
Énoncer le résultat de comparaison série-intégrale et donner
l’idée principale de la preuve.

Intégration

⋆ On doit étudier une intégrale généralisée en une borne réelle a
non nulle. Que peut-on faire pour se ramener en 0 ?

⋆ On doit étudier l’intégrale ∫
+∞

−∞

f(t)dt et on remarque que la
fonction intégrée est paire/impaire. Qu’en déduit-on ?

Intégration

Énoncer les théorèmes de comparaison par équivalent et par
petit o.

Intégration



⋆ Si f est une fonction continue par morceaux, positive et décroissante sur

[0,+∞[ alors l’intégrale ∫
+∞

0
f(t)dt et la série ∑

n⩾0

f(n) sont de même nature.

⋆ Comme la fonction f est positive :
- la série ∑ f(n) converge si et seulement si sa suite de sommes partielles

est majorée,

- l’intégrale ∫
+∞

0
f(t)dt converge si et seulement si la fonction

x↦ ∫
x

0
f(t)dt est majorée sur [0,+∞[.

On utilise alors la monotonie de f pour établir des inégalités entre sommes et
intégrales.
On peut alors montrer que la majoration de l’une entraîne la majoration de
l’autre.

⋆ On peut poser le changement de variable u = t − a ou u = a − t (pour une
intégrale d’origine en la variable t).

⋆ Par le changement de variable u = −t, l’intégrale ∫
0

−∞
f(t)dt est de

même nature que l’intégrale ∫
+∞

0
f(t)dt et en cas de convergence, de même

valeur si f paire et en valeur opposée si f impaire. Il suffit donc d’étudier

∫
+∞

0
f(t)dt.

Soit f et g deux fonctions continues par morceaux sur [a, b[ où
−∞ < a < b ⩽ +∞, à valeurs dans K.

⋆ Comparaison par équivalent :

f(t)∼
b
g(t)

∀t ∈ [a, b[, g(t) ⩾ 0
(ou f(t) ⩾ 0)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⇒ ∫
b

a
f(t)dt et ∫

b

a
g(t)dt sont de même nature.

⋆ Comparaison par petit o :

f(t) = o
b
(g(t))

∀t ∈ [a, b[, g(t) ⩾ 0

∫
b

a
g(t)dt CV

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⇒ ∫
b

a
f(t)dt CV
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f(t) = o
b
(g(t))

∀t ∈ [a, b[, g(t) ⩾ 0

∫
b

a
f(t)dt DV

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⇒ ∫
b

a
g(t)dt DV



Citer le théorème d’intégration par parties sur les intégrales
généralisées, en précisant soigneusement ses hypothèses.

Intégration

Citer le théorème de classe Ck des intégrales à paramètre
(k ∈ N∗). Comment peut-on procéder en cas de difficultés pour

obtenir l’hypothèse de domination ? Comment peut-on prouver la
classe C∞ ?

Intégration

Citer le théorème fondamental de l’intégration.

Intégration



Soit f et g deux fonctions de classe C1 sur ]a, b[ à valeurs dans K.
Hypothèse : On suppose que f × g admet une limite finie en a et en b.

Conclusion :

⋆ Les intégrales ∫
b

a
f(t)g′(t)dt et ∫

b

a
f ′(t)g(t)dt sont de même nature.

⋆ Lorsqu’elles convergent, on a :

∫
b

a
f ′(t)g(t)dt = [f(t)g(t)]b

a
− ∫

b

a
f(t)g′(t)dt.

N.B. : Il est aussi possible d’effectuer l’intégration par parties sur un segment
[x, y] puis d’étudier la limite lorsque x tend vers a et y tend vers b.

⋆ Hyp. On suppose que (on ne mentionne pas les hypothèses de continuité
par morceaux) :

1 Classe Ck ∀t ∈ I, x↦ f(t, x) ∈ Ck(J)

2 Intégrabilité ∀x ∈ J , ∀ℓ ∈ [[0, k − 1]], t↦ ∂ℓf

∂xℓ
(t, x) ∈ L1(I)

3 Domination ∃φ ∈ L1(I) tq ∀(t, x) ∈ I × J , ∣∂
kf

∂xk
(t, x)∣ ⩽ φ(t) (φ ne

dépend pas de x).

