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ENDOMORPHISMES DES ESPACES EUCLIDIENS

Cours

Dans tout ce chapitre, F désigne un espace euclidien de dimension n € N*.

[. MATRICES ORTHOGONALES ET ISOMETRIES VECTORIELLES

A. MATRICES ORTHOGONALES

1. DEFINITIONS

Définition 1 }

Soit M € 4, (R).
On dit que M est une matrice orthogonale lorsque M est inversible et M~t= MT.

En d’autres termes :

M est orthogonale < MM'T =1, < M'M=1,.

cosfl —sinf

010
sind  cosf ) (avec e R) et [0 O 1] sont orthogonales.
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Exemple 1 : Montrer que les matrices (

— Définition /Proposition 2

On appelle groupe orthogonal d’ordre n et on note O, (R) ou O(n) I’ensemble des matrices
orthogonales de ., (R).

C’est un sous-ensemble de GL,,(R) qui contient I,,, qui est stable par produit :
» si M et N sont des matrices orthogonales alors M N est une matrice orthogonale,
et par passage a l'inverse :

» si M est une matrice orthogonale alors M~! est une matrice orthogonale.

2. LIEN AVEC LES BASES ORTHONORMEES

— Proposition 3

Soit M € ., (R).
M est orthogonale < les colonnes de M forment une famille orthonormée de ., ;(R)

< les lignes de M forment une famille orthonormée de .#; ,,(R)

ou M1 (R) et A, ,(R) sont munis de leur produit scalaire canonique.




— Proposition 4

Soit & une base orthonormeée de E.
Soit A’ = (e],...,e!,) une famille de n vecteurs de E.

A’ est une base orthonormée de E < # atyz(%A') est orthogonale

ou M aty(A') désigne la matrice des coordonnées des vecteurs de %’ dans la base .

Formules de changement de bases orthonormées :

Si A et A’ sont deux bases orthonormées de E alors la matrice de passage de la base 4 a la base %’
est orthogonale (puisque par définition Py g = A atz(A')).

Si on note P = Py g4 alors Py 5= P71 =PT.

Pour tout u € Z(F), on a alors :

Matz(u) =P Matz(u)-PT.

3. DETERMINANT D'UNE MATRICE ORTHOGONALE

— Proposition 5

Le déterminant d’une matrice orthogonale est égal & 1 ou —1.

— Définition /Proposition 6

On appelle groupe spécial orthogonal d’ordre n et on note SO, (R) ou SO(n) 'ensemble
des matrices orthogonales de ., (R) de déterminant égal a 1.

C’est un sous-ensemble de O, (R) qui contient I,,, qui est stable par produit et par passage
a 'inverse.

— Définition 7 |

» Soit A et ' deux bases orthonormées de E. On a det(Pg% ) € {-1,1}.
On dit que # et B’ ont la méme orientation lorsque det(Pg %) =1 et que A et B’
sont d’orientation contraire lorsque det(Pg 4 ) = 1.

» Orienter un espace euclidien, c¢’est choisir I'une de ses bases orthonormées comme
base de référence. Les bases orthonormées de méme orientation que celle-ci sont
dites orthonormées directes, et celles d’orientation contraire sont dites orthonormées
indirectes ou rétrogrades.




B. ISOMETRIES VECTORIELLES

1. DEFINITIONS ET EXEMPLES

—{ Définition 8 }

On appelle isométrie vectorielle tout endomorphisme u de E qui conserve la norme c’est-
a-dire qui vérifie :
Vo e B, |u(z)] = |=z|.

Une isométrie vectorielle est un automorphisme (puisque c’est clairement un endomorphisme injectif
de F avec E de dimension finie) : on parle aussi d’automorphisme orthogonal.

Rappel : Soit F' et G deux sous-espaces vectoriels supplémentaires de F.
On appelle symétrie par rapport a F parallélement a G Iapplication s: F - E définie par :

E=FeG - FE

ceziy o a—y ou (z,y) est 'unique couple de F' x G tel que z =z +y.

— Définition 9|

Soit s: F - F.
On dit que s est une symétrie orthogonale lorsque s est une symétrie par rapport a un
sous-espace vectoriel I’ de E parallelement a F'*.

