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PROBLEME 1 : Vase de Tantale. 
 

1) Vidange d’un réservoir 

a) Voir figure ci-contre.  

b) Le fluide étant en écoulement parfait et incompressible, le produit vitesse×section se conserve 

le long d’un tube de courant. En appelant A le point du démarrage d’une ligne de courant, on a 

𝑣𝐴𝑆 = 𝑣𝐵𝜎. Les pressions étant les mêmes à l’entrée et à la sortie (pression atmosphérique), on 

peut écrire pour cet écoulement parfait, quasi-stationnaire, homogène et incompressible :  

𝜌𝑔ℎ +
1

2
𝜌 (

𝜎

𝑆
𝑣𝐵)

2

= 𝜌𝑔𝑧𝐵 +
1

2
𝜌𝑣𝐵

2. D’où 𝑣𝐵 = √
2𝑔(ℎ−𝑧𝐵)

1−𝜎2/𝑆2  et 𝐷𝑆 = 𝑣𝐵𝜎 = 𝜎√
2𝑔(ℎ−𝑧𝐵)

1−𝜎2/𝑆2   

c) ℎ décroit dans le temps donc 
𝑑ℎ

𝑑𝑡
= −

𝜎

𝑆
√

2𝑔(ℎ−𝑧𝐵)

1−𝜎2/𝑆2 . Si 𝜎 ≪ 𝑆, on peut écrire des expressions 

approchées : 𝑣𝐵 = √2𝑔(ℎ − 𝑧𝐵) et 
𝑑ℎ

𝑑𝑡
= −

𝜎

𝑆
√2𝑔(ℎ − 𝑧𝐵). L’expression de 𝑣𝐵 correspond à la formule de Toricelli. 

 

2) Influence du siphon 

a) On peut reprendre les calculs précédents en remplaçant B par D, point où on retrouve la pression atmosphérique :  

𝐷𝑆 = 𝜎√2𝑔(ℎ − 𝑧𝐷). 

b) 
𝑑ℎ

𝑑𝑡
= −

𝜎

𝑆
√2𝑔(ℎ − 𝑧𝐷) . 

c) L’équation différentielle n’est pas linéaire. On peut la résoudre par exemple en séparant les variables :  
𝑑ℎ

√ℎ−𝑧𝐷
= −

𝜎

𝑆
√2𝑔 𝑑𝑡, dont la solution est √ℎ − 𝑧𝐷 = −

𝜎

2𝑆
√2𝑔 𝑡 + √ℎ0 − 𝑧𝐷.  

On en déduit la durée nécessaire pour un désamorçage, sachant qu’il se produit quand le niveau du liquide arrive en B : 

√𝑧𝐵 − 𝑧𝐷 = −
𝜎

2𝑆
√2𝑔 𝑡1 + √ℎ0 − 𝑧𝐷, d’où 𝑡1 =

𝑆

𝜎
√

2

𝑔
(√ℎ0 − 𝑧𝐷 − √𝑧𝐵 − 𝑧𝐷).  

 

3) Réservoir alimenté 

a) Pendant 𝑑𝑡, le volume entrant est 𝐷𝑖𝑑𝑡, le volume sortant par le siphon est 𝜎√2𝑔(ℎ − 𝑧𝐷) 𝑑𝑡. La variation algébrique du 

volume dans le réservoir est 𝑆 𝑑ℎ. La nouvelle équation différentielle est donc  𝑆
𝑑ℎ

𝑑𝑡
= 𝐷𝑖 − 𝜎√2𝑔(ℎ − 𝑧𝐷). 

b) La hauteur de liquide est constante quand le débit entrant est égal au débit sortant, donc pour 𝐷𝑖 = 𝜎√2𝑔(ℎ − 𝑧𝐷) , ce qui 

se produit pour une hauteur ℎ𝑆 = 𝑧𝐷 +
𝐷𝑖

2

2𝑔𝜎2. Ceci n’est possible que pour ℎ𝑆 > 𝑧𝐵  puisque dans le cas contraire, le siphon est 

désamorcé, donc il y a entrée de liquide sans qu’il y ait sortie, donc le niveau ne peut pas rester à une hauteur constante. 

c) Lorsque le siphon est désamorcé, le niveau monte régulièrement en raison du débit entrant (il n’y a pas de débit sortant). 

