Lycée Victor Hugo Compléments
INFORMATIQUE
BCPST 1

Compléments

I. Tracé de courbes et représentations graphiques

Le langage Python posséde une bibliotheque tres puissante pour créer des représentations graphiques :
matplotlib. Cette bibliotheque permet de tracer des courbes, des nuages de points, des histogrammes, et
bien d’autres types de graphiques. Dans ce cours, nous allons nous concentrer sur le module pyplot de
cette bibliotheque.

1) Importation et premiers tracés

Importation de pyplot

Pour utiliser les fonctions de tracé graphique, on importe le module pyplot de la bibliotheque
matplotlib en lui donnant généralement l'alias plt :

import matplotlib.pyplot as plt

—— Définition 1 : Tracé d’une courbe \

Pour tracer une courbe représentant une fonction y = f(z), on utilise la fonction pilt.plot(x, y)
ou :
* x est une liste contenant les abscisses des points

* y est une liste contenant les ordonnées correspondantes

Pour afficher le graphique, on utilise ensuite la fonction plt.show ().

%M : Tragons la courbe représentative de la fonction f(z) = z? sur l'intervalle [—3, 3] :

import matplotlib.pyplot as plt

3 # Création des listes de coordonnées
4+x = [1 / 10 for i in range(-30, 31)] # De -3.0 & 3.0 par pas de 0.1
sy = [1 **x 2 for i in x]

7 # Tracé de la courbe

s plt.plot(x, y)
9 plt.show ()

R, : Pour obtenir un tracé plus précis, il faut augmenter le nombre de points
calculés. Plus les listes x et y contiennent de valeurs, plus la courbe sera lisse.

1/13

2) Personnalisation des graphiques

Fonctions de personnalisation

Voici les principales fonctions permettant de personnaliser un graphique :
* plt.title("Titre") : ajoute un titre au graphique

plt.xlabel ("Abscisses") : légende de I'axe des abscisses

plt.ylabel ("Ordonnées") : légende de I'axe des ordonnées

plt.grid () : affiche une grille

* ot X b

plt.legend () : affiche la légende (si les courbes ont un label)

gﬂv& : Reprenons I'exemple précédent en ajoutant des éléments de personnalisation :

x = [i / 10 for i in range(-30, 31)]
y = [i **x 2 for i in x]

plt.plot(x, y, label="f(x) = x~2")

5 plt.title("Courbe représentative de f(x) = x72")
¢ plt.xlabel ("x"

7 plt.ylabel ("f(x)")

s plt.grid ()

o plt.legend ()

10 plt.show ()

3) Tracer plusieurs courbes

Définition 2 : Superposition de courbes

Pour tracer plusieurs courbes sur le méme graphique, il suffit d’appeler plusieurs fois la fonction
plt.plot () avant d’utiliser plt.show ().

gﬂv& : Tragons les courbes de f(z) = 2? et g(x) = 2% sur le méme graphique :
1 x = [i / 10 for i in range(-30, 31)]
2yl = [1i *%x 2 for i in x]
3y2 = [1i *x 3 for i in x]
1

5 plt.plot(x, yl, label="f(x) = x~2", color="blue")
6 plt.plot(x, y2, label="g(x) = x"3", color="red")
7 plt.title("Comparaison de deux fonctions")

s plt.xlabel ("x"

o plt.ylabel("y")

10 plt.grid ()

11 plt.legend ()

12 plt.show ()

2/13

Parametres de style

La fonction plt.plot () accepte plusieurs parametres optionnels :
* color ou c : couleur de la courbe ("blue", "red", "green", etc.)
* linestyle ou 1s : style de ligne ("-" continu, "--" pointillés, ": " points)
* linewidth ou 1w : épaisseur de la ligne
* marker : type de marqueur pour les points ("o" cercle, "s" carré, "~" triangle)
* label : étiquette pour la légende

Il est possible de combiner les parametres de style en un seul parameétre écrit dans une chaine de
caracteres. Par exemple les deux instructions suivantes sont équivalentes :

plt.plot(x, y, color="blue", linestyle="--", marker="o"
plt.plot(x, y, "b--0o")

4) Autres types de graphiques

[— Définition 3 : Nuage de points
L

a fonction plt.scatter (x, y) permet de tracer un nuage de points au lieu d’une courbe continue.

