
Lycée Victor Hugo Compléments
INFORMATIQUE
BCPST 1

Compléments

I. Tracé de courbes et représentations graphiques

Le langage Python possède une bibliothèque très puissante pour créer des représentations graphiques :
matplotlib. Cette bibliothèque permet de tracer des courbes, des nuages de points, des histogrammes, et
bien d’autres types de graphiques. Dans ce cours, nous allons nous concentrer sur le module pyplot de
cette bibliothèque.

1) Importation et premiers tracés

Importation de pyplot
Pour utiliser les fonctions de tracé graphique, on importe le module pyplot de la bibliothèque
matplotlib en lui donnant généralement l’alias plt :
import matplotlib . pyplot as plt

Pour tracer une courbe représentant une fonction y = f(x), on utilise la fonction plt.plot(x, y)
où :

? x est une liste contenant les abscisses des points
? y est une liste contenant les ordonnées correspondantes

Pour afficher le graphique, on utilise ensuite la fonction plt.show ().

Pour tracer une courbe représentant une fonction y = f(x), on utilise la fonction plt.plot(x, y)
où :

? x est une liste contenant les abscisses des points
? y est une liste contenant les ordonnées correspondantes

Pour afficher le graphique, on utilise ensuite la fonction plt.show ().

Définition 1 : Tracé d’une courbe

E”x´e›m¯p˜l´e : Traçons la courbe représentative de la fonction f(x) = x2 sur l’intervalle [−3, 3] :
1 import matplotlib . pyplot as plt
2

3 # Création des listes de coordonn ées
4 x = [i / 10 for i in range (-30, 31)] # De -3.0 à 3.0 par pas de 0.1
5 y = [i ** 2 for i in x]
6

7 # Tracé de la courbe
8 plt.plot(x, y)
9 plt.show ()

R`e›m`a˚r`qfi˚u`e : Pour obtenir un tracé plus précis, il faut augmenter le nombre de points
calculés. Plus les listes x et y contiennent de valeurs, plus la courbe sera lisse.

1/13

2) Personnalisation des graphiques

Fonctions de personnalisation
Voici les principales fonctions permettant de personnaliser un graphique :

? plt.title("Titre ") : ajoute un titre au graphique
? plt. xlabel (" Abscisses ") : légende de l’axe des abscisses
? plt. ylabel (" Ordonn ées") : légende de l’axe des ordonnées
? plt.grid () : affiche une grille
? plt. legend () : affiche la légende (si les courbes ont un label)

E”x´e›m¯p˜l´e : Reprenons l’exemple précédent en ajoutant des éléments de personnalisation :

1 x = [i / 10 for i in range (-30, 31)]
2 y = [i ** 2 for i in x]
3

4 plt.plot(x, y, label="f(x) = x^2")
5 plt.title(" Courbe repré sentative de f(x) = x^2")
6 plt. xlabel ("x")
7 plt. ylabel ("f(x)")
8 plt.grid ()
9 plt. legend ()

10 plt.show ()

3) Tracer plusieurs courbes

Pour tracer plusieurs courbes sur le même graphique, il suffit d’appeler plusieurs fois la fonction
plt.plot () avant d’utiliser plt.show ().
Pour tracer plusieurs courbes sur le même graphique, il suffit d’appeler plusieurs fois la fonction
plt.plot () avant d’utiliser plt.show ().

Définition 2 : Superposition de courbes

E”x´e›m¯p˜l´e : Traçons les courbes de f(x) = x2 et g(x) = x3 sur le même graphique :

1 x = [i / 10 for i in range (-30, 31)]
2 y1 = [i ** 2 for i in x]
3 y2 = [i ** 3 for i in x]
4

5 plt.plot(x, y1 , label="f(x) = x^2", color="blue")
6 plt.plot(x, y2 , label="g(x) = x^3", color="red")
7 plt.title(" Comparaison de deux fonctions ")
8 plt. xlabel ("x")
9 plt. ylabel ("y")

10 plt.grid ()
11 plt. legend ()
12 plt.show ()

2/13

Paramètres de style
La fonction plt.plot () accepte plusieurs paramètres optionnels :

