
MinesMP 2025 - Epreuve 2
Un corrigé

A. Propriétés du polynôme p0 et stabilité des racines

1. Pour tout x 6= 0, on a (changement d’indice j = n− k)

xnp

(
1

x

)
= xn

n∑
k=0

akx
k =

n∑
j=0

an−jx
j = p0(x)

et ainsi

p0(x) = anx
n

n∏
j=1

(
1

x
− αj

)
= an =

n∏
j=1

(1− αjx)

L’identité des fonctions polynomiales en une infinité de points donne l’égalité des polynômes.

p0(x) = xnp(1/x) et p0 = an

n∏
j=1

(1− αjX)

2. si p possède une racine stable α alors (x − α) = α(1 − x/α) est un diviseur commun à p et p0
qui ne sont pas premiers entre eux.
Réciproquement, si p ∧ p0 6= 1 alors p et p0 ont un diviseur irréductible commun. Comme p est
scindé, ce diviseur s’écrit X − αi et il existe donc j tel que X − αi et 1 − αjX sont associés ce
qui entrâıne αi 6= 0 et αiαj = 1 : on a donc une racine stable.

p ∧ p0 = 1 si et seulement si p ne possède pas de racine stable

3. Comme toutes les racines sont stables, elle sont non nulles et p0 est de degré n et de coefficient
dominant a0.
Les αi sont distincts car les multiplicités valent 1. Les 1/αi sont donc tous distincts aussi et sont
racines de p0. Par degré, on a donc

p0(x) = a0

n∏
i=1

(
X − 1

αi

)
= a0

n∏
i=1

(X − αi)

(puisque α 7→ 1/α est bijective de l’ensemble des racines dans lui même). On remarque alors que

a0 = p(0) = an(−1)n
n∏
i=1

αi

et ainsi

p0 = (−1)n

(
n∏
i=1

αi

)
p

Les αi se regroupent par paires d’inverses sauf éventuellement 1 et −1 (qui sont leur propre
inverse). Le coefficient devant p ci-dessus vaut donc 1 ou −1 et on a

p = λp0 avec λ ∈ {−1, 1}

4. En dérivant la première relation de la question 1, on obtient

∀x 6= 0, p′0(x) = nxn−1p

(
1

x

)
− xn−2p′

(
1

x

)
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et ainsi (p′ = λp′0)

∀x 6= 0, h(x) = λxp′0(x) = λ

(
nxnp

(
1

x

)
− xn−1p′

(
1

x

))
Le premier terme de la parenthèse vaut p0(x) (et on obtient p(x) en multipliant par λ). Comme
p′ est de degré n − 1, le second vaut (p′)0 et ainsi (identité des polynômes en une infinité de
points)

h = np− λ(p′)0

Avec la question 1, on a

∀x 6= 0, (p′)0

(
1

x

)
=

1

xn−1
p′(x)

et ainsi

∀x 6= 0, xn−1(p′)0

(
1

x

)
= p′(x)

On a donc, pour x 6= 0

h0(x) = xnh

(
1

x

)
= xn

(
np

(
1

x

)
− λ(p0)

′
(

1

x

))
= np0(x)− λxp′(x)

=
n

λ
p(x)− λxp′(x)

Comme 1/λ = λ, on conclut que

h0 = λ(np−Xp′)

(les fonctions polynomiales sont égale en une infinité de valeurs et les polynômes sont égaux)

5. Par théorème de Rolle, il y a une racine de p′ entre deux racines de p. Les racines de p étant
simples, p′ possède au moins n− 1 racines et comme p′ est de degré n,

p′ est scindé simple sur R

Si, par l’absurde, h et h0 ont une racine x commune, alors xp′(x) = 0 et np(x) − xp′(x) = 0
et ainsi p(x) = 0. On a donc x 6= 0 (0 non racine de p car toutes les racines sont stables) et
p′(x) = 0. x est ainsi racine double ce qui nest contraire à l’hypothèse des multiplicités valant 1.