Alors g ∶ x↦ ∫
I
f(t, x)dt est de classe Ck sur J et on a :

∀ℓ ∈ [[1, k]], ∀x ∈ J, g(ℓ)(x) = ∫
I

∂ℓf

∂xℓ
(t, x)dt.

⋆ On pensera à appliquer le théorème sur un segment quelconque de J et on
pourra conclure par le caractère local des propriétés.
⋆ Pour prouver la classe C∞, on prouve la classe Ck pour tout k ∈ N∗.

Soit I un intervalle et f une fonction définie sur I. Soit a ∈ I.
Si f est continue sur I alors la fonction F ∶ x↦ ∫

x

a
f(t)dt est de classe C1

sur I et pour tout x ∈ I, F ′(x) = f(x) ; F est donc l’unique primitive de f qui
s’annule en a.



Donner la définition d’une fonction continue par morceaux sur
un intervalle.

Donner un exemple de fonction continue par morceaux sur R
possédant une infinité de points de discontinuité.

Intégration

On souhaite déterminer lim
n→+∞

∫

n

0
gn(t)dt.

Comment peut-on procéder ?

Intégration

Pour étudier une intégrale généralisée, que peut-on penser à
utiliser comme comparaison lorsque la fonction intégrée contient

sin t ? e−t ? tα∣ ln t∣β ?

Intégration



Soit I un intervalle et f une fonction définie sur I.
On dit que f est continue par morceaux sur I lorsque sur chaque segment de
I, f ne possède qu’un nombre fini de points de discontinuité en lesquels elle
admet une limite à gauche finie et une limite à droite finie (lorsque ces limites
ont un sens).
La fonction partie entière est continue par morceaux sur R et elle est discon-
tinue en tous les entiers.

On peut poser pour tout n ∈ N et pour tout t ∈]0,+∞[ :

fn(t) = {
gn(t) si t < n
0 si t ⩾ n.

On a alors lim
n→+∞

∫
n

0
gn(t)dt = lim

n→+∞
∫
+∞

0
fn(t)dt et on peut ensuite essayer

d’appliquer le théorème de convergence dominée.

⋆ Avec sin t :
On peut utiliser sin t ∼

t→0
t (ou un développement limité pour aller plus loin)

et les inégalités : ∀t ∈ R, ∣ sin t∣ ⩽ 1 et ∣ sin t∣ ⩽ t.
⋆ Avec e−t :
On peut utiliser e−t ∼

t→0
1 (ou un développement limité pour aller plus loin)

et le résultat de croissances comparées : lim
t→+∞

tae−t = 0 pour tout a ∈ R (pour
obtenir une comparaison par petit o).
⋆ Avec tα∣ ln t∣β :
On peut penser à utiliser une comparaison par petit o sauf quand α = −1
(dans ce cas, on pose le changement de variable u = ln t). On utilise pour cela
les résultats de croissances comparées :

lim
t→0

ta(− ln t)b = 0 et lim
t→+∞

(ln t)b

ta
= 0 pour tout a > 0 et b ∈ R.



Proposer un plan d’étude pour déterminer la nature d’une
intégrale généralisée.

Intégration

Que signifie f est intégrable sur I ?
Quelles sont les fonctions intégrables sur un segment ?

Intégration

Rappeler les exemples fondamentaux d’intégrales généralisées.

Intégration



1 Étude de la continuité par morceaux de la fonction intégrée pour iden-
tifier les bornes en lesquelles l’intégrale est généralisée.
Si fonction continue par morceaux sur un segment ou prolon-
geable par continuité pour l’obtenir alors convergence de l’intégrale.

2 Critères de comparaison : équivalent puis inégalité/petit o.
On pensera à étudier la convergence absolue en cas de problème avec
l’hypothèse de positivité.

