
Corrigé du DS 5 sujet 1

Exercice 1 : CCINP 2020 maths 2 exercice 1

On considère la matrice A =

 2 1 1
1 2 1
1 1 2


Q1. La matrice A est symétrique réelle, donc d’après le théorème spectral :

la matrice A est diagonalisable.

On observe que :
• (1, 1, 1) est un vecteur propre associé à la valeur propre 4 ;
• A − I3 est de rang 1, donc 1 est une valeurs propres de A ; de plus le sous espace

propre associé est engendré par (1, −1, 0) et (1, 0, −1).
On en déduit que

A = PDP −1 avec D = diag(4, 1, 1) et P =

1 1 1
1 −1 0
1 0 −1

 ∈ GL3(R).

Pour la suite, on calcule P −1 = 1
3

1 1 1
1 −2 1
1 1 −2

.

Q2. On pose B = P diag(2, 1, 1)P −1 ∈ M3(R), et on a alors

B2 = P diag(2, 1, 1)2P −1 = PDP −1 = A.

Donc,

pour B = 1
3

4 1 1
1 4 1
1 1 4

, B2 = A.

Q3. Soit n ∈ N, An = PDnP −1 = P diag(4n, 1, 1)P −1, ce qui donne après calculs :

∀n ∈ N, An = 1
3

4n + 2 4n − 1 4n − 1
4n − 1 4n + 2 4n − 1
4n − 1 4n − 1 4n + 2

.

Q4. Comme A est diagonalisable, son polynôme minimal πA est simplement scindé
et ses racines sont les valeurs propres de A, d’où

µA = (X − 4)(X − 1) = X2 − 5X + 4.

On effectue la division euclidienne de Xn par πA :

Xn = πAQ + aX + b (∗)

avec Q ∈ R[X], (a, b) ∈ R2.

En évaluant (*) en 1 et 4, on obtient le système
{

a + b = 1
4a + b = 4n d’unique solution

(a, b) =
(4n − 1

3 ,
4 − 4n

3

)
.

Donc : An = 0Q(A) + aA + bI3, d’où finalement :

An = 4n − 1
3 A + 4 − 4n

3 I3.

Remarque : ce résultat est bien cohérent avec celui de la question précédente.
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Exercice 2 : extrait de CCINP 2014 maths 1
Q5. Soit n ∈ N,

Sn = a0b0 +
n∑

k=1
ak(Bk − Bk−1)

= a0b0 +
n∑

k=1
akBk −

n∑
k=1

akBk−1 (décalage d’indice dans la dernière somme)

= a0b0 +
n∑

k=1
akBk −

n−1∑
k=0

ak+1Bk

= a0b0 +
n−1∑
k=1

(ak − ak+1)Bk + anBn − a1B0

=
n−1∑
k=0

(ak − ak+1)Bk + anBn (car b0 = B0)

Donc :

pour tout entier naturel n non nul, Sn =
n−1∑
k=0

(ak − ak+1)Bk + anBn.

Q6. On suppose que la suite (Bn) est bornée et que la suite (an) est décroissante de
limite nulle.

a) Soit n ∈ N, on reconnait une somme télescopique :

n∑
k=0

(ak − ak+1) = a0 − an+1 −−−−−→
n→+∞

a0 − 0

en particulier :

la série
∑
k⩾0

(ak − ak+1) converge.

b) La suite (Bn)n∈N est bornée, donc : (ak −ak+1)Bk =
k→+∞

O(ak −ak+1), et la suite
(an)n∈N est décroissante donc (an−an+1)n∈N est positive, de plus la série

∑
(ak−ak+1)

converge, donc par comparaison de séries à termes positifs, la série
∑

(ak − ak+1)Bk

converge absolument, donc converge (série complexe).
De plus an −−−−−→

n→+∞
0 et (Bn)n∈N est bornée, donc anBn −−−−−→

n→+∞
0 ; donc d’après la

transformation d’Abel,

la série
∑
n⩾0

anbn converge.