Or, h est scindé (car p′ l’est et h = Xp′) et h ∧ h0 = 1 (les divisieurs irréductibles de h sont de
degré 1 et il n’y a pas de diviseur de degré 1 commun puisque pas de racine commune).
Si, par l’absurde, h possèdait une racine stable α, alors 1/α serait racine de h et donc α racine
de h0 ce qui contredirait le fait que le pgcd vaut 1 (on aurait X − α diviseur commun). h n’a
donc pas de racine stable et a fortiori,

p′ n’a pas de racine stable
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B. Liberté d’une famille de polynômes

6. Si αiαk = 1 avec i < k alors pour tout j,
ou bien j − 1 ≥ i et αi est racine de fj
ou bien j ≤ i et alors j < k et 1/αk = αi est racine de fj . Ainsi, (X − αi) divise fj et
fj ∈ (X − αi)Rn−2[X] qui est un espace de dimension n − 1. n éléments de cet espace formant
une famille liée,

Si αiαk = 1 avec i < k alors (f1, . . . , fn) est liée

7. On a immédiatement linéarité de Pj (Pj(f1 + λf2) = Pj(f1) + λPj(f2)). De plus αi est racine de

la fraction (1− αjX) f −
(

1− α2
j

)
f (αj) et cette fraction s’écrit (X − αj)f1 avec f1 ∈ E (car

un pôle de f1 est un pôle de f). Ainsi Pj(f) ∈ E. On a donc Pj ∈ L(E).

Si Pj(f) = 0 alors (1−αjX)f est une fraction constante. Ainsi f ∈ Vect
(

1
1−αjX

)
. La réciproque

est une simple vérification et on a donc

ker(Pj) = Vect

(
1

1− αjX

)
8. Le calcul donne immédiatement

∀g ∈ E, Pj
(

(X − αj) g
1− αjX

)
= g

9. Supposons que
∑n

k=1 λkfk = 0. On a alors aussi

n∑
k=1

λkgk = 0 (∗)

On a

gj =
an

1− αjX

j−1∏
k=1

X − αk
1− αkX

et avec la question précédente

P1(gj) =
an

1− αjX

j−1∏
k=2

X − αk
1− αkX

et même plus généralement

Pj−1 ◦ · · · ◦ P1(gj) =
an

1− αjX
et avec la question 7,

Pj ◦ Pj−1 ◦ · · · ◦ P1(gj) = 0

Si on compose (∗) par Pn−1 ◦ . . . P1, il reste donc

λn
an

1− αnX
= 0

et donc λn = 0. En composant alors de même par Pn−2 ◦ · · · ◦ P1, on obtient λn−1 = 0 et on
itère le processus pour obtenir la nullité de tous les λi (on pourrait procéder par récurrence
décroissante pour montrer la nullité de tous λi ou encore raisonner par l’absurde). Ainsi

(f1, . . . , fn) est libre
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C. Expression de la matrice J(p)

10. Soit f l’endomorphisme canoniquement associé à ST . En notant (e1, . . . , en) la base canonique
de Rn, on a

∀i ∈ [[1, n− 1]], f(ei) = ei+1 et f(en) = 0

On montre par récurrence finie que

∀i ∈ [[0, n− 1]], f i(e1) = ei+1

- C’est vrai au rang 0 (f0 = Id).

- Supposons le résultat vrai à un rang i ∈ [[0, n− 2]]. On a alors f i+1(e1) = f(ei+1) = ei+2 ce
qui montre le résultat au rang i+ 1.

La famille (e1, f(e1), . . . , f
n−1(e1)) est donc une base (c’est même la base canonique de Rn).

Comme U est la matrice qui représente e1, on en déduit que((
S>
)i
U
)
0≤i≤n−1

est une base de Mn,1(R)

11. Pour j ∈ [[1, n]]

Cjfj(S) = an

n∏
k=j

(In − αkS)

j−1∏
k=1

(S − αkIn)

Bjfj(S) = an

n∏
k=j+1

(In − αkS)

j∏
k=1

(S − αkIn)

Ainsi, Bjfj(S) = Cj+1fj+1(S) pour j ∈ [[1, n− 1]] et on a un télecopage :

n∑
j=1

fj(S)>
(
C>j Cj −B>j Bj

)
fj(S) = f1(S)>C>1 C1f1(S)− fn(S)>B>n Bnfn(S)

Comme C1f1(S) = p0(S) et Bnfn(S) = p(S), on a montré que

J(p) =

n∑
j=1

fj(S)>
(
C>j Cj −B>j Bj

)
fj(S)

12. On remplace Cj et Bj par leurs expressions et les termes se simplifient :

C>j Cj −B>j Bj = (1− α2
j )(In − STS)

Un calcul élémentaire donne UTU = E1,1. De plus

(STS)i,j =
n∑
k=1

δk+1,iδk+1,j

Si i 6= j, tous les termes de la somme sont nuls. Si i = j 6= 1, le seul terme de la somme pouvant
être non nul est celui tel que k+1 = i. Un tel k ∈ [[1, n]] existe sauf si i = 1. Ainsi STS = In−E1,1.
On en déduit que

C>j Cj −B>j Bj =
(
1− α2

j

)
UU>
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13. Avec les deux questions précédentes,

