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Problème 1 (CCINP)

Ce problème est constitué de trois parties indépendantes.
Dans la Partie I, on calcule la valeur de l’intégrale de Dirichlet en étudiant une intégrale à paramètre.
Dans la Partie II, on calcule la valeur d’une intégrale en utilisant un théorème d’interversion intégrale
et somme infinie.
Dans la Partie III, on propose des applications du théorème de convergence de dominée.

Partie I

Q1. Justifier l’existence de l’intégrale K = ∫
+∞

0

1 − cos(t)
t2

dt.

Q2. Pour A > 0, justifier l’existence de l’intégrale D(A) = ∫
A

0

sin(t)
t

dt.

Q3. Grâce à une intégration par parties, prouver que D(A) a une limite (réelle) quand A tend vers
+∞, égale à K. C’est-à-dire que :

K = ∫
+∞

0

sin(t)
t

dt = lim
A→+∞

D(A).

Q4. Justifier que l’application L ∶ x↦ ∫
+∞

0

1 − cos(t)
t2

e−txdt est définie et continue sur R+.

Q5. Montrer que l’application L est de classe C 2 sur l’intervalle ]0,+∞[.

Q6. Montrer que :
lim

x→+∞
L′(x) = lim

x→+∞
L(x) = 0.

Q7. Pour tout réel x > 0, montrer que :

L′′(x) = 1

x
− x

x2 + 1
.

On pourra remarquer que cos(t) = Re(eit).

Q8. En déduire que pour tout réel x > 0 :

L(x) = −x
2
ln(1 + 1

x2
) − arctan(x) + π

2
.

Conclure que K = π

2
.
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Partie II

On admet que
+∞

∑
n=1

1

n2
= π2

6
.

Q9. Justifier que la fonction u↦ ln(u)
u − 1

est intégrable sur ]0,1[.

Q10. Pour tout k ∈ N, justifier l’existence et calculer ∫
1

0
uk ln(u)du.

Q11. Grâce au développement en série entière de u ↦ 1

1 − u
sur ]0,1[, et en précisant le théorème

utilisé, justifier que : ∫
1

0

ln(u)
u − 1

du =
+∞

∑
k=0

1

(k + 1)2
.

En déduire la valeur de ∫
1

0

ln(u)
u − 1

du.

Partie III

Q12. Rappeler avec précision le théorème de convergence dominée.

Q13. On considère ici une application continue f ∶ [0,+∞[→ R.

Pour tout n ∈ N, on pose In = ∫
1

0
f(tn)dt. Déterminer lim

n→+∞
In.

Q14. On suppose ici de plus que u↦ f(u)
u

est intégrable sur ]0,1].
Déterminer lim

n→+∞
nIn. On pourra transformer nIn grâce à un changement de variable.

Q15. Application

Déterminer un équivalent quand n→ +∞ de ∫
1

0
sin(tn)dt (grâce à une intégrale).

Problème 2 (Mines)
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Inégalité de log-Sobolev pour la gaussienne

Notations et résultats admis

— Soit la fonction Ï définie sur R par Ï (x) =
1Ô
2fi

e
≠x2/2

.

— Pour k œ N fi {Œ}, on pose Ck
(R) l’ensemble des fonctions de classe Ck

sur R à

valeurs dans R.

— On note CL (R) l’ensemble des fonctions de R dans R à croissance lente, c’est-à-

dire :

CL (R) =

Ó
f : R æ R, ÷C > 0, ÷k œ N tel que pour tout x œ R, |f (x)| Æ C

1
1 + |x|k

2Ô
.

— On note L1
(Ï) = {f œ C0

(R) , fÏ intégrable sur R}.

— Soit t œ R+. Pour une fonction f : R æ R, on définit si cela est possible la

fonction Pt (f) par :

’x œ R, Pt (f) (x) =

⁄ +Œ

≠Œ
f

1
e

≠tx +
Ô

1 ≠ e≠2ty
2

Ï (y) dy.

