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Calculatrice interdite 
 

PROBLEME 1 :  
 

Vase de Tantale. 

On note 𝜌 la masse volumique de l’eau, supposée incompressible. La norme 

de l’accélération de la pesanteur est notée 𝑔.  
 

1) Vidange d’un réservoir   

On considère un réservoir cylindrique dont la section horizontale est un 

disque d’aire S.  

Les hauteurs sont repérées à l’aide d’un axe vertical (𝑂𝑧) orienté vers le haut, 

et dont l’origine coïncide avec le fond du réservoir (figure 4 à gauche).  

Ce réservoir est rempli d’eau jusqu’à une certaine hauteur ℎ et percé d’un 

orifice situé au niveau du point B, à hauteur 𝑧𝐵. Cet orifice possède une 

section droite dont la surface vaut 𝜎. On nomme 𝐷𝑠 le débit volumique d’eau 

sortant par l’orifice B associé à l’écoulement de vidange du réservoir. La surface libre du réservoir (d’aire S) et l’extrémité de 

l’orifice B sont en contact avec l’air entourant le réservoir, à pression atmosphérique 𝑃0 = 1,0 bar (toujours figure 4 à gauche). 

Tous les écoulements considérés dans cette partie seront assimilés à des écoulements, parfaits, homogènes, incompressibles et 

laminaires. La variable de temps est notée 𝑡. 

a) On assimile la vidange du réservoir à un écoulement quasi stationnaire, en faisant l’hypothèse que la hauteur ℎ(𝑡) de 

la surface libre varie lentement par rapport aux vitesses caractéristiques de l’écoulement. Tracer l’allure plausible des 

lignes de courant associées à cet écoulement. 

b) Appliquer la relation de Bernoulli le long de ces lignes de courant et déterminer, dans le cadre des hypothèses ci-

dessus, et pour des sections droites 𝑆 et 𝜎 quelconques (pas forcément 𝜎 ≪ 𝑆), la vitesse du fluide 𝑣𝐵 au niveau de 

l’orifice B.  

Que vaut alors le débit 𝐷𝑠 ? 

c) En déduire la valeur algébrique de ℎ =
𝑑ℎ

𝑑𝑡
. 

Que deviennent les expressions de 𝑣𝐵 et ℎ̇ pour 𝜎 ≪ 𝑆 ?  Quel théorème retrouve-t-on ? 

 

Dans toute la suite on considère que 𝝈 ≪ 𝑺. 
 

2) Influence du siphon 

Le siphon (figure 4 à droite) est une portion coudée de conduite, de section uniforme 𝜎, dont la hauteur maximale, représentée 

par le point C, se trouve à une hauteur 𝑧𝐶, supérieure à la hauteur 𝑧𝐵 de l’orifice d’entrée de la conduite.  

Le siphon peut se trouver dans deux états.  

• Dans l’état « amorcé », il ne contient pas d’air, et on peut considérer que la relation de Bernoulli s’applique d’une 

extrémité à l’autre du siphon. L’extrémité D située à l’opposé du réservoir se trouve alors en contact avec l’air à 

pression atmosphérique 𝑃0. 

• Dans l’état désamorcé, le siphon contient de l’air, la continuité de l’écoulement dans le siphon est rompue, et le débit 

à travers sa conduite est nul. 

On supposera qu’une fois amorcé, le siphon reste dans cet état jusqu’à ce que l’air pénètre par l’orifice situé en B. Le siphon 

est toujours amorcé lorsque le niveau d’eau excède 𝑧𝐶 . 

a) Lorsque le siphon est amorcé, le réservoir se vide avec un débit sortant 𝐷𝑠, que l’on exprimera en fonction de ℎ, 𝑔, 𝜎 

et de la hauteur d’un des points B, C ou D 

b) Etablir une équation différentielle du premier ordre en 𝑡 pour l’évolution temporelle de la hauteur ℎ de la surface 

libre, dans le régime où le siphon est amorcé. Le réservoir n’est alimenté par aucune source. 

c) Trouver la solution de cette équation différentielle, en partant d’une condition initiale ℎ(0) = ℎ0 ≥ 𝑧𝐶. 