? color ou c : couleur de la courbe ("blue", "red", " green ", etc.)
? linestyle ou ls : style de ligne ("-" continu, "--" pointillés, ":" points)
? linewidth ou lw : épaisseur de la ligne
? marker : type de marqueur pour les points ("o" cercle, "s" carré, "^" triangle)
? label : étiquette pour la légende

Il est possible de combiner les paramètres de style en un seul paramètre écrit dans une chaîne de
caractères. Par exemple les deux instructions suivantes sont équivalentes :
plt.plot(x, y, color="blue", linestyle ="--", marker ="o")
plt.plot(x, y, "b--o")

4) Autres types de graphiques

La fonction plt. scatter (x, y) permet de tracer un nuage de points au lieu d’une courbe continue.La fonction plt. scatter (x, y) permet de tracer un nuage de points au lieu d’une courbe continue.

Définition 3 : Nuage de points

E”x´e›m¯p˜l´e : Créons un nuage de points représentant des mesures expérimentales :

1 # Données expé rimentales
2 temps = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3 temperature = [20, 22, 25, 29, 34, 40, 47, 55, 64, 74, 85]
4

5 plt. scatter (temps , temperature , color="red", marker ="o")
6 plt.title(" Evolution de la tempé rature ")
7 plt. xlabel ("Temps (min)")
8 plt. ylabel ("Tempé rature (deg C)")
9 plt.grid ()

10 plt.show ()

Figure 1 – Evolution de la température

3/13

Autres fonctions de tracé
? plt.bar(x, y) : diagramme en bâtons (histogramme)
? plt.pie(valeurs , labels = etiquettes) : diagramme circulaire (camembert)
? plt.hist(donnees , bins=n) : histogramme de distribution

E”x´e›m¯p˜l´e : Créons un diagramme en bâtons représentant des résultats d’élections :

1 import matplotlib . pyplot as plt
2

3 candidats = [" Candidat A", " Candidat B", " Candidat C", " Candidat D"]
4 voix = [234 , 567, 432, 189]
5

6 plt.bar(candidats , voix , color =["blue", "red", "green ", " orange "])
7 plt.title("Ré sultats des é lections ")
8 plt. ylabel (" Nombre de voix")
9 plt.show ()

R`e›m`a˚r`qfi˚u`e : Pour enregistrer un graphique dans un fichier au lieu de l’afficher, on utilise
plt. savefig (" nom_fichier .png") à la place de plt.show ().

4/13

II. Lecture et écriture dans un fichier texte

La manipulation de fichiers est une opération fondamentale en informatique. Elle permet de sauvegarder
des données de manière persistante et de les récupérer lors d’une prochaine exécution du programme.

1) Ouverture et fermeture de fichiers

Pour ouvrir un fichier, on utilise la fonction open () qui prend deux paramètres principaux :
? le nom du fichier (chemin relatif ou absolu)
? le mode d’ouverture qui indique ce qu’on souhaite faire avec le fichier

La fonction renvoie un objet fichier qu’on peut manipuler.

Pour ouvrir un fichier, on utilise la fonction open () qui prend deux paramètres principaux :
? le nom du fichier (chemin relatif ou absolu)
? le mode d’ouverture qui indique ce qu’on souhaite faire avec le fichier

La fonction renvoie un objet fichier qu’on peut manipuler.

Définition 4 : Ouverture d’un fichier

Modes d’ouverture
Les principaux modes d’ouverture sont :

Mode Description

"r" Lecture seule (read) – mode par défaut

"w" Écriture (write) – efface le contenu existant

"a" Ajout (append) – ajoute à la fin sans effacer

"r+" Lecture et écriture

R`e›m`a˚r`qfi˚u`e : Après avoir terminé de manipuler un fichier, il est impératif de le fermer
avec la méthode close () pour libérer les ressources.