— Pour f deux fois dérivable sur R, on définit sur R la fonction L (f) par :

’x œ R, L (f) (x) = f ÕÕ
(x) ≠ xf Õ

(x) .

— Une fonction P : R æ R est dite fonction polynomiale en |x| s’il existe d œ N et

des réels a0, . . . , ad tels que pour tout x œ R, P (x) =

dÿ

k=0
ak |x|k.

— Soient f : R+ æ R une fonction et ¸ œ Rfi{±Œ}. On admet que lim
tæ+Œ

f (t) = ¸ si,

et seulement si, pour toute suite (tn)nœN de réels positifs telle que lim
næ+Œ

tn = +Œ,

on a lim
næ+Œ

f (tn) = ¸.

Partie 1 : Résultats préliminaires

1 Û Montrer que toute fonction majorée en valeur absolue par une fonction polynomiale

en |x| est à croissance lente.
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2 Û Montrer que C0
(R) fl CL (R) µ L1

(Ï).

On admet dans toute la suite du problème que

⁄ +Œ

≠Œ
Ï (t) dt = 1.

3 Û Montrer que CL (R) est un espace vectoriel. Montrer aussi que CL (R) est stable

par produit.

4 Û Soit t œ R+. Vérifier que la fonction Pt (f) est bien définie pour f œ C0
(R) fl

CL (R) et vérifier que Pt est linéaire sur C0
(R) fl CL (R).

5 Û Montrer que pour tout f œ C0
(R) fl CL (R) et tout x œ R,

lim
tæ+Œ

Pt (f) (x) =

⁄ +Œ

≠Œ
f (y) Ï (y) dy.

6 Û Soit t œ R+. Montrer que si f œ C0
(R) fl CL (R), alors Pt (f) œ C0

(R). Montrer

aussi que Pt(f) est majorée en valeur absolue par une fonction polynomiale en |x|
indépendante de t. En déduire que Pt (f) œ L1

(Ï).

On admettra dans toute la suite du problème que, si f œ C0
(R) fl CL (R), alors

’t œ R+,
⁄ +Œ

≠Œ
Pt (f) (x) Ï (x) dx =

⁄ +Œ

≠Œ
f (x) Ï (x) dx.

7 Û Montrer que pour toutes fonctions f, g œ C2
(R) telles que les fonctions f , f Õ

, f ÕÕ

et g soient à croissance lente, on a

⁄ +Œ

≠Œ
L (f) (x) g (x) Ï (x) dx = ≠

⁄ +Œ

≠Œ
f Õ

(x) gÕ
(x) Ï (x) dx.

Partie 2 : Dérivée de Pt (f)

Pour f : R æ R et x œ R, on note, si cela a un sens,
ˆPt (f) (x)

ˆt
la dérivée de la

fonction t œ R+ ‘æ Pt (f) (x).

Pour f : R æ R et t œ R+ fixé, on note, si cela a un sens, Pt (f)
Õ

(resp. Pt (f)
ÕÕ
) la

dérivée de x œ R ‘æ Pt (f) (x) (resp. la dérivée seconde de x œ R ‘æ Pt (f) (x)).
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8 Û Montrer que si f œ C1
(R) fl CL (R) telle que f Õ œ CL (R) et x œ R, alors

t œ R+ ‘æ Pt (f) (x) est de classe C1
sur Rú

+ et montrer que pour tout t > 0, on a

ˆPt (f) (x)

ˆt
=

⁄ +Œ

≠Œ

A

≠xe
≠t

+
e

≠2t

Ô
1 ≠ e≠2t

y

B

f Õ
1
e

≠tx +
Ô

1 ≠ e≠2ty
2

Ï (y) dy.

9 Û Soient f œ C2
(R) fl CL (R) telle que f Õ

et f ÕÕ
soient à croissance lente et t œ R+.