— Définition 10 |

Soit D une droite vectorielle c¢’est-a-dire un sous-espace vectoriel de £ de dimension 1.
On appelle réflexion d’axe D la symétrie par rapport & D' parallélement & D.

On notera qu’une réflexion est en particulier une symétrie orthogonale puisque D = (D+)*.

Lllustration graphique dans le plan et ’espace d’une réflexion f d’axe F:




Ezxzemple 2 :
1. Montrer qu’une symétrie orthogonale est une isométrie.

2. Une projection orthogonale est-elle une isométrie 7

— Définition /Proposition 11

On appelle groupe orthogonal de E et on note O(FE) I’ensemble des isométries vectorielles
de E.

C’est un sous-ensemble de GL(FE) qui contient Idg, qui est stable par composition :
» siu et v sont des isométries vectorielles alors u o v est une isométrie vectorielle,
et par passage a I’endomorphisme réciproque :

» si u est une isométrie vectorielle alors u~! est une isométrie vectorielle.

2. CARACTERISATIONS

— Proposition 12

Soit u € Z(E).
u est une isométrie vectorielle si et seulement si u conserve le produit scalaire c¢’est-a-dire
vérifie :

V(z,y) € E?, (u(x),u(y)) = (z,y).

—{ Corollaire 13 }

Soit u e O(E). Soit F' un sous-espace vectoriel de E.
Si F' est stable par u alors F'* est stable par u.

— Proposition 14

Soit u e Z(FE). Soit % une base orthonormée de E.
u est une isométrie vectorielle si et seulement si I'image de Z par u est une base orthonormée

de E.

3. LIEN AVEC LES MATRICES ORTHOGONALES

Proposition 15

Soit u € Z(FE). Soit & une base orthonormée de F.
u est une isométrie vectorielle si et seulement si .# at4(u) est orthogonale.




Soit M € ., (R). En appliquant le résultat précédent avec la base canonique, on obtient :

M est orthogonale < X — MX est une isométrie vectorielle de ., 1 (R)
<> l’endomorphisme de R" canoniquement associé a M

est une isomeétrie vectorielle

Corollaire 16 }

Le déterminant d’une isométrie vectorielle est égal a 1 ou —1.

FExemple 3 : Donner le déterminant d’une réflexion d’axe D.

C. ISOMETRIES VECTORIELLES D'UN PLAN EUCLIDIEN

— Théoréme 17 (Détermination de Os(R) et SO2(R))

Pour tout 6 € R, on note :

RGZ(COSQ —sm@) ot Sez(cosﬁ sin 6 )

sinf@ cosf sind —cosf

OQ(R) = {R9,9 € R} U {S@,@ € R} et SOQ(R) = {Rg,e € R}

— Proposition 18

» Pour tout (0,6") e R?, on a RyRy = Rgg = Ry Ry.
» Les éléments de SO2(R) commutent.

» Pour tout (0,0") e R, on a SySy = Ry

Notons quelques conséquences de ces résultats :
» pour tout § € R, RyR_g =1, donc Ry = Ry =R},

» pour tout 6 € R, S? =1, donc Sy =Sp=5,.

— Théoréme 19 (Classification des isométries vectorielles d’un plan euclidien)

Soit E un espace euclidien orienté de dimension 2.

» Soit ue O(F) tel que det(u) = 1.
Alors il existe un réel #, unique & un multiple entier de 27 prés, tel que pour toute
base # orthonormale directe, on a Zatyz(u) = Ry.
On dit que u est la rotation d’angle 6.

» Soit u € O(F) tel que det(u) = -1.
Alors u est la réflexion d’axe D = Ker(u + Idg).




Soit 7y la rotation d’angle 6. Soit # une base orthonormée directe de E.

Si x a pour coordonnées (a,b) dans la base A alors ry(z) a pour coordonnées (a’,b") dans la base A

a'y\ ([cosf® -sin@\[a\ ([acosf—-bsind
o] \sinf cosh J\b] \asin€+bcosO]"

— Définition /Proposition 20

Soit E un espace euclidien orienté de dimension 2.
Soit x et y deux vecteurs non nuls de F.

x
Il existe un réel 6, unique a un multiple entier de 27 prés, tel que g (H) - Y
x

[yl

(ou 79 désigne la rotation d’angle 6).

