
Lycée Victor Hugo – Besançon
PC* Année 2025-2026

ENDOMORPHISMES DES ESPACES EUCLIDIENS
Cours

Dans tout ce chapitre, E désigne un espace euclidien de dimension n ∈ N∗.

I. Matrices orthogonales et isométries vectorielles

A. Matrices orthogonales

1. Définitions

Soit M ∈Mn(R).
On dit que M est une matrice orthogonale lorsque M est inversible et M−1

=MT.

Définition 1

En d’autres termes :

M est orthogonale ⇔ MMT
= In ⇔ MTM = In.

Exemple 1 : Montrer que les matrices (cos θ − sin θ
sin θ cos θ

) (avec θ ∈ R) et
⎛

⎜

⎝

0 1 0
0 0 1
1 0 0

⎞

⎟

⎠

sont orthogonales.

On appelle groupe orthogonal d’ordre n et on note On(R) ou O(n) l’ensemble des matrices
orthogonales de Mn(R).

C’est un sous-ensemble de GLn(R) qui contient In, qui est stable par produit :

▸ si M et N sont des matrices orthogonales alors MN est une matrice orthogonale,

et par passage à l’inverse :

▸ si M est une matrice orthogonale alors M−1 est une matrice orthogonale.

Définition/Proposition 2

2. Lien avec les bases orthonormées

Soit M ∈Mn(R).
M est orthogonale ⇔ les colonnes de M forment une famille orthonormée de Mn,1(R)

⇔ les lignes de M forment une famille orthonormée de M1,n(R)

où Mn,1(R) et M1,n(R) sont munis de leur produit scalaire canonique.

Proposition 3
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Soit B une base orthonormée de E.
Soit B′

= (e′1, . . . , e′n) une famille de n vecteurs de E.

B′ est une base orthonormée de E ⇔ M atB(B
′
) est orthogonale

où M atB(B′
) désigne la matrice des coordonnées des vecteurs de B′ dans la base B.

Proposition 4

Formules de changement de bases orthonormées :
Si B et B′ sont deux bases orthonormées de E alors la matrice de passage de la base B à la base B′

est orthogonale (puisque par définition PB,B′ =M atB(B′
)).

Si on note P = PB,B′ alors PB′,B = P −1 = PT.

Pour tout u ∈L (E), on a alors :

M atB(u) = P ⋅M atB′(u) ⋅ P
T.

3. Déterminant d’une matrice orthogonale

Le déterminant d’une matrice orthogonale est égal à 1 ou −1.

Proposition 5

On appelle groupe spécial orthogonal d’ordre n et on note SOn(R) ou SO(n) l’ensemble
des matrices orthogonales de Mn(R) de déterminant égal à 1.

C’est un sous-ensemble de On(R) qui contient In, qui est stable par produit et par passage
à l’inverse.

Définition/Proposition 6

▸ Soit B et B′ deux bases orthonormées de E. On a det(PB,B′) ∈ {−1,1}.
On dit que B et B′ ont la même orientation lorsque det(PB,B′) = 1 et que B et B′

sont d’orientation contraire lorsque det(PB,B′) = −1.

▸ Orienter un espace euclidien, c’est choisir l’une de ses bases orthonormées comme
base de référence. Les bases orthonormées de même orientation que celle-ci sont
dites orthonormées directes, et celles d’orientation contraire sont dites orthonormées
indirectes ou rétrogrades.

Définition 7
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B. Isométries vectorielles

1. Définitions et exemples

On appelle isométrie vectorielle tout endomorphisme u de E qui conserve la norme c’est-
à-dire qui vérifie :

∀x ∈ E, ∥u(x)∥ = ∥x∥.

Définition 8

Une isométrie vectorielle est un automorphisme (puisque c’est clairement un endomorphisme injectif
de E avec E de dimension finie) : on parle aussi d’automorphisme orthogonal.

Rappel : Soit F et G deux sous-espaces vectoriels supplémentaires de E.
On appelle symétrie par rapport à F parallèlement à G l’application s ∶ E → E définie par :

E = F ⊕G → E
z = x + y ↦ x − y

où (x, y) est l’unique couple de F ×G tel que z = x + y.

Soit s ∶ E → E.
On dit que s est une symétrie orthogonale lorsque s est une symétrie par rapport à un
sous-espace vectoriel F de E parallèlement à F ⊥.