E”x´e›m¯p˜l´e : Ouverture et fermeture d’un fichier en lecture :

>>> fichier = open(" donnees .txt", "r")
>>> # ... manipulation du fichier ...
>>> fichier . close ()

2) Lecture de fichiers

Méthodes de lecture
Il existe trois méthodes principales pour lire le contenu d’un fichier :

? read () : lit l’intégralité du fichier et renvoie une chaîne de caractères
? readline () : lit une seule ligne et renvoie une chaîne de caractères
? readlines () : lit toutes les lignes et renvoie une liste de chaînes

5/13

E”x´e›m¯p˜l´e : Supposons que nous avons un fichier notes.txt contenant :

Alice: 15
Bob: 12
Charlie : 18

Lisons ce fichier avec read () :
>>> fichier = open(" notes .txt", "r")
>>> contenu = fichier .read ()
>>> print (contenu)
Alice: 15
Bob: 12
Charlie : 18
>>> fichier . close ()

E”x´e›m¯p˜l´e : Lisons le même fichier avec readlines () :

>>> fichier = open(" notes .txt", "r")
>>> lignes = fichier . readlines ()
>>> print (lignes)
[’Alice : 15\n’, ’Bob: 12\n’, ’Charlie : 18\n’]
>>> fichier . close ()

R`e›m`a˚r`qfi˚u`e : Les méthodes readline () et readlines () conservent le caractère de retour
à la ligne \n à la fin de chaque ligne. Pour le supprimer, on peut utiliser la méthode strip ()
sur chaque chaîne.

E”x´e›m¯p˜l´e : Traitement ligne par ligne avec suppression des retours à la ligne :

1 fichier = open(" notes .txt", "r")
2 lignes = fichier . readlines ()
3 fichier . close ()
4

5 for ligne in lignes :
6 ligne_nettoyee = ligne.strip () # Enlève \n
7 print (ligne_nettoyee)

Lecture ligne par ligne avec une boucle
Une méthode élégante pour parcourir un fichier consiste à itérer directement sur l’objet fichier :

1 fichier = open("notes .txt", "r")
2 for ligne in fichier :
3 print(ligne.strip ())
4 fichier . close ()

Cette méthode est plus économe en mémoire car elle ne charge pas tout le fichier en une fois.

3) Écriture dans des fichiers

Pour écrire dans un fichier, on utilise la méthode write () qui prend en paramètre une chaîne de
caractères à écrire.
Pour écrire dans un fichier, on utilise la méthode write () qui prend en paramètre une chaîne de
caractères à écrire.

Définition 5 : Écriture dans un fichier

6/13

�
L’ouverture d’un fichier en mode "w" efface tout son contenu s’il existe déjà. Pour ajouter
du contenu sans effacer, il faut utiliser le mode "a".

E”x´e›m¯p˜l´e : Créons un fichier et écrivons-y des données :
1 fichier = open(" resultats .txt", "w")
2 fichier . write ("Ré sultats des expé riences \n")
3 fichier . write ("=" * 30 + "\n")
4 fichier . write ("Expé rience 1: 45.3\ n")
5 fichier . write ("Expé rience 2: 48.7\ n")
6 fichier . close ()

R`e›m`a˚r`qfi˚u`e : La méthode write () n’ajoute pas automatiquement de retour à la ligne.
Il faut explicitement écrire \n pour passer à la ligne suivante.

E”x´e›m¯p˜l´e : Ajout de données à la fin d’un fichier existant avec le mode "a" :
1 fichier = open(" resultats .txt", "a")
2 fichier . write ("Expé rience 3: 51.2\ n")
3 fichier . close ()

4) Gestion sécurisée avec with

L’instruction with permet d’ouvrir un fichier de manière sécurisée. Le fichier est automatiquement
fermé à la fin du bloc with, même en cas d’erreur.
L’instruction with permet d’ouvrir un fichier de manière sécurisée. Le fichier est automatiquement
fermé à la fin du bloc with, même en cas d’erreur.