Montrer que x œ R ‘æ Pt (f) (x) est de classe C2
sur R. Montrer aussi que

’x œ R, Pt (f)
Õ
(x) = e

≠t
⁄ +Œ

≠Œ
f Õ

1
e

≠tx +
Ô

1 ≠ e≠2ty
2

Ï (y) dy

et

’x œ R, Pt (f)
ÕÕ

(x) = e
≠2t

⁄ +Œ

≠Œ
f ÕÕ

1
e

≠tx +
Ô

1 ≠ e≠2ty
2

Ï (y) dy.

10 Û En déduire que pour f œ C2
(R) fl CL (R) telle que f Õ

et f ÕÕ
soient à croissance

lente, on a

’t œ Rú
+, ’x œ R,

ˆPt (f) (x)

ˆt
= L (Pt (f)) (x) .

Partie 3 : Inégalité de log-Sobolev pour la gaussienne

Pour f œ C0
(R) fl CL (R) à valeurs strictement positives telle que

⁄ +Œ

≠Œ
f (x) Ï (x) dx = 1,

on définit l’entropie de f par rapport à Ï par :

EntÏ (f) =

⁄ +Œ

≠Œ
ln (f (x)) f (x) Ï (x) dx.

Dans la suite de cette partie, f est un élément de C2
(R) à valeurs strictement positives

tel que les fonctions f , f Õ
, f ÕÕ

et
f Õ2

f
soient à croissance lente. On suppose aussi que

⁄ +Œ

≠Œ
f (x) Ï (x) dx = 1.

11 Û Étudier les variations de la fonction t ‘æ t ln (t) sur Rú
+. On vérifiera que l’on peut

prolonger par continuité la fonction en 0.
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12 Û Justifier que la quantité EntÏ (g) est bien définie pour tout g œ C0
(R) fl CL (R)

à valeurs strictement positives telle que

⁄ +Œ

≠Œ
g (x) Ï (x) dx = 1.

Indication : On pourra utiliser la question 11.

13 Û Pour t œ R+, on pose S (t) = EntÏ (Pt (f)). Justifier que S (t) est bien définie.

14 Û Montrer que S est continue sur R+.

Indication : On pourra au préalable montrer que, si x œ R, t ‘æ Pt (f) (x) est

continue sur R+.

15 Û Vérifier que l’on a S (0) = EntÏ (f) et lim
tæ+Œ

S (t) = 0.

16 Û On admet que S est de classe C1
sur Rú

+ et que

’t œ Rú
+, S Õ

(t) =

⁄ +Œ

≠Œ

ˆPt (f) (x)

ˆt
(1 + ln (Pt (f) (x))) Ï (x) dx.

Montrer que

’t œ Rú
+, S Õ

(t) =

⁄ +Œ

≠Œ
L (Pt (f)) (x) (1 + ln (Pt (f) (x))) Ï (x) dx.

17 Û En admettant que le résultat de la question 7 est valable pour les fonctions Pt (f)

et 1 + ln (Pt (f)), montrer que

’t œ Rú
+, ≠S Õ

(t) = e
≠2t

⁄ +Œ

≠Œ

Pt (f Õ
) (x)

2

Pt (f) (x)
Ï (x) dx.

18 Û En utilisant l’inégalité de Cauchy-Schwarz, montrer que

’t œ Rú
+, ≠S Õ

(t) Æ e
≠2t

⁄ +Œ

≠Œ
Pt

A
f Õ2

f

B

(x) Ï (x) dx.

19 Û En déduire que l’on a :

’t œ Rú
+, ≠S Õ

(t) Æ e
≠2t

⁄ +Œ

≠Œ

f Õ2
(x)

f (x)
Ï (x) dx.

20 Û Établir l’inégalité suivante

EntÏ (f) Æ 1

2

⁄ +Œ

≠Œ

f Õ2
(x)

f (x)
Ï (x) dx.

Fin du problème
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