J(p) =
n∑
j=1

(1− α2
j )VjV

T
j

Multiplier à droite par une matrice diagonale revient à multiplier chaque colonne par le coefficient
diagonal correspondant. Ainsi

V DV T =
(
(1− α2

1)V1 . . . (1− α2
n)Vn

)V
T
1
...
V T
n


Un calcul par bloc montre que ceci vaut

∑n
i=1(1− α2

i )ViV
T
i et donc

J(p) = V DV T

14. Supposons que p possède une racine stable.
Si α /∈ {1,−1}, α et 1

α sont deux racines distinctes de p et la question 6 donne (f1, . . . , fn) liée
et il existe (λ1, . . . , λn) 6= 0 tel que

∑n
i=1 λifi = 0.

On en déduit que
∑n

i=1 λifi(S
T ) = 0 et donc que

∑n
i=1 λiVi = 0.

On trouve que les colonnes de V sont liées et V n’est donc pas inversible. Il en est de même de
J(p) (par exemple en passant au déterminant).
Si α ∈ {−1, 1} alors D n’est pas inversible et on a encore la non inversibilité de J(p).

si p possède une racine stable alors J(p) n’est pas inversible

D. Cas où J(p) est inversible : critère de Schur-Cohn

15. Il existe un sous-espace F telle que dim(F ) = d(A) et ∀X ∈ F \ {0}, XTAX > 0 (car d(A) est
un maximum).
L’image F ′ de F par P (confondu canoniquement à un endomorphisme de Rn) est de dimension
d(A) (car P représente un isomorphisme).
Si Y ∈ F ′ est non nul, Y TBY = XTAX avec X = P−1Y . X 6= 0 et X ∈ F (P−1(F ′) = F ) et
donc Y TBY > 0.
On a trouvé un sous-espace de dimension d(A) vérifiant (CB) et donc d(B) ≥ d(A).
Comme B = QTAQ avec Q = P−1 ∈ GLn(R), on a de même l’autre inégalité.

S’il existe P inversible telle que A = P TBP , alors d(A) = d(B)

16. Par théorème spectral (et puisque l’on suppose M symétrique réelle), les sous-espaces propres
de M sont supplémentaires orthogonaux. Posons

FM =
⊕

λ∈Sp(M)∩R+∗

Eλ(M)

Comme la dimension de Eλ(M) est égal à la multiplicité de λ (diagonalisabilité), FM est de
dimension π(M).
Soit X ∈ FM non nul. On le décompose en X =

∑
λ∈Sp(M)∩R+∗ Xλ et on a (les Xλ étant

orthogonaux)

XTMX =
∑

λ∈Sp(M)∩R+∗

λ‖Xλ‖2

où ‖.‖ est la norme euclidienne canonique sur Rn. Comme l’un des Xλ est non nul et que les λ
sont > 0, la somme est > 0. FM vérifie donc la condition (CM ) et donc
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d(M) ≥ dim(FM ) = π(M)

17. Par le théorème spectral et le choix de FM , on a

F⊥M =
⊕

λ∈Sp(M)∩R−

Eλ(M)

et comme pour FM , on a
∀X ∈ F⊥M , XTMX ≤ 0

Supposons, par l’absurde, qu’il existe G vérifiant (CM ) et tel que dim(G) > π(M). Si, par
l’absurde, il existe X ∈ G ∩ F⊥M non nul on a simultanément XTMX ≤ 0 (appartenance à F⊥M )
et XTMX > 0 (appartenance à G) ce qui donne une contradiction. Ainsi, G et F⊥M sont en
somme directe et

n ≥ dim(G⊕ F⊥M ) = dim(G) + dim(F⊥M ) > π(M) + (n− π(M)) = n

On a une contradiction ! On en déduit que d(M) ≤ π(M) et ainsi

d(M) = π(M)

18. La contraposée de la question 14 montre que si J(p) est inversible, alors P ne possède aucune
racine réelle stable.
Dans ce cas, J(p) = V DV T avec V inversible et la question 15 donne d(J(p)) = d(D).
J(p) et D étant symétriques, la question 17 donne alors π(J(p)) = π(D) et la définition de D
indique que π(D) = σ(p). Ainsi π(J(p)) = σ(p).