Définition 6 : Instruction with

Syntaxe de with

with open(" fichier .txt", "mode") as variable :
Instructions utilisant la variable fichier
Le fichier est automatiquement fermé à la sortie du bloc

E”x´e›m¯p˜l´e : Lecture d’un fichier avec with :
1 with open("notes .txt", "r") as fichier :
2 contenu = fichier .read ()
3 print (contenu)
4 # Le fichier est automatiquement fermé ici

E”x´e›m¯p˜l´e : Écriture dans un fichier avec with :
1 with open(" rapport .txt", "w") as fichier :
2 fichier . write ("Début du rapport \n")
3 for i in range (1, 6):
4 fichier . write (f"Ligne {i}\n")
5 fichier . write ("Fin du rapport \n")

7/13

R`e›m`a˚r`qfi˚u`eṡ :
? L’utilisation de with est considérée comme une bonne pratique car elle garantit la

fermeture du fichier.
? On peut imbriquer plusieurs with pour manipuler plusieurs fichiers simultanément.

E”x´e›m¯p˜l´e : Copie du contenu d’un fichier dans un autre :

1 with open(" source .txt", "r") as source :
2 with open(" destination .txt", "w") as dest:
3 contenu = source .read ()
4 dest. write (contenu)

8/13

III. Manipulation d’images

Une image numérique peut être représentée comme un tableau de pixels. Chaque pixel possède une cou-
leur définie par des valeurs numériques. Python permet de manipuler facilement ces images grâce aux
bibliothèques NumPy et Matplotlib. Cette approche présente l’avantage de travailler directement avec des
tableaux NumPy, ce qui permet d’effectuer des opérations matricielles très efficaces.

1) Représentation des couleurs

Un pixel est le plus petit élément d’une image numérique. Chaque pixel possède une couleur qui peut
être représentée de différentes manières :

? En niveaux de gris : une seule valeur entre 0 (noir) et 255 (blanc), ou entre 0.0 et 1.0
? En RGB (Red, Green, Blue) : un triplet (r, g, b) où chaque composante varie entre 0 et 255, ou

entre 0.0 et 1.0
Les valeurs sont des flottants entre 0.0 et 1.0 pour les images au format PNG et sont des entiers entre
0 et 255 pour tous les autres formats.

Un pixel est le plus petit élément d’une image numérique. Chaque pixel possède une couleur qui peut
être représentée de différentes manières :

? En niveaux de gris : une seule valeur entre 0 (noir) et 255 (blanc), ou entre 0.0 et 1.0
? En RGB (Red, Green, Blue) : un triplet (r, g, b) où chaque composante varie entre 0 et 255, ou

entre 0.0 et 1.0
Les valeurs sont des flottants entre 0.0 et 1.0 pour les images au format PNG et sont des entiers entre
0 et 255 pour tous les autres formats.

Définition 7 : Pixel

E”x´e›m¯p˜l´eṡ :
? Le noir en RGB : (0, 0, 0) ou (0.0, 0.0, 0.0)

? Le blanc en RGB : (255, 255, 255) ou (1.0, 1.0, 1.0)

? Le rouge pur : (255, 0, 0) ou (1.0, 0.0, 0.0)

? Le vert pur : (0, 255, 0) ou (0.0, 1.0, 0.0)

? Le bleu pur : (0, 0, 255) ou (0.0, 0.0, 1.0)

? Le jaune : (255, 255, 0) ou (1.0, 1.0, 0.0)

? Le gris moyen : (128, 128, 128) ou (0.5, 0.5, 0.5)

2) Représentation d’une image comme tableau

Avec NumPy, une image est représentée comme un tableau multidimensionnel :
? Une image en niveaux de gris est un tableau 2D de dimensions (hauteur, largeur)

? Une image RGB est un tableau 3D de dimensions (hauteur, largeur, 3)

Chaque valeur est un nombre flottant entre 0.0 et 1.0, ou un entier entre 0 et 255 selon le format.

Avec NumPy, une image est représentée comme un tableau multidimensionnel :
? Une image en niveaux de gris est un tableau 2D de dimensions (hauteur, largeur)

? Une image RGB est un tableau 3D de dimensions (hauteur, largeur, 3)

Chaque valeur est un nombre flottant entre 0.0 et 1.0, ou un entier entre 0 et 255 selon le format.

Définition 8 : Image comme tableau NumPy

R`e›m`a˚r`qfi˚u`e : Dans les tableaux NumPy, l’indexation suit l’ordre [ligne , colonne], c’est-
à-dire [y, x] où y représente la ligne (hauteur) et x la colonne (largeur). L’origine (0, 0)
correspond au coin supérieur gauche de l’image.