L’équation différentielle devient 
𝑑ℎ

𝑑𝑡
=

𝐷𝑖

𝑆
, donc ℎ(𝑡) =

𝐷𝑖

𝑆
𝑡 + 𝐶𝑡𝑒. La hauteur ℎ(𝑡) est une fonction affine du temps. 

d) Si le débit entrant est très important, il reste toujours supérieur à celui sortant (qui lui est limité par la hauteur de la cuve), 

donc le niveau monte jusqu’à ce que la cuve déborde, puis il n’évolue plus. 

Si le débit entrant n’est pas suffisant pour provoquer le débordement, trois évolutions peuvent se produire :  

• ou bien ℎ𝑆 > 𝑧𝐶 et le niveau se stabilise plus haut que C ; il n’y a plus d’évolution ; 

• ou bien 𝑧𝐵 < ℎ𝑆 < 𝑧𝐶  et le niveau se stabilise pour une hauteur intermédiaire entre B et C ; il n’y a plus d’évolution ; 

• ou bien ℎ𝑆 < 𝑧𝐵 et le niveau baisse jusqu’à ce que le siphon se désamorce, puis il remonte jusqu’à ce qu’il s’amorce,… 

La valeur critique du débit 𝐷𝑖 est donc celle correspondant à ℎ𝑆 = 𝑧𝐵 : 𝐷𝐶 = 𝜎√2𝑔(𝑧𝐵 − 𝑧𝐷). 

e) Lors de la montée, la loi est affine (cf c)). Lors 

de la descente, le niveau diminue de moins en moins 

vite puisque le débit sortant diminue quand la 

hauteur diminue. D’où l’allure ci-contre.  

La durée de la phase affine est 𝑡𝑎 =
𝑆

𝐷𝑖
(𝑧𝐶 − 𝑧𝐵).  

En ce qui concerne l’autre phase, si on néglige le 

débit entrant comme le propose l’énoncé, on peut 

utiliser le résultat du 2) c) : 

𝑡𝑏 − 𝑡𝑎 =
𝑆

𝜎
√

2

𝑔
(√𝑧𝐶 − 𝑧𝐷 − √𝑧𝐵 − 𝑧𝐷).  

La période est la somme des deux : 𝑇 =  
𝑆

𝐷𝑖
(𝑧𝐶 − 𝑧𝐵) +

𝑆

𝜎
√

2

𝑔
(√𝑧𝐶 − 𝑧𝐷 − √𝑧𝐵 − 𝑧𝐷). 

 

4) Analogie 

L’oscillateur hydraulique étudié ci-dessus est un oscillateur de relaxation, comme ceux vus en électronique, avec un 

comparateur à hystérésis et un intégrateur. De la même façon qu’un condensateur peut accumuler les charges électriques puis 

les déstocker, la cuve peut stocker du liquide puis le libérer.  

Les altitudes 𝑧𝐵 et 𝑧𝐶  jouent des rôles de seuils. Ils sont différents, comme les deux seuils d’un comparateur à hystérésis. 

Dans le cas électronique, l’énergie est apportée par l’alimentation de l’ALI  ;  

dans le cas hydraulique, cette énergie est apportée par l’arrivée de liquide. 
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PROBLEME 2 :  

1. Bilan de quantité de mouvement pour le {cylindre}. D’une part, on est en régime stationnaire donc 
𝜕𝑣⃗  

𝜕𝑡
= 0⃗ , d’autre part, le 

champ des vitesses en coordonnées cartésiennes serait de la forme 𝑣 = 𝑣(𝑥, 𝑦) 𝑒 𝑧 donc (𝑣 ⋅ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )𝑣 =  0⃗ .  
L’accélération de chaque particule de fluide composant le système est nulle. Donc la quantité de mouvement du système ne 

change pas au cours du temps : 
𝑑𝑝 

𝑑𝑡
= 0⃗ .  