Définition 9

Soit D une droite vectorielle c’est-à-dire un sous-espace vectoriel de E de dimension 1.
On appelle réflexion d’axe D la symétrie par rapport à D⊥ parallèlement à D.

Définition 10

On notera qu’une réflexion est en particulier une symétrie orthogonale puisque D = (D⊥)⊥.

Illustration graphique dans le plan et l’espace d’une réflexion f d’axe F :
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Exemple 2 :

1. Montrer qu’une symétrie orthogonale est une isométrie.

2. Une projection orthogonale est-elle une isométrie ?

On appelle groupe orthogonal de E et on note O(E) l’ensemble des isométries vectorielles
de E.

C’est un sous-ensemble de GL(E) qui contient IdE, qui est stable par composition :

▸ si u et v sont des isométries vectorielles alors u ○ v est une isométrie vectorielle,

et par passage à l’endomorphisme réciproque :

▸ si u est une isométrie vectorielle alors u−1 est une isométrie vectorielle.

Définition/Proposition 11

2. Caractérisations

Soit u ∈L (E).
u est une isométrie vectorielle si et seulement si u conserve le produit scalaire c’est-à-dire
vérifie :

∀(x, y) ∈ E2, ⟨u(x), u(y)⟩ = ⟨x, y⟩.

Proposition 12

Soit u ∈ O(E). Soit F un sous-espace vectoriel de E.
Si F est stable par u alors F ⊥ est stable par u.

Corollaire 13

Soit u ∈L (E). Soit B une base orthonormée de E.
u est une isométrie vectorielle si et seulement si l’image de B par u est une base orthonormée
de E.

Proposition 14

3. Lien avec les matrices orthogonales

Soit u ∈L (E). Soit B une base orthonormée de E.
u est une isométrie vectorielle si et seulement si M atB(u) est orthogonale.

Proposition 15
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Soit M ∈Mn(R). En appliquant le résultat précédent avec la base canonique, on obtient :

M est orthogonale ⇔ X ↦MX est une isométrie vectorielle de Mn,1(R)
⇔ l’endomorphisme de Rn canoniquement associé à M

est une isométrie vectorielle

Le déterminant d’une isométrie vectorielle est égal à 1 ou −1.

Corollaire 16

Exemple 3 : Donner le déterminant d’une réflexion d’axe D.

C. Isométries vectorielles d’un plan euclidien

Pour tout θ ∈ R, on note :

Rθ = (
cos θ − sin θ
sin θ cos θ

) et Sθ = (
cos θ sin θ
sin θ − cos θ

) .

On a :
O2(R) = {Rθ, θ ∈ R} ∪ {Sθ, θ ∈ R} et SO2(R) = {Rθ, θ ∈ R}.

Théorème 17 (Détermination de O2(R) et SO2(R))

▸ Pour tout (θ, θ′) ∈ R2, on a RθRθ′ = Rθ+θ′ = Rθ′Rθ.

▸ Les éléments de SO2(R) commutent.

▸ Pour tout (θ, θ′) ∈ R2, on a SθSθ′ = Rθ−θ′ .

Proposition 18

Notons quelques conséquences de ces résultats :

▸ pour tout θ ∈ R, RθR−θ = I2 donc R−1θ = R−θ = R
T
θ ,

▸ pour tout θ ∈ R, S2
θ = I2 donc S−1θ = Sθ = ST

θ .

Soit E un espace euclidien orienté de dimension 2.

▸ Soit u ∈ O(E) tel que det(u) = 1.
Alors il existe un réel θ, unique à un multiple entier de 2π près, tel que pour toute
base B orthonormale directe, on a M atB(u) = Rθ.
On dit que u est la rotation d’angle θ.

▸ Soit u ∈ O(E) tel que det(u) = −1.
Alors u est la réflexion d’axe D = Ker(u + IdE).

Théorème 19 (Classification des isométries vectorielles d’un plan euclidien)
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Soit rθ la rotation d’angle θ. Soit B une base orthonormée directe de E.
Si x a pour coordonnées (a, b) dans la base B alors rθ(x) a pour coordonnées (a′, b′) dans la base B
où :

(
a′

b′
) = (

cos θ − sin θ
sin θ cos θ

)(
a
b
) = (

a cos θ − b sin θ
a sin θ + b cos θ

) .

Soit E un espace euclidien orienté de dimension 2.
Soit x et y deux vecteurs non nuls de E.