9/13

3) Importation et chargement d’images

Importation des bibliothèques
Pour manipuler des images avec NumPy et Matplotlib :
import numpy as np
import matplotlib . pyplot as plt

? numpy permet de manipuler les tableaux représentant les images
? matplotlib . pyplot permet de charger, afficher et sauvegarder les images

La fonction plt. imread (nom_fichier) charge une image et la renvoie sous forme de tableau NumPy.La fonction plt. imread (nom_fichier) charge une image et la renvoie sous forme de tableau NumPy.

Définition 9 : Chargement d’une image

E”x´e›m¯p˜l´e : Chargement et affichage d’une image :
1 import numpy as np
2 import matplotlib . pyplot as plt
3

4 # Chargement de l’image
5 image = plt. imread (" photo .jpg")
6

7 # Affichage
8 plt. imshow (image)
9 plt.axis(’off ’) # Cache les axes

10 plt.show ()

4) Propriétés d’une image

Attributs d’un tableau NumPy image
Un tableau NumPy représentant une image possède plusieurs attributs utiles :

? shape : un tuple donnant les dimensions (hauteur , largeur , canaux)

? dtype : le type des données (uint8 pour entiers 0-255, float64 pour flottants 0.0-1.0)
? size : le nombre total d’éléments dans le tableau

E”x´e›m¯p˜l´e : Obtention des informations d’une image :
>>> img = plt. imread ("photo .jpg")
>>> img.shape
(600 , 800, 3)
>>> img.dtype
dtype(’float32 ’)
>>> hauteur , largeur , canaux = img.shape
>>> print (f" Dimensions : { largeur } x { hauteur }, { canaux } canaux ")
Dimensions : 800 x 600, 3 canaux

R`e›m`a˚r`qfi˚u`e : Pour une image en niveaux de gris, shape ne renvoie que deux valeurs :
(hauteur , largeur).

10/13

5) Création d’une image simple

Pour créer une nouvelle image, on utilise les fonctions NumPy :
? np.zeros ((hauteur , largeur , 3)) : crée une image noire
? np.ones ((hauteur , largeur , 3)) : crée une image blanche (si on multiplie par 255 ou 1.0)
? np.full ((hauteur , largeur , 3), couleur) : crée une image d’une couleur uniforme

Pour créer une nouvelle image, on utilise les fonctions NumPy :
? np.zeros ((hauteur , largeur , 3)) : crée une image noire
? np.ones ((hauteur , largeur , 3)) : crée une image blanche (si on multiplie par 255 ou 1.0)
? np.full ((hauteur , largeur , 3), couleur) : crée une image d’une couleur uniforme

Définition 10 : Création d’un tableau image

E”x´e›m¯p˜l´e : Créons une image rouge de 150× 200 pixels :

1 # Création d’une image rouge (valeurs entre 0 et 1)
2 img = np.zeros ((150 , 200, 3))
3 img [:, :, 0] = 1.0 # Canal rouge à 1.0
4

5 # Affichage
6 plt. imshow (img)
7 plt.axis(’off ’)
8 plt.show ()

E”x´e›m¯p˜l´e : Autre méthode pour créer une image d’une couleur spécifique :

1 # Création d’une image jaune
2 hauteur , largeur = 150, 200
3 img = np.ones ((hauteur , largeur , 3))
4 img [:, :, 0] = 1.0 # Rouge
5 img [:, :, 1] = 1.0 # Vert
6 img [:, :, 2] = 0.0 # Bleu
7

8 plt. imshow (img)
9 plt.axis(’off ’)

10 plt.show ()

6) Manipulation des pixels

Accès aux pixels avec NumPy
Pour accéder ou modifier la couleur d’un pixel, on utilise l’indexation des tableaux :

? img[y, x] : renvoie la couleur du pixel à la ligne y et colonne x

? img[y, x] = [r, g, b] : modifie la couleur du pixel
? img[y, x, canal] : accède à un canal spécifique (0=rouge, 1=vert, 2=bleu)

Attention : l’origine (0, 0) est en haut à gauche, l’indexation est [ligne , colonne].

