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PROBLEME 1 Vase de Tantale.

1) Vidange d’un réservoir z

a) Voir figure ci-contre.

b) Le fluide étant en écoulement parfait et incompressible, le produit vitesseXsection se conserve
le long d’un tube de courant. En appelant A le point du démarrage d’une ligne de courant, on a
1,48 = vga. Les pressions étant les mémes a I’entrée et a la sortie (pression atmosphérique), on
peut écrire pour cet écoulement parfait, quasi-stationnaire, homogéne et incompressible :
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¢) h décroit dans le temps donc Pl —% %. Si o < S, on peut écrire des expressions

¢
approchées : ‘VB =./2g(h — zg)| et % =— %,/ 2g(h — zp). L expression de vy correspond 4 la [formule de Toricelli.
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pgh+3p (%173) = pgzs +5pvs. Dol

2) Influence du siphon
a) On peut reprendre les calculs précédents en remplacant B par D, point ou on retrouve la pression atmosphérique :

’DS =0y2g(h— ZD).‘
dh
b= =-229(h—2).
¢) L’équation différentielle n’est pas linéaire. On peut la résoudre par exemple en séparant les variables :
dh .
N = —%,/Zg dt, dont la solution est \/h — zp, = —%,IZQ t+hy—2zp.

On en déduit la durée nécessaire pour un désamorcage, sachant qu’il se produit quand le niveau du liquide arrive en B :

\VZg — Zp = _ZO—_S\/E t1 +ﬂh0 — Zp, d’Ol‘l tl = E\E(—\[ho — Zp —+\/Zp _ZD)’

(o

3) Réservoir alimenté
a) Pendant dt, le volume entrant est D;dt, le volume sortant par le siphon est /2g(h — zp) dt. La variation algébrique du
volume dans le réservoir est S dh. La nouvelle équation différentielle est donc S % =D; —a+2g(h — zp).

b) La hauteur de liquide est constante quand le débit entrant est égal au débit sortant, donc pour D; = g+/2g(h — zp) , ce qui

2

D . - . . .
29;2. Ceci }n’est possible que pour hg > ZB| puisque dans le cas contraire, le siphon est

désamorcé, donc il y a entrée de liquide sans qu’il y ait sortie, donc le niveau ne peut pas rester a une hauteur constante.
c) Lorsque le siphon est désamorcé, le niveau monte réguliérement en raison du débit entrant (il n’y a pas de débit sortant).

se produit pour une hauteur hg = z, +

L’équation différentielle devient % = %, donc h(t) = % t + Cte. La hauteur h(t) est une fonction affine du temps.

d) Si le débit entrant est trés important, il reste toujours supérieur a celui sortant (qui lui est limité par la hauteur de la cuve),
donc le niveau monte jusqu’a ce que la cuve déborde, puis il n’évolue plus.
Si le débit entrant n’est pas suffisant pour provoquer le débordement, trois évolutions peuvent se produire :
e oubien hg > z. et le niveau se stabilise plus haut que C ; il n’y a plus d’évolution ;
e oubien zz < hg < z. et le niveau se stabilise pour une hauteur intermédiaire entre B et C ; il n’y a plus d’évolution ;
e oubien hg < zp et le niveau baisse jusqu’a ce que le siphon se désamorce, puis il remonte jusqu’a ce qu’il s’amorce, ...

La valeur critique du débit D; est donc celle correspondant a hg = zp : ‘DC = 0,/29(zg — zp)|.
e) Lors de la montée, la loi est affine (cf ¢)). Lors
de la descente, le niveau diminue de moins en moins
vite puisque le débit sortant diminue quand la

hauteur diminue. D’ou 1’allure ci-contre.

La durée de la phase affine est t, = % (zc — zp).

En ce qui concerne 1’autre phase, si on néglige le
débit entrant comme le propose 1’énoncé, on peut
utiliser le résultat du 2) ¢) :

s |2
tb_t(l=;\/;(W'ZC_ZD_VZB_ZD)'
La période est la somme des deux : [T = % (z¢c — zg) + S\E (,/zc —7Zp —+\Zg — ZD).

4) Analogie

L’oscillateur hydraulique étudié ci-dessus est un oscillateur de relaxation, comme ceux vus en électronique, avec un
comparateur a hystérésis et un intégrateur. De la méme fagon qu’un condensateur peut accumuler les charges électriques puis
les déstocker, la cuve peut stocker du liquide puis le libérer.

Les altitudes zp et z jouent des roles de seuils. Ils sont différents, comme les deux seuils d’un comparateur a hystérésis.
Dans le cas électronique, 1’énergie est apportée par I’alimentation de I’ALI ;
dans le cas hydraulique, cette énergie est apportée par 1’arrivée de liquide.
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1. Bilan de quantité de mouvement pour le {cylindre}. D une part, on est en régime stationnaire donc 0_1: = 0, d’autre part, le

champ des vitesses en coordonnées cartésiennes serait de la forme ¥ = v(x, y) €, donc (¥ - grad)v = 0.
L’accélération de chaque particule de fluide composant le systéme est nulle. Donc la quantité de mouvement du systéme ne

o

dp =
change pas au cours du temps : i 0.