De plus, le théorème de la résultante dynamique appliqué au système dans le référentiel du laboratoire, supposé galiléen, 

s’écrit : 
𝑑𝑝 

𝑑𝑡
= ∑𝐹 𝑒𝑥𝑡 , d’où ∑𝐹 𝑒𝑥𝑡 = 0⃗  . 

Les forces sont rappelées dans l’énoncé : forces pressantes en C1 et C2 (les forces pressantes latérales s’annulent par symétrie), 

le poids et les forces visqueuses, soit en projection sur (Oz):  

𝑝𝐶1𝜋𝑟² − 𝑝𝐶2𝜋𝑟² − 𝜌𝑔(𝑧𝐶2 − 𝑧𝐶1)𝜋𝑟²+ 𝜂
𝑑𝑉

𝑑𝑟
2𝜋𝑟ℓ = 0,  

d’où la relation de l’énoncé 
𝑑𝑉

𝑑𝑟
= −𝛼(𝑝̃𝑐1 − 𝑝𝑐2)𝑟 avec : 𝛼 =

1

2𝜂ℓ
.   

Supposons V(r) > 0, il faut alors 𝑝𝑐1 > 𝑝𝑐2.  > 0, la vitesse décroit avec r, elle est maximale au centre (r= 0) et nulle en r = a, 

par adhérence aux parois. Le signe de  est donc cohérent. 

 

2. Le terme 𝛼(𝑝𝑐1 − 𝑝𝑐2) ne dépend pas de r. En intégrant par rapport à 𝑟 l’équation de la question précédente et en utilisant la 

condition d’adhérence 𝑉(𝑎) = 0, on obtient : 𝑉(𝑟) =
𝛼(𝑝𝑐1−𝑝̃𝑐2)𝑎2

2
(1 −

𝑟2

𝑎2), soit 𝑉𝑚𝑎𝑥 =
𝛼(𝑝𝑐1−𝑝̃𝑐2)𝑎2

2
. 

3. 𝑄𝑣 = ∬ 𝑉(𝑟)𝑑𝑆 = ∫ 𝑉(𝑟)2𝜋𝑟 𝑑𝑟
𝑎

0𝑠𝑒𝑐𝑡𝑖𝑜𝑛
=

𝜋𝑎2𝑉𝑚𝑎𝑥

2
 soit 𝑄𝑣 =

𝜋𝛼(𝑝̃𝑐1−𝑝̃𝑐2)𝑎
4

4
 

4. Par définition 𝑄𝑣 = 𝜋𝑎2𝑉𝑚𝑜𝑦 d’où   𝑉𝑚𝑜𝑦 =
𝑉𝑚𝑎𝑥

2
=

𝛼(𝑝̃𝑐1−𝑝̃𝑐2)𝑎
2

4
 

5. En utilisant la question précédente pour exprimer la perte de charge, on a :  

Δ𝑝𝑟 =
4𝑉𝑚𝑜𝑦

𝛼𝑎²
=

8𝜂ℓ𝑉𝑚 𝑜𝑦

𝑎²
= 𝜆

1

2
𝜌𝑉𝑚𝑜𝑦

2
ℓ

2𝑎
 d'après l'énoncé soit 𝜆 =

32𝜂

𝑎𝜌𝑉𝑚𝑜𝑦
. 

6. 𝑅𝑒 =
𝜌𝑉𝑚𝑜𝑦𝑑

𝜂
=

2𝜌𝑉𝑚𝑜𝑦𝑎

𝜂
 d'où 𝜆 =

64

𝑅𝑒
. 