E”x´e›m¯p˜l´e : Lecture de la couleur d’un pixel :

>>> img = plt. imread ("photo .jpg")
>>> couleur = img [50, 100] # Ligne 50, colonne 100
>>> print (couleur)
[0.918 0.569 0.263]

11/13

E”x´e›m¯p˜l´e : Création d’une image avec un dégradé horizontal :

1 # Création d’une image vide
2 largeur = 256
3 hauteur = 100
4 img = np.zeros ((hauteur , largeur , 3))
5

6 # Création du dégradé (méthode efficace avec NumPy)
7 for x in range (largeur):
8 img [:, x, 0] = x / 255.0 # Canal rouge varie de 0 à 1
9

10 plt. imshow (img)
11 plt.axis(’off ’)
12 plt.show ()

R`e›m`a˚r`qfi˚u`e : On peut créer le même dégradé de manière encore plus efficace avec le broad-
casting NumPy :
img [:, :, 0] = np. linspace (0, 1, largeur)

7) Conversions d’images

Pour convertir une image RGB en niveaux de gris, on utilise la formule standard :

gris = 0.2989×R + 0.5870×G+ 0.1140×B

Ces coefficients correspondent à la perception de luminosité par l’œil humain.

Pour convertir une image RGB en niveaux de gris, on utilise la formule standard :

gris = 0.2989×R + 0.5870×G+ 0.1140×B

Ces coefficients correspondent à la perception de luminosité par l’œil humain.

Définition 11 : Conversion en niveaux de gris

E”x´e›m¯p˜l´e : Conversion d’une image couleur en niveaux de gris :

1 # Chargement de l’image couleur
2 img_couleur = plt. imread ("photo .jpg")
3

4 # Conversion en niveaux de gris
5 img_gris = 0.2989 * img_couleur [:, :, 0] + \
6 0.5870 * img_couleur [:, :, 1] + \
7 0.1140 * img_couleur [:, :, 2]
8

9 # Affichage côte à côte
10 plt. figure (figsize =(10 , 5))
11

12 plt. subplot (1, 2, 1)
13 plt. imshow (img_couleur)
14 plt.title("Image couleur ")
15 plt.axis(’off ’)
16

17 plt. subplot (1, 2, 2)
18 plt. imshow (img_gris , cmap=’gray ’)
19 plt.title("Image en niveaux de gris")
20 plt.axis(’off ’)
21

22 plt.show ()

R`e›m`a˚r`qfi˚u`e : On peut aussi utiliser la méthode np.dot () pour une conversion plus concise :

12/13

coeffs = np.array ([0.2989 , 0.5870 , 0.1140])
img_gris = np.dot(img_couleur , coeffs)

8) Enregistrement d’images

La fonction plt. imsave (nom_fichier , tableau) permet d’enregistrer un tableau NumPy comme
image. Le format est déterminé automatiquement par l’extension du fichier.
La fonction plt. imsave (nom_fichier , tableau) permet d’enregistrer un tableau NumPy comme
image. Le format est déterminé automatiquement par l’extension du fichier.

Définition 12 : Sauvegarde d’une image

E”x´e›m¯p˜l´e : Création et sauvegarde d’une image avec un motif géométrique :

1 # Création d’une image carrée blanche
2 taille = 200
3 img = np.ones ((taille , taille , 3))
4

5 # Dessin d’un damier
6 taille_case = 20
7 for i in range (0, taille , taille_case):
8 for j in range (0, taille , taille_case):
9 if ((i // taille_case) + (j // taille_case)) % 2 == 0:

10 img[i:i+ taille_case , j:j+ taille_case] = [0, 0, 0]
11

12 # Sauvegarde
13 plt. imsave (" damier .png", img)

R`e›m`a˚r`qfi˚u`e : L’avantage de NumPy est qu’on peut utiliser le slicing pour modifier des blocs
de pixels en une seule opération, ce qui est beaucoup plus rapide que la modification pixel par
pixel.

13/13