8&1\/& : Créons un nuage de points représentant des mesures expérimentales :

1 # Données expérimentales
temps = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3 temperature = [20, 22, 25, 29, 34, 40, 47, 55, 64, 74, 85]

5 plt.scatter(temps, temperature, color="red", marker="o"
6 plt.title("Evolution de la température")

7 plt.xlabel ("Temps (min)")

s plt.ylabel ("Température (deg C)")

o plt.grid ()

10 plt.show ()

Evolution de la température

o
o
L

=~
o
L

=
o
L

u
o
L

Température (deg C)
£
o
!
0

w
=]
L
e

201

Temps (min)

FIGURE 1 — Evolution de la température

3/13

Autres fonctions de tracé

* plt.bar(x, y) :diagramme en batons (histogramme)
* plt.pie(valeurs, labels=etiquettes) : diagramme circulaire (camembert)

* plt.hist (donnees, bins=n) : histogramme de distribution

%ﬂw& : Créons un diagramme en batons représentant des résultats d’élections :
import matplotlib.pyplot as plt

candidats = ["Candidat A", "Candidat B", "Candidat C", "Candidat D"]
voix = [234, 567, 432, 189]

plt.bar (candidats, voix, color=["blue", "red", "green", "orange"])
plt.title("Résultats des élections")

plt.ylabel ("Nombre de voix")

plt.show ()

R, : Pour enregistrer un graphique dans un fichier au lieu de I'afficher, on utilise
plt.savefig("nom_fichier.png") a la place de plt.show ().

4/13

II. Lecture et écriture dans un fichier texte

La manipulation de fichiers est une opération fondamentale en informatique. Elle permet de sauvegarder
des données de maniere persistante et de les récupérer lors d’'une prochaine exécution du programme.

1) Owuverture et fermeture de fichiers

— Définition 4 : Quverture d’un fichier

Pour ouvrir un fichier, on utilise la fonction open () qui prend deux parametres principaux :

* le nom du fichier (chemin relatif ou absolu)

* le mode d’ouverture qui indique ce qu’on souhaite faire avec le fichier

La fonction renvoie un objet fichier qu’on peut manipuler.

.

Modes d’ouverture

Les principaux modes d’ouverture sont :

Mode | Description

"r | Lecture seule (read) — mode par défaut
vy | Beriture (write) — efface le contenu existant
"a" | Ajout (append) — ajoute a la fin sans effacer

"r+" | Lecture et écriture

R, : Apres avoir terminé de manipuler un fichier, il est impératif de le fermer
avec la methode close () pour libérer les ressources.

8&1\/& : Ouverture et fermeture d'un fichier en lecture :

>>> fichier = open("donnees.txt", "r")
>>> # ... manipulation du fichier
>>> fichier.close ()

2) Lecture de fichiers

Méthodes de lecture

I1 existe trois méthodes principales pour lire le contenu d’un fichier :
* read () : lit 'intégralité du fichier et renvoie une chaine de caracteres
* readline () : lit une seule ligne et renvoie une chaine de caracteres

* readlines () : lit toutes les lignes et renvoie une liste de chaines

5/13

8@& : Supposons que nous avons un fichier notes.txt contenant :

Alice: 15
Bob: 12
Charlie: 18

Lisons ce fichier avec read () :

>>> fichier = open("notes.txt", "r")
>>> contenu = fichier.read()

>>> print (contenu)

Alice: 15

Bob: 12

Charlie: 18
>>> fichier.close()

8&1\/& : Lisons le méme fichier avec readlines () :

>>> fichier = open("notes.txt", "r")

>>> lignes = fichier.readlines ()

>>> print(lignes)

[’Alice: 15\n’, ’Bob: 12\n’, ’Charlie: 18\n’]
>>> fichier.close ()

R, : Les méthodes readline () et readlines () conservent le caractere de retour
a la ligne \n a la fin de chaque ligne. Pour le supprimer, on peut utiliser la méthode strip ()
sur chaque chaine.