8. Si𝑅𝑒 > 2.103, l’écoulement est turbulent, sinon, il est laminaire. 
 

PROBLEME 3 :  

Q1.  Nombre d’oxydation du chrome dans les espèces chromées :  

+VI pour Cr2O7
2- et CrO4

-  +III pour Cr3+ et Cr(OH)3(s) 

+II pour Cr2+     0 pour Cr(s)  

Pour savoir quelle est l’espèce acide et quelle est l’espèce basique entre Cr2O7
2- CrO4

2- , le plus simple est de s’appuyer sur la 

réaction donnée à la question Q3 : Cr2O7
2- + H2O = 2CrO4

2- + 2H+ . 

Cr2O7
2- libère des protons H+, 

c’est un acide ; CrO4
2- est la base 

conjuguée. 

 

Diagramme complété : voir ci-

contre 

 

Q2.  pH de début de précipitation 

de Cr(OH)3(s) : c’est la frontière 

verticale pH = 4. 

Sur cette frontière : 
10OH 10− −  =   mol.L-1 et 

[Cr3+] = 𝑐𝑡𝑟𝑎 = 10−1mol.L-1. 

Cr(OH)3(s) = Cr3+ + 3 OH−. A 

l’équilibre chimique, la loi 

d’action des masses s’écrit :  
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Ks = 
[Cr3+][OH−]3

𝑐𝑟𝑒𝑓
4 = 10−1 ∗ 10−30 = 10−31  . 

  

Q3.  A l’équilibre chimique, 𝐾1 =
[CrO4

2−]
2
[H+]2

[Cr2O7
2−] 𝑐𝑟𝑒𝑓

3   

A la frontière entre Cr2O7
2- et CrO4

2-, on a : pH = 6,7 soit [H+] = 10−6,7 mol.L-1. 

Et l’égalité de quantité de l’élément chrome de part et d’autre donne : 2[Cr2O7
2−] = [CrO4

2−]. 

Du fait que la concentration totale en élément chrome dissous est limitée à 𝑐𝑡𝑟𝑎 =  10−1 mol.L-1, on a, sur la 

frontière, 2[Cr2O7
2−] + [CrO4

2−] = 10−1 mol.L-1 

D’où [Cr2O7
2−] = 0,025 mol.L-1 et [CrO4

2−] = 0,05 mol.L-1. 
2 2 6,7 2 4 6,7 2

14,4

1 3 3

(5.10 ) *(10 ) (25.10 )*(10 )
K 10

25.10 25.10

− − − −
−

− −
= = =   

pK1 = 14,4. 

 

Q4.  Pour trouver et équilibrer la réaction rédox globale, la meilleure méthode consiste à chercher, pour commencer, 

les deux demi-équations rédox : 
1

2
 Cr2O7

2− + 7H+ + 3𝑒− = Cr3+   + 
7

2
H2O 

SO4
2−  + 3H+ + 2𝑒−  = HSO3

− + H2O  

Puis on fait une combinaison linéaire des deux ½ réactions de manière à éliminer les 𝑒− : 

Cr2O7
2− + 3 HSO3

− + 5H+ = 2 Cr3+ + 3 SO4
2− + 4H2O  

 

A l’équilibre : 

𝐸°(Cr2O7
2−/Cr3+) +

0,06

3
log

√[Cr2O7
2−][H+]7

[Cr3+]𝑐𝑟𝑒𝑓
6,5 = 𝐸°(SO4

2−/HSO3
−) +

0,06

2
log

[SO4
2−][H+]3

[HSO3
−]𝑐𝑟𝑒𝑓

3  

𝐸°(Cr2O7
2−/Cr3+) +

0,06

6
log

[Cr2O7
2−][H+]14

[Cr3+]2
= 𝐸°(SO4

2−/HSO3
−) +

0,06

6
log

[SO4
2−]

3
[H+]9

[HSO3
−]3

  

𝐸°(Cr2O7
2−/Cr3+) − 𝐸°(SO4

2−/HSO3
−) = 0,01 log(𝐾2)  

log(𝐾2) =
°(Cr2O7

2−/Cr3+)−𝐸°(SO4
2−/HSO3

−)

0,01
.        log(𝐾2)  =

1,33−0,17

0,01
= 116 

K2 = 10116 >>>1. La réaction est quasi-totale. 