3 Si on connaît une primitive de la fonction intégrée, revenir à la défi-
nition (calculer l’intégrale ordinaire avec une variable à la place de la
borne problématique puis étudier soigneusement le passage à la limite :
convergence de l’intégrale ssi limite finie).

4 Changement de variable / intégration par parties pour se ramener à
l’étude d’une intégrale plus simple.

3 et 4 peuvent permettre aussi d’obtenir la valeur en cas de convergence.

Une fonction f est dite intégrable sur I lorsqu’elle est continue par morceaux
sur I et que son intégrale sur I converge absolument.

Les fonctions intégrables sur un segment sont les fonctions continues
par morceaux sur ce segment (car leur intégrale converge bien absolument).

Soit α ∈ R.

⋆ L’intégrale ∫
+∞

0
e−αt dt converge si et seulement si α > 0.

⋆ L’intégrale ∫
1

0
ln tdt est convergente.

⋆ Intégrales de Riemann :

⋅ L’intégrale ∫
+∞

1

1

tα
dt converge si et seulement si α > 1.

⋅ L’intégrale ∫
1

0

1

tα
dt converge si et seulement si α < 1.

⋅ Soit (a, b) ∈ R2 avec a < b.

L’intégrale ∫
b

a

1

(t − a)α
dt converge si et seulement si α < 1.



Soit g ∶ x↦ ∫
b

a
f(t, x)dt.

Comment peut-on prouver que g est définie sur I ?

Intégration

Soit g ∶ x↦ ∫
I
f(t, x)dt, définie sur J .

Comment peut-on étudier la limite de g en une borne a de J ?
Comment peut-on procéder en cas de difficultés pour obtenir

l’hypothèse de domination ?

Intégration

Soit g ∶ x↦ ∫
I
f(t, x)dt.

Comment peut-on prouver que g est continue sur J ?
Comment peut-on procéder en cas de difficultés pour obtenir

l’hypothèse de domination ?

Intégration



On prouve que pour tout x ∈ I, l’intégrale ∫
b

a
f(t, x)dt converge.

⋆ Théorème de convergence dominée à paramètre continu
(On ne mentionne pas les hypothèses de continuité par morceaux.)
Hyp. On suppose que :

1 Limite ∀t ∈ I, lim
x→a

f(t, x) = ℓ(t) ∈ K

2 Domination ∃φ ∈ L1(I) tq ∀(t, x) ∈ I × J , ∣f(t, x)∣ ⩽ φ(t) (φ ne
dépend pas de x).

Alors lim
x→a

g(x) = ∫
I
lim
x→a

f(t, x)dt.
⋆ On peut modifier l’intervalle J pour un autre intervalle, ayant a pour borne.

⋆ (On ne mentionne pas les hypothèses de continuité par morceaux.)
Hyp. On suppose que :

1 Continuité ∀t ∈ I, x↦ f(t, x) ∈ C(J)

2 Domination ∃φ ∈ L1(I) tq ∀(t, x) ∈ I × J , ∣f(t, x)∣ ≤ φ(t) (φ ne
dépend pas de x).

Alors la fonction g ∶ x↦ ∫
I
f(t, x)dt ∈ C(J).

⋆ On pensera à appliquer le théorème sur un segment quelconque de J et on
pourra conclure par le caractère local de la continuité.



Soit F une fonction définie par une intégrale.
On souhaite étudier la dérivabilité de F .

Quels résultats peut-on penser à utiliser si la variable se trouve
dans une borne de l’intégrale ? si la variable se trouve sous

l’intégrale ?

Intégration

Soit I un intervalle de bornes a et b (finies ou infinies) avec a ≠ b.
Soit f ∈ Cm(I).

Dans chacun des cas suivants, donner des hypothèses permettant
de conclure au résultat souhaité.

⋆ On sait que ∫
b

a
f(t)dt = 0 et on veut obtenir que pour tout

t ∈ I, f(t) = 0.

⋆ On souhaite prouver que ∫
b

a
f(t)dt ⩾ 0.

⋆ On souhaite prouver que ∫
b

a
f(t)dt > 0.