Q7. Exemple.
Dans cette question, θ est un réel différent de 2kπ (k ∈ Z) et α ∈ R.

a) Donc eiθ ̸= 1, et par somme d’une série géométrique de raison eiθ ̸= 1 :

pour n entier naturel non nul,
n∑

k=1
eikθ = eiθ 1 − einθ

1 − eiθ
.

b) On pose : ∀n ∈ N∗, an = 1
nα et bn = einθ. Donc, ∀n ∈ N :

|Bn| =
∣∣∣∣∣

n∑
k=1

bk

∣∣∣∣∣ ⩽ 2
1 − eiθ

.

donc, la suite (Bn)n∈N est bornée. On distingue 2 cas :
1er cas : α > 0

donc (an)n∈N est décroissante de limite nulle. Donc d’après la question Q6, la
série

∑
einθ

nα converge.
2ième cas : α ⩽ 0

la série
∑

einθ

nα diverge grossièrement.
Conclusion

la série
∑
n⩾1

einθ

nα
converge si et seulement si α > 0.

Q8. Si
∑
n⩾0

anzn est une série entière de la variable complexe de rayon R > 0 alors,

pour tout r ∈ ]0 ; R[, la série converge normalement, donc uniformément sur tout
disque Df (0, r) de centre 0 et de rayon r.

Q9. On considère la série entière de la variable complexe
∑
n⩾1

zn

√
n

de rayon 1.

a) Supposons par l’absurde que la série entière
∑

xn
√

n
converge uniformément sur

]−1 ; 1[.
Soit n ∈ N∗, donc xn

√
n

−−−→
x→1

1√
n

, donc d’après le théorème de la double limite,
∑ 1√

n

converge et
+∞∑
n=1

xn
√

n
−−−→
x→1

+∞∑
n=1

1√
n

. Or
∑ 1√

n
est une série de Riemann divergente, d’où

la contradiction.
Donc :
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la série de la variable réelle
∑
n⩾1

xn

√
n

ne converge pas uniformément sur

] − 1, 1[ (en particulier la série
∑
n⩾1

zn

√
n

ne converge pas uniformément

sur D).

Autre solution, utiliser le fait que x 7→ xn
√

n
est bornée sur ]−1 ; 1[ et x 7→

+∞∑
n=1

xn
√

n
n’est

pas bornée sur ]−1 ; 1[ (à justifier : plus long).

b) On pourra confondre un point de R2 et son affixe.
pour α ∈

]
0, π

2
[
, on note Dα l’ensemble des complexes z, tels que |z| ⩽ 1 et dont la

partie réelle vérifie Re(z) ⩽ cos α.
Représenter géométriquement l’ensemble Dα dans un repère orthonormé du plan.
attention à ne pas confondre abscisse et ordonnée...

c) L’application :

f : R2 −→ R
(x, y) 7−→ x2 + y2 et g : R2 −→ R

(x, y) 7−→ x

sont polynomiales donc continue sur R2, donc{
(x, y) ∈ R2 | x2 + y2 ⩽ 1

}
= f−1(]−∞ ; 1])

est un fermé de R2 car image réciproque par f du fermé de R : ]−∞ ; 1] et{
(x, y) ∈ R2 | x ⩽ cos(α)

}
= g−1(]−∞ ; cos α])

est un fermé de R2 car image réciproque par g du fermé de R : ]−∞ ; cos α]. Donc
comme intersection de fermés :

Dα = {(x, y) ∈ R2, x2 + y2 ⩽ 1} ∩ {(x, y) ∈ R2, x ⩽ cos α} est une
partie fermée de C.

De plus Dα est bornée car inlus dans la boule de centre 0 et de rayon 1 pour la norme
euclidienne sur R2 et R2 est de dimension finie, donc

Dα est une partie compacte de C.

d) Soit z ∈ Dα, on note x = Re z. Par somme d’une série géométrique de raison
z ̸= 1 (car x ⩽ cos α < 1) :

|Fn(z)| =
∣∣∣∣1 − zn+1

1 − z

∣∣∣∣

⩽
1 +

∣∣zn+1
∣∣

|1 − z|

⩽
2

|Re(1 − z)| (∀w ∈ C, |Re(w)| ⩽ |w|)

⩽
2

1 − x
(z ∈ Dα donc x ⩽ cos α ⩽ 1)