En déduire la durée nécessaire 𝑡1 pour que le siphon se désamorce. 

 

3) Réservoir alimenté 

Le réservoir est désormais alimenté en permanence par un filet d’eau de débit 

𝐷𝑖, arrivant par l’orifice A, et qui ne perturbe pas l’écoulement de vidange 

(figure 5). 

a) Comment doit-on modifier l’équation différentielle portant sur ℎ en 

présence d’un débit 𝐷𝑖 venant alimenter le réservoir, le siphon étant 

amorcé ? 

b) Montrer que l’équation différentielle obtenue admet une solution 

stationnaire, de hauteur ℎ𝑆 constante, que l’on exprimera en 

fonction de 𝑧𝐷, 𝐷𝑖 , 𝜎 et 𝑔. 

Cette solution parait-elle acceptable si la valeur de ℎ𝑆 associée à un 

débit 𝐷𝑖 est telle que ℎ𝑆 < 𝑧𝐵 ? Justifier votre réponse. 

Figure 4 

Figure 5 
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c) Décrire l’évolution de la hauteur ℎ(𝑡) lorsque le siphon est désamorcé. 

d) Montrer que si le débit 𝐷𝑖 est plus faible qu’une valeur critique 𝐷𝐶 , le système représenté sur la figure 5 se comporte 

comme un oscillateur, dont le débit de sortie est une fonction du temps périodique. 

Déterminer l’expression de 𝐷𝐶 . 

e) On suppose que 𝐷𝑖 < 𝐷𝐶 . Représenter schématiquement l’allure temporelle de la hauteur ℎ(𝑡) en fonction du temps, 

en réfléchissant bien à la forme des portions de courbes (rectiligne ou non, concavité positive ou non), sans pour 

autant faire une étude de fonction poussée. 

Déterminer, en fonction des paramètres du problème la période 𝑇 du phénomène, en négligeant, lorsque le siphon est 

amorcé, le débit entrant 𝐷𝑖 par rapport au débit sortant 𝐷𝑆. 
 

4) Analogie 

      Quel type de montage électronique a un comportement analogue à ce système hydraulique ? Quelles sont les grandeurs 

physiques qui se correspondent ? Comment se fait l’apport d’énergie dans les deux cas ? 

 

PROBLEME 2 : écoulement de gazole 

 

On considère le dispositif ci-contre. A droite de 
B, il y a une conduite cylindrique verticale de 
grande longueur et de diamètre d = 2a, au-
dessus de laquelle une pompe aspire le gazole. 
La figure ci-contre ne représente qu’une portion

 =C1C2 de cette conduite. 

L’étude de l’écoulement entre C1 et C2 nécessite 
la prise en compte de la dissipation d’énergie par 
frottement dû à la viscosité du gazole. 
Dans la suite, on considère que le gazole est un 
fluide incompressible, de masse volumique 

constante , de viscosité dynamique , en 
écoulement stationnaire. 

 

On suppose de plus que l’écoulement est laminaire et que le champ de vitesse est à symétrie cylindrique  

𝑉⃗ (𝑟) = 𝑉(𝑟)𝑒 𝑧   
avec V(r) > 0 et une vitesse nulle le long des parois et maximale sur l’axe de la conduite. Les pressions sont 
supposées constantes pour une altitude donnée : pC1 est la pression en C1 à l’altitude zC1, pC2 est la pression en C2 
à l’altitude zC2.   
 

On isole par la pensée (voir figure plus loin) un cylindre de fluide de rayon r inférieur à a et de longueur  . Ce cylindre 

subit des forces pressantes en C1 et C2, son poids et des forces visqueuses modélisées par la loi suivante :  

𝑓 = 𝜂
𝑑𝑉

𝑑𝑟
Σ 𝑒 𝑧 

où Σ représente la surface latérale de contact entre le fluide contenu dans le cylindre et celui à l’extérieur du cylindre.  
 