Ce réel 6 (défini & un multiple entier de 27 prés) est appelé mesure de l’angle orienté (z,y).

II. MATRICES SYMETRIQUES REELLES ET ENDOMORPHISMES AUTOADJOINTS

A. DEFINITIONS ET PREMIERES PROPRIETES

1. MATRICES SYMETRIQUES REELLES

Définition 21 }

Soit M € 4, (R).
On dit que M est une matrice symétrique lorsque MT = M.

Ainsi :

M = (m;j)1<ij<n €St symétrique < V(4,7) € [1,n]%, mi; = m;,.

Ezemple : Soit A € #,(R). La matrice ATA est une matrice symétrique.

Définition /Proposition 22

On note .7, (R) 'ensemble des matrices symétriques réelles.
Zn(R) est un sous-espace vectoriel de ., (R).

2. ENDOMORPHISMES AUTOADJOINTS

—{ Définition 23 }

On appelle endomorphisme autoajoint tout endomorphisme u de E qui vérifie :

V(z,y) € B2, (u(x),y) = {z,u(y)).




On parle aussi d’endomorphisme symétrique.

Ezxemple 4 :
1. Soit k € R. Montrer que 'homothétie de rapport k est un endomorphisme autoadjoint.

2. Montrer qu'une symétrie orthogonale est un endomorphisme autoadjoint.

— Proposition 24

Soit p un projecteur sur E.
p est un projecteur orthogonal si et seulement si p est un endomorphisme autoadjoint.

— Définition /Proposition 25

On note .(F) I'ensemble des endomorphismes autoadjoints de F.
Z(F) est un sous-espace vectoriel de Z(F).

3. LIEN ENTRE LES MATRICES SYMETRIQUES ET LES ENDOMORPHISMES AUTOAJOINTS

Proposition 26

Soit u e Z(FE). Soit % une base orthonormée de E.
u est un endomorphisme autoadjoint si et seulement si .# atz(u) est symétrique.

Soit M € 4, (R). En appliquant le résultat précédent avec la base canonique, on obtient :

M est symétrique < X — MX est un endomorphisme autoadjoint de .7, 1 (R)
< l’endomorphisme de R" canoniquement associé a M

est un endomorphisme autoadjoint

Conséquence : Notons u I’endomophisme de R” canoniquement associé¢ a M.
u est un projecteur orthogonal si et seulement si M2 = M et M7 = M.

B. THEOREME SPECTRAL

Proposition 27

Soit u un endomorphisme autoadjoint de E. Soit (A, p) € (Sp(u))2 avec \ # L.
SixeEx(u) et ye E,(u) alors x L y.




Théoréme 28 (Théoréme spectral)

Si u est un endomorphisme autoadjoint de E alors u est diagonalisable dans une base
orthonormée ce qui signifie :

» il existe une base orthonormée de E dans laquelle la matrice de u est diagonale

ou encore

» il existe une base orthonormée de E formée de vecteurs propres de u.

» On rappelle que par définition, un endomorphisme u de E est diagonalisable lorsqu’il existe une
base de E dans laquelle la matrice de u est diagonale. Pour un endomorphisme autoadjoint,
une telle base existe et on peut de plus la choisir orthonormée.

En pratique, pour diagonaliser un endomorphisme autoadjoint dans une base orthonormée, on
détermine les valeurs propres de u et on cherche une base de chaque sous-espace propre que
I’on orthonormalise grace au procédé de Gram-Schmidt. En juxtaposant les bases orthonormées
de chaque sous-espace propre, on obtient une base orthonormée de E constituée de vecteurs
propres de u (on obtient une base de E car E est égal a la somme directe des sous-espaces
propres de u et elle est orthonormée par la Proposition 27).

— Proposition 29

Soit M € ., (R). Soit (A, p) € (Sp(]\J))2 avec A # [i.
SiXeE\(M)etYeE,(M)alors X 1Y.