⩽
2

1 − cos α

pour tout z ∈ Dα et tout entier naturel n, si x = Re(z) :

|Fn(z)| ⩽ 2
1 − x

⩽
2

1 − cos α

e) Soit α ∈ ]0 ; π
2 [, d’après la question Q9.d, la suite de fonctions (Fn)n∈N est uni-

formément bornée sur Dα par Mα = 2
1−cos α , de plus la suite (an)n∈N∗ = ( 1√

n
)n∈N∗

est décroissante de limite nulle et par transformation d’Abel, ∀z ∈ Dα, ∀n ∈ N :

n∑
k=1

zk

√
k

=
n−1∑
k=1

(ak − ak+1)Fk(z) + anFn(z)

Pour tout z ∈ Dα, |anFn(z)| ⩽ anMα, donc ∥anFn∥∞,Dα
⩽ anMα. Or an −−−−−→

n→+∞
0,

donc d’après le théorème des gendarmes : ∥anFn∥∞,Dα
−−−−−→
n→+∞

0, donc : la suite
(anFn) converge uniformément sur Dα.
La suite (an)n∈N est décroissante, donc ∀n ∈ N, an − an+1 ⩾ 0, donc pour tout
z ∈ Dα, |(an − an+1)Fn(z)| = (an − an+1) |F (z)| ⩽ (an − an+1)Mα.

Donc : ∥(an − an+1Fn∥∞,Dα
⩽ (an − an+1)Mα or d’après la question Q6, la série∑

(an − an+1) converge, donc par comparaison de séries à termes positifs, la sé-
rie

∑
∥(an − an+1)Fn∥∞,Dα

converge, donc la série de fonctions
∑
k⩾0

(ak − ak+1)Fk

converge normalement sur Dα.

la série entière
∑ zn

√
n

converge uniformément sur tous les compacts

Dα (pour α ∈
]
0, π

2
[
).
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Problème : CCINP 2019 maths 1 (éléments de cor-
rection)

On pose pour tout n ∈ N∗, fn : x 7→ anxn

1−xn définie sur R {−1, 1}.
Q10. Soit x ∈] − 1, 1[. On a lim

n→+∞
xn = 1, donc 1 − xn ∼

n→+∞
1.

Alors ∀n ∈ N∗, fn(x) = |anxn|
1−xn ∼

n→+∞
|anxn|, or le rayon de convergence de la série∑

n⩾1
anxn est 1, donc la série

∑
anxn cva et par comparaison de séries à termes positifs,

la série
∑

n⩾1

anxn

1−xn cva.

Pour la remarque : Si on prend an = 1
(n+1)2 , la série

∑
n⩾0

1
(n+1)2

2n

1−2n converge car
1

(n+1)2
2n

1−2n ∼
n→+∞

−1
n2 et

∑ 1
n2 converge.

Q11. Soit x ∈ [−b, b], alors ∀n ∈ N∗, 0 < 1 − bn ⩽ 1 − xn, donc ∀n ∈ N∗, |anxn|
1−xn ⩽

|anbn|
1−bn . Donc : ∀n ∈ N∗, ∥fn∥∞,[−b ;b] ⩽

|anbn|
1−bn . Or la série

∑ anbn

1−bn converge absolument
par Q4, donc par comparaison de séries à termes positifs,

∑
∥fn∥∞,[−b ;b] converge,

donc la série de fonctions
∑

an
xn

1−xn converge normalement donc uniformément sur
[−b, b].

Q12. Les fn sont continues sur ] − 1, 1[, la série
∑

fn converge uniformément sur
chaque segment [−b, b] ⊂] − 1, 1[, donc f est continue sur ] − 1, 1[.
Chaque fn est de classe C1 sur ] − 1, 1[. ∀x ∈] − 1, 1[, f ′

n(x) = an
nxn−1

(1−xn)2 .
Soit b ∈ [0, 1[, alors par le même raisonnement fait en Q5, ∀x ∈ [−b, b]; |f ′

n(x)| ⩽
|nan|bn−1

(1−bn)2 , donc ∥f ′
n∥∞,[−b ;b] ⩽ |nan|bn−1

(1−bn)2 . Or nanbn−1

(1−bn)2 ∼
n→+∞

nanbn−1 et d’après le
théorème de dérivation des séries entières, le rayon de convergence de

∑
nanxn−1 est

celui de
∑

anxn c’est à dire 1. Donc la série
∑

nanbn−1 converge absolument, et par
comparaison de séries à termes positifs,

∑
∥f ′

n∥∞,[−b ;b] converge.
Donc la série

∑
f ′

n converge normalement donc uniformément sur tout [−b, b] ⊂]−1, 1[
et la série

∑
fn converge simplement sur ] − 1, 1[, donc f est de classe C1 sur ] − 1, 1[

et ∀x ∈] − 1, 1[, f ′(x) =
+∞∑
n=1

an
nxn−1

(1−xn)2 .