%M : Traitement ligne par ligne avec suppression des retours a la ligne :
1 fichier = open("notes.txt", "r")
> lignes = fichier.readlines ()

3 fichier.close ()

5 for ligne in lignes:
6 ligne_nettoyee = ligne.strip() # Enléve \n
7 print (ligne_nettoyee)

Lecture ligne par ligne avec une boucle

Une méthode élégante pour parcourir un fichier consiste a itérer directement sur ’objet fichier :

1 fichier = open("notes.txt", "r"
2> for ligne in fichier:
3 print (ligne.strip())

i fichier.close ()

Cette méthode est plus économe en mémoire car elle ne charge pas tout le fichier en une fois.

3) Ecriture dans des fichiers

Définition 5 : Ecriture dans un fichier

Pour écrire dans un fichier, on utilise la méthode write () qui prend en parametre une chailne de
caracteres a écrire.

6/13

L’ouverture d’un fichier en mode "w" efface tout son contenu s’il existe déja. Pour ajouter
@ du contenu sans effacer, il faut utiliser le mode "a".

8@4}&_@ : Créons un fichier et écrivons-y des données :

1 fichier = open("resultats.txt", "w"
2> fichier.write("Résultats des expériences\n")
3 fichier.write("=" % 30 + "\n")

i fichier.write("Expérience 1: 45.3\n")
5 fichier.write("Expérience 2: 48.7\n")
¢ fichier.close ()

R, : La méthode write () n'ajoute pas automatiquement de retour a la ligne.
Il faut explicitement écrire \n pour passer a la ligne suivante.

gﬂv& : Ajout de données a la fin d’un fichier existant avec le mode "a"

1 fichier = open("resultats.txt", "a")
> fichier.write("Expérience 3: 51.2\n")
3 fichier.close ()

4) Gestion sécurisée avec with

Définition 6 : Instruction with

L’instruction with permet d’ouvrir un fichier de maniere sécurisée. Le fichier est automatiquement
fermé a la fin du bloc with, méme en cas d’erreur.

Syntaxe de with

with open("fichier.txt", "mode") as variable:
Instructions utilisant la variable fichier
Le fichier est automatiquement fermé & la sortie du bloc

g&w& : Lecture d'un fichier avec with :

I with open("notes.txt", "r") as fichier:

2 contenu = fichier.pread()

3 print (contenu)

4 # Le fichier est automatiquement fermé ici

g&w& . Ecriture dans un fichier avec with :

1 with open("rapport.txt", "w") as fichier:
2 fichier.write("Début du rapport\n")

3 for i in range(l, 6):

1 fichier.write(f"Ligne {i}\n")

5 fichier.write("Fin du rapport\n")

7/13

@%)EJTT\.&J’IL}U&D:

* L’utilisation de with est considérée comme une bonne pratique car elle garantit la
fermeture du fichier.

* On peut imbriquer plusieurs with pour manipuler plusieurs fichiers simultanément.

8@4}12_9. : Copie du contenu d’un fichier dans un autre :

1 with open("source.txt", "r") as source:
2 with open("destination.txt", "w") as dest:
3 contenu = source.read()

| dest.write (contenu)

8/13

III. Manipulation d’images

Une image numérique peut étre représentée comme un tableau de pixels. Chaque pixel possede une cou-
leur définie par des valeurs numériques. Python permet de manipuler facilement ces images grace aux
bibliotheques NumPy et Matplotlib. Cette approche présente I'avantage de travailler directement avec des
tableaux NumPy, ce qui permet d’effectuer des opérations matricielles tres efficaces.

1) Représentation des couleurs

— Définition 7 : Pizel \

Un pixel est le plus petit élément d’une image numérique. Chaque pixel possede une couleur qui peut
étre représentée de différentes manieres :

* En niveaux de gris : une seule valeur entre 0 (noir) et 255 (blanc), ou entre 0.0 et 1.0

* En RGB (Red, Green, Blue) : un triplet (7, g,b) ot chaque composante varie entre 0 et 255, ou
entre 0.0 et 1.0

Les valeurs sont des flottants entre 0.0 et 1.0 pour les images au format PNG et sont des entiers entre
0 et 255 pour tous les autres formats.