Intégration

Sous quelles hypothèses peut-on échanger les symboles ∫
b

a
et

+∞

∑
n=0

?

Intégration



⋆ Si la variable se trouve dans une borne de l’intégrale : On pense à utiliser
le théorème fondamental de l’intégration.
⋆ Si la variable se trouve sous l’intégrale : On pense à utiliser le théorème de
classe C1 des intégrales à paramètre.

⋆ Si f est continue sur I et de signe constant sur I alors pour tout t ∈ I,
f(t) = 0.

⋆ Si a ⩽ b, f est positive sur I (sauf éventuellement en un nombre fini de

points) et l’intégrale ∫
b

a
f(t)dt converge alors ∫

b

a
f(t)dt ⩾ 0.

⋆ Si a < b, f est positive sur I et n’est pas identiquement nulle, f est

continue sur I et l’intégrale ∫
b

a
f(t)dt converge alors ∫

b

a
f(t)dt > 0.

⋆ Théorème du chapitre Suites et séries de fonctions
Hyp. On suppose que (a et b deux réels avec a ⩽ b) :

1 ∀n ∈ N, fn ∈ C([a, b],K) 2 ∑
n⩾0

fn CVU sur [a, b].

⋆ Théorème d’intégration terme à terme
Hyp. On suppose que (I intervalle de bornes a et b, on ne mentionne pas les
hypothèses de continuité par morceaux) :

1 ∑ fn CVS sur I 2 ∀n ∈ N, fn ∈ L1(I) 3 la série ∑∫
I
∣fn∣ CV.

⋆ Théorème de convergence dominée appliqué à la suite des sommes partielles
Hyp. On suppose que :

1 ∑ fn CVS sur I 2 ∃φ ∈ L1(I) tq ∀n ∈ N, ∀t ∈ I, ∣
n

∑
k=0

fk(t)∣ ⩽ φ(t).

Conclusion : ∫
b

a

+∞

∑
n=0

fn(t)dt =
+∞

∑
n=0
∫

b

a
fn(t)dt.



Sous quelles hypothèses peut-on échanger les symboles lim
n→+∞

et

∫

b

a
?

Intégration

Sous quelles hypothèses peut-on écrire :

∫

b

a
(f(t) + g(t))dt = ∫

b

a
f(t)dt + ∫

b

a
g(t)dt ?

∫

b

a
Re(f(t))dt = Re(∫

b

a
f(t)dt) (idem avec Im)?

Intégration



⋆ Théorème du chapitre Suites et séries de fonctions
Hyp. On suppose que (a et b deux réels avec a ⩽ b) :

1 ∀n ∈ N, fn ∈ C([a, b],K) 2 (fn)n∈N CVU sur [a, b].

⋆ Théorème de convergence dominée
Hyp. On suppose que (I intervalle de bornes a et b, on ne mentionne pas les
hypothèses de continuité par morceaux) :

1 CVS ∀t ∈ I, lim
n→+∞

fn(t) = f(t) ∈ K

2 Domination ∃φ ∈ L1(I) tq ∀n ∈ N, ∀t ∈ I, ∣fn(t)∣ ⩽ φ(t) (φ ne
dépend pas de n).

Conclusion : lim
n→+∞

∫
b

a
fn(t)dt = ∫

b

a
lim

n→+∞
fn(t)dt.

⋆ Si les intégrales ∫
b

a
f(t)dt et ∫

b

a
g(t)dt convergent alors l’intégrale

∫
b

a
(f(t) + g(t))dt converge et on a :

∫
b

a
(f(t) + g(t))dt = ∫

b

a
f(t)dt + ∫

b

a
g(t)dt.

⋆ Si l’intégrale ∫
b

a
f(t)dt converge alors les intégrales ∫

b

a
Re(f)(t)dt et

∫
b

a
Im(f)(t)dt convergent et on a :

Re(∫
b

a
f(t)dt) = ∫

b

a
Re(f)(t)dt et Im(∫

b

a
f(t)dt) = ∫

b

a
Im(f)(t)dt.