Donc f ′(0) = a1.

Q13. • Tout revient à montrer que (In)n∈N∗ forment une partition de A.
Il est évident que chaque In ⊂ A, donc

⋃
n∈N∗ In ⊂ A.

Soit (k, p) ∈ A, il est clair que (k, p) ∈ Ikp ⊂
⋃

n∈N∗ In, alors
⋃

n∈N∗ In = A.
Si on suppose que ∃(k, p) ∈ In

⋂
Im, alors kp = n = m, donc In = Im, donc (In)n∈N∗

forment une partition de A.

La famille (un,p)(n,p)∈A est sommable, par le théorème de sommation par paquets on
a :

+∞∑
n=1

(+∞∑
p=1

un,p

)
=

+∞∑
n=1

 +∞∑
(k,p)∈In

uk,p


• Soit x ∈] − 1, 1[ et n ∈ N∗, la série

∑
p⩾1

anxnp converge absolument et
+∞∑
p=1

|an||x|np =

|an| |x|n

1−|x|n et la série
∑

|an| |x|n

1−|x|n converge par Q4, donc la famille donnée est som-
mable, en appliquant ce qui précède à un,p = anxnp :

+∞∑
n=1

+∞∑
p=1

anxnp =
+∞∑
n=1

∑
(k,p)∈In

akxkp

.
Or

+∞∑
n=1

∑
(k,p)∈In

akxkp =
+∞∑
n=1

xn
∑

(k,p)∈In

ak =
+∞∑
n=1

xn
∑
d/n

ad =
+∞∑
n=1

bnxn.

Et on a
+∞∑
n=1

+∞∑
p=1

anxnp =
+∞∑
n=1

an
xn

1 − xn

série géométrique.
Donc

+∞∑
n=1

an
xn

1 − xn
=

+∞∑
n=1

bnxn.

Q14. Ici an = 1, d’après le cours le rayon de convergence de
∑

xn est 1, donc les résul-
tats de la partie I sont valables et avec les notations de la question 7 bn =

∑
d/n

1 = dn,

par application de la question 7

f(x) =
+∞∑
n=1

an
xn

1 − xn
=

+∞∑
n=1

dnxn.

Q15. Ici ∀n ∈ N∗, an = φ(n) = Card{k ∈ [[1, n]] / k ∧ n = 1}. Donc
∀n ∈ N∗, 1 ⩽ an ⩽ n, par comparaison le rayon de la série

∑
anxn est 1.

On a les diviseurs de 12 sont 1, 2, 3, 4, 6 et 12, or φ(1) = 1, φ(2) = 1, φ(3) = 2,
φ(4) = 2, φ(6) = 2 et φ(12) = 4 l’égalité est donc vraie pour n = 12.
Soit x ∈] − 1, 1[. Par application de la question 7,

+∞∑
n=1

φ(n) xn

1 − xn
=

+∞∑
n=1

bnxn,

Lycée Victor Hugo, Besançon 2025/2026 Corrigé du DS 5 sujet 1 4 / 5



avec ici bn =
∑
d/n

φ(d) = n, alors

+∞∑
n=1

φ(n) xn

1 − xn
=

+∞∑
n=1

bnxn =
+∞∑
n=1

nxn.

Or ∀x ∈] − 1, 1[, 1
1−x =

+∞∑
n=0

xn, d’après le théorème de dérivation des séries entières :

+∞∑
n=1

nxn = x

+∞∑
n=1

nxn−1 = x

(1 − x)2 .

Donc

∀x ∈] − 1, 1[,
+∞∑
n=1

φ(n) xn

1 − xn
= x

(1 − x)2 .

Q16. On a ∀x ∈ [0, 1[, − ln(1 + x) =
+∞∑
n=1

(−1)n xn

n .