 

Q5.  Il nous faut superposer le diagramme E-pH du chlore et celui du cyanure.  

Ce dernier est très simple : la demi-réaction rédox est : CNO− + 2𝑒− + 2H+ =  CN− + H2O . 

Le potentiel de Nernst associé est 𝐸 = 𝐸0 +
0,06

2
log (

[CNO−][H+]2

[CN−]
). Et sur la frontière, [CNO−] = [CN−], donc 

𝐸 = 𝐸0 − 0,06 𝑝𝐻 
= −0,13 − 0,06 𝑝𝐻 . 

 

Les domaines de prédominance de 

CN− et ClO− sont disjoints, donc 

ClO− (bon oxydant car placé au-

dessus d’une droite située haut) 

oxyde CN− (bon réducteur car au-

dessous d’une droite située bas) de 

façon quasi-totale suivant la 

réaction : CN− + ClO− =CNO− + 

Cl−(règle du gamma très 

favorable).  

 

Q6.  Point de vue thermodynamique : 

En acidifiant, ClO− se transforme 

pour commencer, en HClO.  

Puis, lorsque le pH devient faible 

(inférieur à environ 2, cf diagramme E-pH), les domaines de prédominance de HClO et Cl− sont disjoints. Il y 

a média-mutation de HClO et Cl− en Cl2. 
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HClO + Cl− + H+ = Cl2 + H2O 

Qui provient de HClO + e− + H+ =
1

2
Cl2 + H2O  et     

1

2
Cl2  +  e− = Cl−  

  

Cl2 est très toxique, il ne faut pas acidifier une solution d’eau de Javel. 

 
 

Pb n°4 : Physique : Ondes sonores 
A1a) On applique le principe fondamental de la dynamique à une particule de fluide dans le référentiel terrestre, supposé 

galiléen : 𝜌 𝑆 𝑑𝑥 (
𝜕𝑣⃗ 

𝜕𝑡
+ (𝑣 ⋅  𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 𝑣 ) = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 𝑆 𝑑𝑥 , d’où 𝜌 (

𝜕𝑣⃗ 

𝜕𝑡
+ (𝑣 ⋅  𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 𝑣 ) = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃    (E1) 

A1b) Equation locale de conservation de la masse : 𝑑𝑖𝑣(𝜌𝑣 ) +
𝜕𝜌

𝜕𝑡
= 0   (E2) 

A1c) 𝜒 = −
1

𝑉
(
𝜕𝑉

𝜕𝑃
)
𝑆
, ou encore 𝜒 =

1

𝜌
(
𝜕𝜌

𝜕𝑃
)
𝑆

  (E3) 

A2a) Approx. acoustique : │p/P0│,│µ/ρ│,│v/c0│ sont des infiniment petits du 1er ordre. 

A2b) (E1), (E2) et (E3) deviennent (cf cours) :  𝜌0
∂𝑣

∂𝑡
= −

∂𝑝

∂𝑥
 (E4)     𝜌0

∂𝑣

∂𝑥
+

∂µ

∂𝑡
= 0 (E5)       µ = 𝜌0𝜒𝑝 (E6) 

A3a) On combine ces 3 équations et on trouve 
∂2𝑣

∂𝑥2 − 𝜌0𝜒
∂2𝑣

∂𝑡2 = 0 et 
∂2𝑝

∂𝑥2 − 𝜌0𝜒
∂2𝑝

∂𝑡2 = 0. 

A3b) 𝑐0 =
1

√𝜌0𝜒
   c0 = 0,33 km.s-1   puisque 7 × 1,3 ≃ 9 

A3c) Modèle du gaz parfait : 𝑃𝜌−𝛾 = 𝐶𝑡𝑒, d’où 
𝑑𝑃

𝑃
− 𝛾

𝑑𝜌

𝜌
= 0 et 𝜒 =

1

𝛾𝑃0
.  𝑐0 = √

𝛾𝑅𝑇

𝑀
. 