Si J(p) est inversible alors p ne possède aucune racine stable et σ(p) = π(J(p))

E. Condition nécessaire et suffisante d’inversibilité

19. On suppose que p n’a pas de racine stable et ainsi (f1, . . . , fn) est libre (question 9) et D est
inversible (car ∀i, α2

i 6= 1 puisque si ±1 était racine, elle serait stable).
J(p) étant de plus supposée non inversible, V DV T est non inversible et donc V ne l’est pas.
Il existe des scalaires λ1, . . . , λn non tous nuls tels que

∑n
i=1 λiVi = 0 :

q(ST )U = 0 avec q =

n∑
i=1

λifi

q est de degré ≤ n− 1 comme combinaison d’éléments de Rn−1[X] et non nul par indépendance
des fi.

Si p n’a pas de racine stable et J(p) non inversible, ∃q ∈ Rn−1[X] \ {0} tel que q(ST )U = 0

20. La question 14 indique que si J(p) est inversible, alors p n’a pas de racine stable.

Réciproquement on suppose que p n’a pas de racine stable et, par l’absurde, que J(p) est non
inversible.
La question précédente fournit q tel que q(ST )U = 0. Ceci donne une combinaison linéaire nulle

à coefficients non tous nuls de
((
S>
)i
U
)
0≤i≤n−1

ce qui contredit l’indépendance prouvée en

question 10.

J(p) est inversible si et seulement si p n’admet aucune racine stable
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F. Un cas particulier

21. Les racines de h sont 0 et les racines de p′ et p′ n’a pas de racine stable par la question 5.
h n’a donc pas de racine stable et avec la question 20,

J(h) est inversible

22. Soit r ∈]0, 1[. On a (question 1)

p(rX) = an

n∏
i=1

(rX − αi) = anr
n

n∏
i=1

(
X − αi

r

)
p(rX) est donc scindé (et même à racines simples puisque les αi/r sont, comme les αi, deux à
deux distincts).

Les αi sont ordonnés et il existe k tel que les racines de p dans ]−1, 1[ soient αk < · · · < αk+σ(p)−1.

Si i /∈ {k, . . . , k + σ(p)− 1}, on a |αi|r > |αi| ≥ 1.

Soit i ∈ {k, . . . , k + σ(p) − 1}. Pour que −1 < αi
r < 1, il suffit que −1 < αk

r et
αk+σ(p)−1

r < 1. Il
suffit donc que r > −αk et r > αk+σ(p)−1.
En posant η1 = min(1, 1 + αk, 1− αk+σ(p)−1) on a η1 > 0 et la condition précédente vraie pour
tout r ∈]1− η1, 1[ et p(rX) admet exactement σ(p) racines entre −1 et 1.

Si β est une racine stable de p(rX), β 6= 0 et il existe i et j tels que β = r
αi

et 1
β = r

αj
. On a

alors r2

αiαj
= 1 et donc r2 = αiαj . Comme ∀i, j, αiαj 6= 1 et qu’il n’y a qu’un nombre fini de

telles quantités, il existe un voisinage de 1 ne contient aucun élément du type αiαj . Il existe donc
η2 tel que si r ∈]1−η2, 1[, r2 = αiαj n’a jamais lieu. Pour de tels r, p(rX) n’a pas de racine stable.

En choisissant η = min(η1, η2) > 0, on a

pour r ∈]1− η, 1[, p(rX) est scindé sans racine stable et σ(p(rX)) = σ(P )

23. On chosit η comme ci-dessus et on prend r ∈]0, η[..
Comme p(rX) na pas de racines stables, J(p(rX)) est inversible (question 20) et σ(p(rX)) =
π(J(p(rX))) = π(F (r)).
Avec la question 13, on trouve V telle que

J(p(rX)) = V diag

(
1−

α2
j

r2

)
V T = V DrV

T

On a π(J(p(rX))) = d(J(P (rX))) et comme V est inversible (J(p(rX)) l’est), la question 15
donne d(J(p(rX))) = d(Dr) = π(Dr).
Par choix de r, Dr possède exactement σ(p) valeurs propres dans ]− 1, 1[ et ona donc

∀r ∈]0, η[, π(F (r)) = σ(p)

Pour un tel r, n
2(r−1) < 0 et les valeurs propres > 0 de n

2(r−1)F (r) correspondent à celles < 0 de

F (r). Et comme 0 n’est pas racine de F (r) (J(p(rX)) inversible), ce nombre vaut n− π(F (r)).
On a donc

∀r ∈]1− η, 1[, π

(
n

2(r − 1)
F (r)

)
= n− σ(p)

et a fortiori,
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lim
r→1−

π

(
n

2(r − 1)
F (r)

)
= n− σ(p)