Ecermplles

* Le noir en RGB : (0,0,0) ou (0.0,0.0,0.0)

* Le blanc en RGB : (255, 255,255) ou (1.0, 1.0,1.0)
Le rouge pur : (255,0,0) ou (1.0,0.0,0.0)

Le vert pur : (0,255,0) ou (0.0,1.0,0.0)

Le bleu pur : (0,0, 255) ou (0.0,0.0,1.0)

Le jaune : (255,255,0) ou (1.0,1.0,0.0)

Le gris moyen : (128,128,128) ou (0.5,0.5,0.5)

*

* % o

2) Représentation d’une image comme tableau

—— Définition 8 : Image comme tableau NumPy \

Avec NumPy, une image est représentée comme un tableau multidimensionnel :
* Une image en niveaux de gris est un tableau 2D de dimensions (hauteur, largeur)

* Une image RGB est un tableau 3D de dimensions (hauteur, largeur, 3)

Chaque valeur est un nombre flottant entre 0.0 et 1.0, ou un entier entre 0 et 255 selon le format.

J

w : Dans les tableaux NumPy, I'indexation suit l'ordre [1igne, colonnel, c’est-
a-dire [y, x] ou y représente la ligne (hauteur) et x la colonne (largeur). L’origine (0,0)
correspond au coin supérieur gauche de I'image.

9/13

3) Importation et chargement d’images

Importation des bibliotheques

Pour manipuler des images avec NumPy et Matplotlib :

import numpy as np
import matplotlib.pyplot as plt

* numpy permet de manipuler les tableaux représentant les images

* matplotlib.pyplot permet de charger, afficher et sauvegarder les images

— Définition 9 : Chargement d’une image

La fonction plt.imread (nom_fichier) charge une image et la renvoie sous forme de tableau NumPy.

.

%&W& : Chargement et affichage d'une image :

I import numpy as np
2 import matplotlib.pyplot as plt

1 # Chargement de 1’image
5 image = plt.imread("photo.jpg")

7 # Affichage

s plt.imshow (image)

o plt.axis(’off’) # Cache les axes
10 plt.show ()

4) Propriétés d’une image

Attributs d’un tableau NumPy image

Un tableau NumPy représentant une image possede plusieurs attributs utiles :
* shape : un tuple donnant les dimensions (hauteur, largeur, canaux)
* dtype : le type des données (uint8 pour entiers 0-255, f1oat64 pour flottants 0.0-1.0)

* size : le nombre total d’éléments dans le tableau

gﬂv& : Obtention des informations d’'une image :

>>> img = plt.imread("photo.jpg")
>>> img.shape

(600, 800, 3)

>>> img.dtype

dtype (’float32’)

>>> hauteur, largeur, canaux = img.shape

>>> print(f"Dimensions : {largeur} x {hauteur}, {canaux} canaux")

Dimensions : 800 x 600, 3 canaux

%ﬂmm‘; : Pour une image en niveaux de gris, shape ne renvoie que deux valeurs :

(hauteur , largeur).

10/13

5) Création d’une image simple

— Définition 10 : Création d’un tableau image

Pour créer une nouvelle image, on utilise les fonctions NumPy :

* np.zeros ((hauteur, largeur, 3)) :crée une image noire

* np.ones ((hauteur, largeur, 3)) : crée une image blanche (si on multiplie par 255 ou 1.0)

* np.full ((hauteur, largeur, 3), couleur) : crée une image d’une couleur uniforme

%M : Créons une image rouge de 150 x 200 pixels :

1 # Création d’une image rouge (valeurs entre 0 et 1)
> img = np.zeros ((150, 200, 3))
3 img[:, :, 0] = 1.0 # Canal rouge & 1.0

5 # Affichage

¢ plt.imshow (img)
7 plt.axis(’off’)
s plt.show ()

gwfpﬂ_e : Autre méthode pour créer une image d’une couleur spécifique :