1. Faire un bilan de quantité de mouvement pour ce cylindre et établir la relation suivante :   

𝑑𝑉

𝑑𝑟
= −𝛼 (𝑝̃C1

− 𝑝̃C2
) 𝑟   

avec 𝑝 = 𝑝 + 𝜌𝑔𝑧 et  un facteur que l’on exprimera à l’aide de  et  . Commentez le signe de . 

2. Montrer que V(r) s’écrit : 𝑉(𝑟) = 𝑉𝑚𝑎𝑥 (1 −
𝑟2

𝑎2
). Exprimer 𝑉𝑚𝑎𝑥 à l’aide de 𝛼, a et (𝑝C1

− 𝑝C2
). 

3. Déterminer l’expression du débit volumique QV à l’aide de , a et (𝑝C1
− 𝑝C2

). 

4. En déduire l’expression de la vitesse moyenne Vmoy dans une section de la conduite (encore appelée vitesse 

débitante) à l’aide de , a et (𝑝C1
− 𝑝C2

). 
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La « perte de charge régulière » (due à la dissipation d’énergie à cause des frottements visqueux) est définie par  

Δ𝑝𝑟 = 𝜆
1

2
𝜌𝑉𝑚𝑜𝑦

2 ℓ

𝑑
 où   est une constante sans dimension dépendant de la nature de l’écoulement et de la rugosité 

de la conduite,   la longueur de la conduite et d son diamètre. 

On a par ailleurs : 𝑝̃C2
− 𝑝̃C1

= −Δ𝑝𝑟 pour une canalisation de section constante. 
 

5. Déterminer l’expression de  à l’aide de , , Vmoy et a. 

6. Rappeler l’expression du nombre de Reynolds Re pour une conduite cylindrique en fonction de son diamètre d, de la vitesse 

moyenne Vmoy, de la masse volumique  et de la viscosité   

Pour un écoulement laminaire, en déduire l’expression de   à l’aide du nombre de Reynolds, Re. 

7. Rappeler comment le nombre de Reynolds, Re peut être utilisé pour caractériser la nature de l’écoulement.    

 

PROBLEME 3 :      CCINP PSI 2022 
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PROBLEME 4 : Ondes sonores 

A] Equations des ondes sonores : 
On considère ici la propagation unidirectionnelle, suivant l’axe Ox, d’une onde plane sonore dans l’air. Celui-ci, 

initialement au repos, est assimilable à un gaz parfait non visqueux. Les transformations thermodynamiques sont 

supposées adiabatiques et réversibles.  
 

On note 𝑃0 et 𝜌0 , la pression et la masse volumique de l’air au repos (𝜌0 =1,3 kg.m−3 et P0 = 1,0.105 Pa). 

On note 𝜒 le coefficient de compressibilité isentropique de l’air (𝜒 = 7,0 10−6 Pa−1). 

 On définit comme système la masse 𝛿𝑚 d’air située, au repos, entre les abscisses 𝑥 et 𝑥 + 𝑑𝑥, d’un cylindre fictif 

horizontal, d’axe (𝑂𝑥) et de section 𝑆. 
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Après une perturbation élémentaire, les caractéristiques de l’air sont décrites par les grandeurs suivantes, fonctions 

de la position 𝑥 et du temps 𝑡 : 

𝑣 (𝑥, 𝑡) = 𝑣(𝑥, 𝑡) 𝑢⃗ 𝑥   : la vitesse du fluide, 

𝑃(𝑥, 𝑡)  =  𝑃0  +  𝑝(𝑥, 𝑡) la pression de l’air, 

𝜌(𝑥, 𝑡)  = 𝜌0 + 𝜇(𝑥, 𝑡) la masse volumique de l’air. 

A.1.a) Ecrire une équation de la dynamique (E1) pour une particule de fluide, sans prendre en compte la pesanteur. 

A.1.b) Ecrire l’équation locale (E2) de conservation de la masse ou équation de continuité. 