24. Soit r > 0. Posons q = p(rX) en sorte que F (r) = J(q) = q0(S)T q0(S)− q(s)T q(S). Notons que

∀x 6= 0, q0(x) = xnq

(
1

x

)
= xnp

( r
x

)
= rn

(x
r

)n
p
( r
x

)
= rnp0

(x
r

)
= λrnp

(x
r

)
Ainsi,

F (r) = r2np

(
S

r

)T
p

(
S

r

)
− p(rS)T p(rS)

Par les théorèmes d’opération, F est dérivable sur R+∗ (chaque coefficient est une fraction ra-
tionnelle en r).
On a

p(
S

r
) =

n∑
k=0

ak
Sk

rk

et en dérivant par rapport à r, avec ici un abus de notation,

d
(
p(Sr )

)
dr

= −
n∑
k=0

kak
Sk

rk+1
= −1

r

n∑
k=0

kak
Sk

rk
= −1

r
(Xp′)

(
S

r

)
= − 1

r2
Sp′

(
S

r

)
et de même

d (p(rS))

dr
=

n∑
k=0

kakr
k−1Sk =

1

r

n∑
k=0

kakr
kSk =

1

r
(Xp′) (rS) = Sp′(rS)

On peut alors dériver F avec la formule (ABC)′ = A′BC + AB′C + ABC ′ et comte-tenu du
fait que la transposée de la dérivée est la dérivée de la transposée (par linéarité du passage à la
transposée) :

F ′(r) = 2nr2n−1p

(
S

r

)T
p

(
S

r

)
− r2n

(
1

r2
Sp′

(
S

r

))T
p

(
S

r

)
− r2np

(
S

r

)T 1

r2
Sp′

(
S

r

)
−(Sp′(rS))T p(rS)− p(rS)TSp′(rS)

Ainsi
F ′(1) = 2np(S)T p(S)− 2(Sp′(S))T p(S)− 2p(S)TSp′(S)

Comme S et p′(S) commutent ainsi que ST et p′(S)T = p′(ST ) on peut écrire cela

F ′(1) = 2n(p(S))>p(S)− 2S>
(
p′(S)

)>
p(S)− 2(p(S))>p′(S)S

25. La formule de Taylor-Young (le fait que la fonction est à valeurs vectorielle ne gêne pas) donne

F (r) =
r→1

F (1) + (r − 1)F ′(1) + o(r − 1)

On a F (1) = J(p) = p0(S)T p0(S)− p(S)T p(S) = 0 car p = λp0 avec λ2 = 1. On a donc

F (r)

r − 1
=
r→1

F ′(1) + o(1)

Par ailleurs, avec les formules de la question 4,

J(h) = h0(S)Th0(S)− h(S)Th(S)

= (np(S)− Sp′(S))T (np(S)− Sp′(S))− (Sp′(s))T (Sp′(S))

= n2p(S)T p(S)− np(S)TSp′(S)− (Sp′(S))TSp′(S)

et compte-tenu des commutation notées plus haut, ceci vaut n
2F
′(1). Ainsi
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n

2(r − 1)
F (r) =

r→1
J(h) + o(1)

26. Avec la continuité admise, on a π
(

n
2(r−1)F (r)

)
→ π(J(h)) et avec la question précédente et la

question 23, on a donc
n− σ(p) = π(J(h))

Mais, h = Xp′ et p′ n’a pas de racine stable et donc σ(h) = 1+σ(p′) = 1+π(J(p′)) et finalement

σ(p) = n− 1− π (J (p′))

G. Méthode générale.

27. Les racines stables de p sont aussi racines de p0 avec la même multiplicité (car si x 6= 0 est
racine de p, 1/x est racine de p0 avec même multiplicité). Ainsi g = P

f est sans racine simple (en
divisant par le pgcd, on supprime toutes les racines stables). Par la question 18,

σ(g) = π(J(g))

28. Comme expliqué ci-dessus, f est le produit des (X−α) pour α racine stable de p. On peut donc
regrouper les facteurs de f par paires (X − α)(X − 1/α) sauf peut être (X − 1) et (X + 1) qui
se retrouvent seuls (éventuellement plusieurs fois). On écrit ainsi f = g1 . . . g` avec des gi dont
les racines sont stables et de multiplicité 1. On a alors

σ(p) = σ(g) +
∑̀
i=1

σ(gi)

σ(g) est donné par la question 27. σ(gi) est donné par la question 26. On obtient

σ(p) = π(J(g)) +
∑̀
i=1

(deg(gi)− 1− π(J(g′i)))

La somme des degrés des gi vaut le degré de f c’est à dire n− deg(g). Ainsi

σ(p) = π(J(g))− `+ n− deg(g) +
∑̀
i=1

π(J(g′i))
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