Il existe un réel θ, unique à un multiple entier de 2π près, tel que rθ (
x

∣∣x∣∣
) =

y

∣∣y∣∣
(où rθ désigne la rotation d’angle θ).
Ce réel θ (défini à un multiple entier de 2π près) est appelé mesure de l’angle orienté (x, y).

Définition/Proposition 20

II. Matrices symétriques réelles et endomorphismes autoadjoints

A. Définitions et premières propriétés

1. Matrices symétriques réelles

Soit M ∈Mn(R).
On dit que M est une matrice symétrique lorsque MT

=M .

Définition 21

Ainsi :
M = (mi,j)1⩽i,j⩽n est symétrique ⇔∀(i, j) ∈ J1, nK2, mi,j =mj,i.

Exemple : Soit A ∈Mn(R). La matrice ATA est une matrice symétrique.

On note Sn(R) l’ensemble des matrices symétriques réelles.
Sn(R) est un sous-espace vectoriel de Mn(R).

Définition/Proposition 22

2. Endomorphismes autoadjoints

On appelle endomorphisme autoajoint tout endomorphisme u de E qui vérifie :

∀(x, y) ∈ E2, ⟨u(x), y⟩ = ⟨x,u(y)⟩.

Définition 23
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On parle aussi d’endomorphisme symétrique.

Exemple 4 :

1. Soit k ∈ R. Montrer que l’homothétie de rapport k est un endomorphisme autoadjoint.

2. Montrer qu’une symétrie orthogonale est un endomorphisme autoadjoint.

Soit p un projecteur sur E.
p est un projecteur orthogonal si et seulement si p est un endomorphisme autoadjoint.

Proposition 24

On note S (E) l’ensemble des endomorphismes autoadjoints de E.
S (E) est un sous-espace vectoriel de L (E).

Définition/Proposition 25

3. Lien entre les matrices symétriques et les endomorphismes autoajoints

Soit u ∈L (E). Soit B une base orthonormée de E.
u est un endomorphisme autoadjoint si et seulement si M atB(u) est symétrique.

Proposition 26

Soit M ∈Mn(R). En appliquant le résultat précédent avec la base canonique, on obtient :

M est symétrique ⇔ X ↦MX est un endomorphisme autoadjoint de Mn,1(R)
⇔ l’endomorphisme de Rn canoniquement associé à M

est un endomorphisme autoadjoint

Conséquence : Notons u l’endomophisme de Rn canoniquement associé à M .
u est un projecteur orthogonal si et seulement si M2

=M et MT
=M .

B. Théorème spectral

Soit u un endomorphisme autoadjoint de E. Soit (λ,µ) ∈ (Sp(u))
2

avec λ ≠ µ.
Si x ∈ Eλ(u) et y ∈ Eµ(u) alors x ⊥ y.

Proposition 27
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Si u est un endomorphisme autoadjoint de E alors u est diagonalisable dans une base
orthonormée ce qui signifie :

▸ il existe une base orthonormée de E dans laquelle la matrice de u est diagonale

ou encore

▸ il existe une base orthonormée de E formée de vecteurs propres de u.

Théorème 28 (Théorème spectral)

▸ On rappelle que par définition, un endomorphisme u de E est diagonalisable lorsqu’il existe une
base de E dans laquelle la matrice de u est diagonale. Pour un endomorphisme autoadjoint,
une telle base existe et on peut de plus la choisir orthonormée.

▸ En pratique, pour diagonaliser un endomorphisme autoadjoint dans une base orthonormée, on
détermine les valeurs propres de u et on cherche une base de chaque sous-espace propre que
l’on orthonormalise grâce au procédé de Gram-Schmidt. En juxtaposant les bases orthonormées
de chaque sous-espace propre, on obtient une base orthonormée de E constituée de vecteurs
propres de u (on obtient une base de E car E est égal à la somme directe des sous-espaces
propres de u et elle est orthonormée par la Proposition 27 ).

Soit M ∈Sn(R). Soit (λ,µ) ∈ (Sp(M))
2

avec λ ≠ µ.
Si X ∈ Eλ(M) et Y ∈ Eµ(M) alors X ⊥ Y .

Proposition 29

Si M est une matrice symétrique de Mn(R) alors M est orthogonalement diagonalisable
ce qui signifie :

▸ il existe une base orthonormée de Mn,1(R) formée de vecteurs propres de M ,

ou encore

▸ il existe une matrice orthogonale P ∈Mn(R) et une matrice diagonale D ∈Mn(R)
telles que M = PDPT.