1 est dans l’adhérence de [0, 1[, pour tout n ∈ N∗, lim
x→1−

(−1)n xn

n = (−1)n

n ∈ R, pour

x ∈ [0, 1[ la série
∑

n⩾1
(−1)n xn

n est une série alternée qui vérifie lim
n→+∞

xn

n = 0 et la suite(
xn

n

)
n

est décroissante, alors par CSSA :

∀n ∈ N∗,

∣∣∣∣∣ +∞∑
k=n+1

(−1)k xk

k

∣∣∣∣∣ ⩽ xn+1

n+1 ⩽ 1
n+1 . Donc : ∥Rn∥∞,[−b ;b] ⩽ 1

n+1 −−−−−→
n→+∞

0,

donc la convergence de la série de fonctions
∑

n⩾1
(−1)n xn

n est uniforme sur [−b ; b], le

théorème de la double limite s’applique et on a − ln 2 =
+∞∑
n=1

(−1)n

n .

Q17. On pose pour tout n ∈ N∗, gn : x 7→ an
xn−1

1−xn .
Soit a ∈]0, 1[. On a ∀x ∈ [−a, a], ∀n ∈ N∗ 0 < 1 − an ⩽ 1 − xn, donc :

∀x ∈ [−a, a], ∀k ∈ N∗
∣∣∣∣(−1)k xk−1

1 − xk

∣∣∣∣ ⩽ ak−1

1 − ak
.

Donc : ∥gn∥∞,[−a ;a] ⩽
ak−1

1−ak .
Or ak−1

1−ak ∼
k→+∞

ak−1 et la série
∑

ak−1 converge, donc par comparaison de séries à
termes positifs,

∑
∥gn∥∞,[−a ;a] converge. Donc la série

∑
gn converge normalement,

donc uniformément sur [−a ; a].
De plus

lim
x→0

(−1)k xk−1

1 − xk
=
{

−1 si k = 1
0 si k ̸= 1

le théorème de la double limite s’applique et on a :

lim
x→0

f(x)
x

= lim
x→0

+∞∑
n=1

(−1)n xn−1

1 − xn
= −1

Un équivalent de f(x) quand x → 0 est −x.
On a f(0) = 0, donc f(x)

x = f(x)−f(0)
x−0 , alors f ′(0) = −1 = a1 c’est ce qu’on a trouver

à la question 6).

Q18. Toujours an = (−1)n et f(x) =
+∞∑
n=1

(−1)n xn−1

1−xn

Donc (1 − x)f(x) =
+∞∑
n=1

(−1)nxn−1 (1−x)
1−xn =

+∞∑
n=1

(−1)n xn−1

1+x+x2+...+xn−1 .

Soit ∀n ∈ N∗; gn(x) = (−1)n xn−1

1+x+x2+...+xn−1 .
Or 1 est dans l’adhérence de [0, 1[, et
∀n ∈ N∗, lim

x→1−
gn(x) = (−1)n

n ,

Soient x ∈ [0, 1[ et k ∈ [[0, (n − 1)]], on a xn−1 ⩽ xk :
Donc nxn−1 ⩽ 1 + x + x2 + ... + xn−1,
Alors ∀x ∈]0, 1[; ∀n ∈ N∗; |gn(x)| ⩽ xn−1

nxn−1 ⩽ 1
n .

Soit x ∈]0, 1[. Les deux suites (xn−1)n∈N∗ et
(

1
1+x+x2+...+xn−1

)
n∈N∗

sont décroissantes
et elles sont positives, donc la suite (|gn(x)|)n∈N∗ est décroissante comme elle est po-
sitive et tend vers 0, le CSSA s’applique et on a

∀n ∈ N;
∣∣∣∣∣

+∞∑
k=n+1

gk(x)
∣∣∣∣∣ ⩽ |gn+1(x)| ⩽ 1

n + 1 −→
n→+∞

0.

Alors la série de fonctions
∑

n⩾1
gn converge uniformément sur ]0, 1[, le théorème de la

double limite s’applique et on a ;

lim
x→1−

(1 − x)f(x) =
+∞∑
n=1

lim
x→1−

gn(x) =
+∞∑
n=1

(−1)n

n = − ln 2 d’après la question 10).

Alors (1 − x)f(x) ∼
x→1−

− ln 2, qui s’écrit f(x) ∼
x→1−

− ln 2
(1−x) .
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