B1a) L’OPPS a une structure longitudinale. On le démontre en prenant les notations complexes, et 𝜌 (
𝜕𝑣⃗ 

𝜕𝑡
) = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 conduit à 

𝜌𝑗𝜔𝑣 = 𝑗 𝑘⃗ 𝑝 . On a bien montré que 𝑣  est colinéaire à 𝑘⃗ , donc sa partie réelle l’est aussi. 

B1b) Exemples d’ondes planes longitudinales : onde longitudinale dans un ressort massique, onde de courant dans une ligne 

électrique bifilaire 

Exemples d’ondes planes transversales : onde de déplacement dans une corde de guitare, champ 𝐸⃗  ou 𝐵⃗  d’une onde 

électromagnétique dans le vide, ou onde de tension dans une ligne bifilaire. 

B2a) L’onde se propage dans le sens des 𝑥 croissants. En effet si la phase 𝜔𝑡 − 𝑘𝑥 prend une certaine valeur 𝜑0 en 𝑥1 à 𝑡1, elle 

reprend la même valeur à 𝑡2 > 𝑡1 en 𝑥2 tel que 𝜔2  − 𝑘𝑥2 =  𝜔𝑡1 − 𝑘𝑥1, donc tel que 𝑥2 = 𝑥1 +
𝜔(𝑡2−𝑡1)

𝑘
, donc 𝑥2 > 𝑥1. 

B2b) L’équation de d’Alembert donne : (−𝑗𝑘)2𝑝 −
(𝑗𝜔)2

𝑐02 𝑝 = 0, d’où la « relation de dispersion »  𝑘2𝑐0
2 = 𝜔2. 

B2c) (E5) et (E6) donnent 𝑗 𝑘 𝑣 = 𝜒 𝑗𝜔 𝑝, d’où 𝑝 = 𝜌0𝑐0 𝑣. La surpression et la vitesse sont en phase (pour l’onde se 

propageant dans le sens des x croissants). 

B3a) Le vecteur 𝑅⃗  se nomme vecteur densité de flux de puissance sonore (ou vecteur densité de courant énergétique, ou de 

Poynting sonore). 

B3b) 𝑅𝑆 = 𝐹𝑣 = 𝑝𝑆𝑣, d’où 𝑅 = 𝑝𝑣, puis < 𝑅 >= ⟨𝜌0𝑐0 𝑣
2⟩ = ⟨

𝑝2

𝜌0𝑐0
 ⟩, donc < 𝑅 > =

𝑝0
2

(2𝜌0𝑐0)
. 

B3c) Intensité acoustique : 𝐼 = < ||𝑅⃗ ||  > .  𝐼𝑑𝐵 = 10 log (
𝐼

𝐼𝑚𝑖𝑛
) , avec 𝐼𝑚𝑖𝑛 = 1.10−12W.m−2 . 

On utilise 10log pour les grandeurs énergétiques (quadratiques), et 20log pour les grandeurs de base, donc non quadratiques 

(tension, courant, vitesse, surpression). On fait cela pour trouver le même nombre de dB, que l’on s’intéresse aux grandeurs de 

base ou aux grandeurs quadratiques. 

B3d) Si l’amplitude de la surpression acoustique de l’OSPPS est multipliée par 2, l’amplitude de la vitesse est multipliée  

par 2 aussi (puisque 𝑣 =
𝑝

𝜌0𝑐0
). 

Et l’intensité acoustique est multipliée par 22 =4. 

B3e) Si l’amplitude de la surpression acoustique de l’OSPPS est multipliée par 100, alors l’intensité en dB subit un  

accroissement de 40 dB. En effet, 
𝐼2

𝐼1
= 104 puis 10 log(104) = 40. 

 