Théorème 30 (Théorème spectral)

▸ On rappelle que par définition, une matrice M est diagonalisable lorsqu’il existe une matrice
inversible P et une matrice diagonale D telles que M = PDP −1. Pour une matrice symétrique
réelle, une telle décomposition existe dans Mn(R) et on peut de plus choisir P orthogonale.

▸ Attention, ce résultat n’est pas valable pour des matrices symétriques à cœfficients complexes.

▸ En pratique, pour diagonaliser une matrice symétrique réelle dans une base orthonormée, on
détermine les valeurs propres de M et on cherche une base de chaque sous-espace propre que
l’on orthonormalise grâce au procédé de Gram-Schmidt. En juxtaposant les bases orthonormées
de chaque sous-espace propre, on obtient une base orthonormée B de Mn,1(R) constituée de
vecteurs propres de M (on obtient une base de Mn,1(R) car Mn,1(R) est égal à la somme
directe des sous-espaces propres de M et elle est orthonormée par la Proposition 29 ).
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On note P la matrice obtenue en écrivant les vecteurs de B en colonne. C’est la matrice de
passage de la base canonique C de Mn,1(R), qui est orthonormée, à la base orthonormée B
donc P est orthogonale c’est-à-dire P −1 = PT.
Par les relations de changement de base, en notant φM l’endomorphisme de Mn,1(R) canoniquement
associé à M , on obtient :

M atC (φM) = PC ,BM atB(φM)PB,C

c’est-à-dire M = PDPT avec D diagonale.

Exemple 5 :

1. Soit A =
⎛

⎜

⎝

3 1 1
1 3 1
1 1 3

⎞

⎟

⎠

.

Déterminer deux matrices P et D de M3(R) avec D diagonale tel que A = PDPT.

2. Soit θ ∈ R.
Déterminer une matrice D ∈M2(R) diagonale telle que Sθ = Rθ/2DR−θ/2.

C. Positivité, définie positivité

1. Définitions

Soit u ∈S (E).

▸ u est dit positif lorsque pour tout x ∈ E, ⟨u(x), x⟩ ⩾ 0.

▸ u est dit défini positif lorsque pour tout x ∈ E ∖ {0E}, ⟨u(x), x⟩ > 0.

Définition 31

▸ On note S +
(E) l’ensemble des endomorphismes autoadjoints positifs.

▸ On note S ++
(E) l’ensemble des endomorphismes autoadjoints définis positifs.

Définition 32

Soit M ∈Sn(R).

▸ M est dite positive lorsque pour tout X ∈Mn,1(R), XTMX ⩾ 0.

▸ M est dite définie positive lorsque pour tout X ∈Mn,1(R) ∖ {0n,1}, XTMX > 0.

Définition 33

Exemple 6 : La matrice symétrique (2 1
1 2
) est-elle positive ? définie positive ?
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▸ On note S +
n (R) l’ensemble des matrices symétriques positives.

▸ On note S ++
n (E) l’ensemble des matrices symétriques définies positives.

Définition 34

2. Liens endomorphismes/matrices

▸ Soit M ∈Mn(R).

M ∈S +
n (R) ⇐⇒X ↦MX ∈S +

(Mn,1(R)).

M ∈S ++
n (R) ⇐⇒X ↦MX ∈S ++

(Mn,1(R)).

▸ Soit u ∈L (E). Soit B une base orthonormée de E.

u ∈S +
(E) ⇐⇒M atB(u) ∈S

+
n (R).

u ∈S ++
(E) ⇐⇒M atB(u) ∈S

++
n (R).

Proposition 35

3. Caractérisations spectrales

Soit u ∈S (E).

▸ u est positif si et seulement si Sp(u) ⊂ [0,+∞[.

▸ u est défini positif si et seulement si Sp(u) ⊂]0,+∞[.

Théorème 36

Soit M ∈Sn(R).

▸ M est positive si et seulement si Sp(M) ⊂ [0,+∞[.

▸ M est définie positive si et seulement si Sp(M) ⊂]0,+∞[.

Théorème 37

Exemple 7 : La matrice symétrique
⎛

⎜

⎝

1 −1 −1
−1 2 0
−1 0 2

⎞

⎟

⎠

est-elle positive ? définie positive ?
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