1g2 · · · gℓ. Exprimer σ(p) à l’aide de n, deg g, π(J(g)), ℓ, π(J(g)) ainsi que
π(J(g′

1)), . . . , π(J(g′
ℓ)).

Fin du problème
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