— Théoréme 30 (Théoréme spectral)

Si M est une matrice symétrique de ., (R) alors M est orthogonalement diagonalisable
ce qui signifie :

» il existe une base orthonormeée de .7, ; (R) formée de vecteurs propres de M,

ou encore

» il existe une matrice orthogonale P € .#,(R) et une matrice diagonale D € ., (R)
telles que M = PDPT.

» On rappelle que par définition, une matrice M est diagonalisable lorsqu’il existe une matrice
inversible P et une matrice diagonale D telles que M = PDP~!'. Pour une matrice symétrique
réelle, une telle décomposition existe dans .#,,(R) et on peut de plus choisir P orthogonale.

Attention, ce résultat n’est pas valable pour des matrices symétriques & cceflicients complexes.

En pratique, pour diagonaliser une matrice symétrique réelle dans une base orthonormée, on
détermine les valeurs propres de M et on cherche une base de chaque sous-espace propre que
I’on orthonormalise grace au procédé de Gram-Schmidt. En juxtaposant les bases orthonormeées
de chaque sous-espace propre, on obtient une base orthonormée % de ., ;(R) constituée de
vecteurs propres de M (on obtient une base de .4, 1(R) car 4, 1(R) est égal a la somme
directe des sous-espaces propres de M et elle est orthonormée par la Proposition 29).
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On note P la matrice obtenue en écrivant les vecteurs de 4 en colonne. C’est la matrice de
passage de la base canonique % de ., 1(R), qui est orthonormée, a la base orthonormée %
donc P est orthogonale c’est-a-dire P~ = PT.

Par les relations de changement de base, en notant ¢, I'endomorphisme de .7, ; (R) canoniquement
associé a M, on obtient :

Mate(oar) = P gt atz(on)Pays

c’est-a-dire M = PDPT avec D diagonale.

Exemple 5 :
311
1. Soit A=|1 3 1}].
11 3

Déterminer deux matrices P et D de .#5(R) avec D diagonale tel que A= PDPT.

2. Soit 6 € R.
Déterminer une matrice D € .#,(R) diagonale telle que Sy = RgjaDR_g/5.

C. POSITIVITE, DEFINIE POSITIVITE

1. DEFINITIONS

— Définition 31 |

Soit u € S (E).
» w est dit positif lorsque pour tout x € E, (u(z),x) > 0.

» w est dit défini positif lorsque pour tout z € E\ {0g}, (u(x),z) > 0.

—{ Définition 32 }

» On note .*(FE) 'ensemble des endomorphismes autoadjoints positifs.

» On note .**(FE) 'ensemble des endomorphismes autoadjoints définis positifs.

—{ Définition 33 }

Soit M € .7, (R).
» M est dite positive lorsque pour tout X € .4, 1(R), XTMX > 0.

» M est dite définie positive lorsque pour tout X € 4, 1(R) ~ {0,1}, XTMX >0.

2 1
FExemple 6 : La matrice symétrique (1 2) est-elle positive 7 définie positive 7



—{ Définition 34 }

» On note .77 (R) 'ensemble des matrices symétriques positives.

» On note .7*(F) 'ensemble des matrices symétriques définies positives.

2. LIENS ENDOMORPHISMES /MATRICES

— Proposition 35

» Soit M e 4, (R).
Me S (R)«= X MX ¢ S (M,1(R)).
Me S (R) <= X MX e S (M1(R)).
» Soit ue Z(F). Soit # une base orthonormée de E.
ue S (E) <= Matz(u) € 7 (R).
ue SNE) — Maty(u) € & (R).

3. CARACTERISATIONS SPECTRALES

—{ Théoréme 36 }

Soit u € L (F).
» u est positif si et seulement si Sp(u) c [0, +oo.

» u est défini positif si et seulement si Sp(u) c]0, +oo].

— Théoréme 37 |

Soit M € .7, (R).
» M est positive si et seulement si Sp(M) c [0, +oo].

» M est définie positive si et seulement si Sp(M) c]0, +oo].

1 -1 -1
FExemple 7 : La matrice symétrique | -1 2 0 | est-elle positive ? définie positive ?
-1 0 2
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