A.1.c) Rappeler l’expression de 𝜒 en fonction de 𝜌 et 𝑃 ou de leurs dérivées partielles (E3). 

A.2.a) Rappeler en quoi consiste l’approximation acoustique. 

A.2.b) Simplifier les équations E1, E2 et E3 dans le cadre de l’approximation acoustique et de la propagation 

unidirectionnelle suivant l’axe des 𝑥. On notera E4, E5 et E6 les équations correspondantes. 

A.3.a) En déduire les équations de propagation de l’onde acoustique vérifiées par les grandeurs 𝑣(𝑥, 𝑡) et 𝑝(𝑥, 𝑡). 

A.3.b) Quelle est l’expression de la célérité 𝑐0 des ondes acoustiques dans l’air ? En donner une valeur approchée, 

compte tenu des valeurs numériques données dans cet énoncé. 

A.3.c)  La célérité 𝑐0 dépend-elle de la température 𝑇 de l’air ? Si oui, établir la dépendance entre 𝑐0 et 𝑇. 
  

B] Cas de l’onde sonore plane progressive sinusoïdale : 
B.1.a) L’onde sonore plane progressive sinusoïdale (O.S.P.P.S.) a-t-elle une structure transverse ou 

longitudinale ? Justifier. 

B.1.b) Citer un exemple d’onde plane à structure longitudinale ainsi qu’un exemple d’onde plane à structure 

transverse. 

 Pour modéliser l’O.S.P.P.S., on adopte les notations suivantes pour lesquelles les fonctions complexes associées 

aux grandeurs sinusoïdales sont soulignées : 𝑝(𝑥, 𝑡) = 𝑝0 𝑒
𝑗(𝜔𝑡−𝑘𝑥) = 𝑝0 𝑒

−𝑗𝑘𝑥 avec 𝑝0 = 𝑝0𝑒
𝑗𝜔𝑡 

𝑣 (𝑥, 𝑡) = 𝑣0⃗⃗⃗⃗  𝑒𝑗(𝜔𝑡−𝑘𝑥) = 𝑣(𝑥, 𝑡)𝑒𝑥⃗⃗⃗⃗   
B.2.a) Dans quel sens cette onde se propage-t-elle ? Le montrer. 

B.2.b) Etablir la relation de dispersion liant 𝜔 et 𝑘. 

B.2.c) Etablir la relation entre 𝑝(𝑥, 𝑡) et 𝑣(𝑥, 𝑡). La surpression acoustique 𝑝(𝑥, 𝑡) et la vitesse 𝑣(𝑥, 𝑡) sont-elles en 

phase, en opposition de phase ou en quadrature de phase ? 
 

La puissance P rayonnée par  l’O.S.P.P.S. à travers une section 𝑆 perpendiculaire à l’axe (𝑂𝑥)  est la puissance de 

la force de surpression appliquée à la section 𝑆 se déplaçant avec la vitesse 𝑣(𝑥, 𝑡).  

On a P = 𝑅 𝑆. 

B.3.a) Nommer le vecteur 𝑅⃗ = 𝑅𝑒𝑥. 

B.3.b) Exprimer la valeur moyenne < 𝑅 > de 𝑅 en fonction de 𝜌0, 𝑐0 et 𝑝0. 

B.3.c) Définir l’intensité acoustique 𝐼, puis donner son expression en dB. Quelle différence présente cette 

définition attachée aux dB par rapport à celle utilisée pour des diagrammes de Bode, et pourquoi ?  

B.3.d) Si l’amplitude de la surpression acoustique de l’OSPPS est multipliée par 2, par combien est multipliée 

l’amplitude de la vitesse ? Par combien est multipliée l’intensité acoustique ? 

B.3.e) Si l’amplitude de la surpression acoustique de l’OSPPS est multipliée par 100, comment est modifiée 

l’intensité en dB ? 

 

𝑆 

𝑥 𝑥 + 𝑑𝑥 

𝑥 