1 # Création d’une image jaune
2> hauteur, largeur = 150, 200

3 img = np.ones ((hauteur, largeur, 3))
i img[:, :, 0] = 1.0 # Rouge

5 img[:, :, 1] = 1.0 # Vert

¢ img[:, :, 2] = 0.0 # Bleu

s plt.imshow (img)
o plt.axis (’off’)
10 plt.show ()

6) Manipulation des pixels

Acces aux pixels avec NumPy

Pour accéder ou modifier la couleur d’un pixel, on utilise I'indexation des tableaux :
* img [y, x] :renvoie la couleur du pixel a la ligne y et colonne x
* imgly, x] = [r, g, bl : modifie la couleur du pixel

x imgly, x, canall : accéde a un canal spécifique (O=rouge, 1=vert, 2=bleu)

Attention : l'origine (0,0) est en haut & gauche, 'indexation est [1igne, colonnel.

8@(\& : Lecture de la couleur d’un pixel :

>>> img = plt.imread("photo.jpg")

>>> couleur = img[50, 100] # Ligne 50, colonne 100
>>> print (couleur)

[0.918 0.569 0.263]

11/13

8%& : Création d’une image avec un dégradé horizontal :

1 # Création d’une image vide

2> largeur = 256

3 hauteur = 100

img = np.zeros ((hauteur, largeur, 3))

¢ # Création du dégradé (méthode efficace avec NumPy)
7 for x in range(largeur):
8 imgl[:, x, 0] = x / 255.0 # Canal rouge varie de 0 a 1

10 plt.imshow (img)
11 plt.axis(’off’)
12 plt.show ()

R, : On peut créer le méme dégradé de maniere encore plus efficace avec le broad-
casting NumPy :

img[:, :, 0] = np.linspace(0, 1, largeur)

7) Conversions d’images

—— Définition 11 : Conversion en niveaux de gris

Pour convertir une image RGB en niveaux de gris, on utilise la formule standard :

gris = 0.2989 x R+ 0.5870 x G + 0.1140 x B

Ces coeflicients correspondent a la perception de luminosité par I’ceil humain.

8@& : Conversion d’une image couleur en niveaux de gris :

1 # Chargement de 1’image couleur
img_couleur = plt.imread("photo.jpg")

1 # Conversion en niveaux de gris

5 img_gris = 0.2989 * img_couleur[:, :, 0] + \
6 0.5870 * img_couleur[:, :, 1] + \
7 0.1140 * img_couleur[:, :, 2]

o # Affichage cdte & cdte
10 plt.figure(figsize=(10, 5))

12 plt.subplot (1, 2, 1)

13 plt.imshow (img_couleur)

14 plt.title("Image couleur")
15 plt.axis(’off’)

17 plt.subplot (1, 2, 2)
1s plt.imshow (img_gris, cmap=’gray’)
19 plt.title("Image en niveaux de gris")

20 plt.axis (’off’)

22 plt.shOW()

@mie : On peut aussi utiliser la méthode np . dot () pour une conversion plus concise :

12/13

coeffs = np.array([0.2989, 0.5870, 0.1140])
img_gris = np.dot(img_couleur, coeffs)

8) Enregistrement d’images

Définition 12 : Sauvegarde d’une image

La fonction plt.imsave (nom_fichier, tableau) permet d’enregistrer un tableau NumPy comme
image. Le format est déterminé automatiquement par I’extension du fichier.

g&w& : Création et sauvegarde d'une image avec un motif géométrique :
1 # Création d’une image carrée blanche
2> taille = 200
3 img = np.ones((taille, taille, 3))

5 # Dessin d’un damier

6 taille_case = 20

7 for i in range(0, taille, taille_case):

8 for j in range(0, taille, taille_case):

9 if ((i // taille_case) + (j // taille_case)) % 2 == O:
10 img[i:i+taille_case, j:j+taille_case] = [0, O, O]

12 # Sauvegarde
13 plt.imsave ("damier.png", img)

R, : L’avantage de NumPy est qu’on peut utiliser le slicing pour modifier des blocs
de pixels en une seule opération, ce qui est beaucoup plus rapide que la modification pixel par
pixel.

13/13