De plus, le théoréme de la résultante dynamique appliqué au systéme dans le référentiel du laboratoire, supposé galiléen,
. d 7] - . - —
s’écrit : d_lt) =Y Foxt, o0 ), Fory = 0.
Les forces sont rappelées dans 1’énoncé : forces pressantes en C; et C; (les forces pressantes latérales s’annulent par symétrie),
le poids et les forces visqueuses, soit en projection sur (0z):

PciTr? — Peamr? — pg(Zez — Ze)Tr? + 1) Z_‘r/ 2nrl = 0,

. . \ . dv - -
d’ou la relation de I’énoncé — = —a(Pe1 — D)7 avec : | =

1
~oane|

Supposons V(r) > 0, il faut alors p.; > P.,. o> 0, la vitesse décroit avec r, elle est maximale au centre (7= 0) et nulle enr = a,

par adhérence aux parois. [Le signe de o est donc cohérend.

2. Le terme a(P; — P¢z) ne dépend pas de r. En intégrant par rapport a r 1’équation de la question précédente et en utilisant la

5 5 2 2
condition d’adhérence V(a) = 0, on obtient : V(r) = 201 —Pez)a (1 - Z—), S0it Vipax =

2

2

| 2Vmax . Tm(ﬁc _50 )a4
3. Qv = [Jiperion V)AS = [ V(r)2mr dr = Eom soit @, = ———2—

4. Par définition Q,, = ma*V;,,y d’on

4

— Vimax “(5c1_5c2)a2

Vmoy_ 5 2

5. En utilisant la question précédente pour exprimer la perte de charge, on a :

_ WVnoy _ 81l¥noy _ 1

Apr aaz

[2% d 2pV, a R
6. R, = Fmoy” — ZPmoyZ qigy

a? 2 %Y 2a

64
A==\
Re

8. SiR, > 2.103, I’écoulement est turbulent] sinon, il est laminaird|.

PROBLEME 3 :

Q1. Nombre d’oxydation du chrome dans les espéces chromées :

¢
= A= pV;2,, — d'aprés I'énoncé soit|A

+VI pour Cr07* et CrOy
+I1I pour Cr?*

+III pour Cr** et Cr(OH)3)
0 pour Cr

a(Pe1—Pez)a’

2

32n

B ameoy .

Pour savoir quelle est I’espéce acide et quelle est I’espéce basique entre Cr,0-,>” CrO4>, le plus simple est de s’appuyer sur la
réaction donnée a la question Q3 : Cr,07* + H,0 = 2CrO4* + 2H" .

ICr,0-* libére des protons H)

c’est un acide| ; CrO,> est la base

conjuguée.

Diagramme complété : voir ci-
contre

Q2.  pH de début de précipitation

de Cr(OH);3() : [c’est la frontiére
&erticale pH=4.
Sur cette frontiére :

[OHf} =10"" molL! et

[Cr3*] = ¢tpq = 107 mol. L.
Cr(OH)3 = Cr3* + 3 OH™. A

1I’équilibre chimique, la loi

d’action des masses s’écrit :

E(V)
15 |
\ Cr,07*
1 ~~
\ \ Crog
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Cr(OH)y,
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Cr, 5]
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pH
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Q3.

Q4.

Q5.

Q6.

3+ -3
Ks =S ORP _ 4914 10730 = [10-31].

Cref

[cro,27]%[H+]2
[Cr0.7 ] cis
A la frontiére entre Cr,07* et CrO4*, on a : pH = 6,7 soit [H*] = 1077 mol.L"".

Et I’égalité de quantité de I’élément chrome de part et d’autre donne : Z[Crz 072_] = [Cr042_].

Du fait que la concentration totale en élément chrome dissous est limitée a ¢, = 107! mol.L"!, on a, sur la
frontiére, 2[Cr,0,°7| + [Cr0,*"] = 10~* mol.L"!

D’ou [Cr,0,%7] = 0,025 mol.L" et [Cr0,*”] = 0,05 mol.L".

(1070 (25.107)*(107Y

! 25.107 25.107
pKi = 14.4

Pour trouver et équilibrer la réaction rédox globale, la meilleure méthode consiste a chercher, pour commencer,
les deux demi-équations rédox :

> Cr0,%7 +7H* +3e™ = Cr¥* +2H,0

A I’équilibre chimique, K; =

— 10—14,4

SO03~ +3H* +2e~ =HSO3 + H,0
Puis on fait une combinaison linéaire des deux % réactions de maniére a éliminer les e™ :
Cr,0,%~ + 3 HSO3 + 5H* =2 Cr3* + 3 S02~ + 4H,0

A I’équilibre :

2=-1rg+17
EO(C 0 2_/C 3+) n 0,061 [Cr207 ][H ] 3 EO(SO 2_/HSO _) N 0,061 [8042_] [H+]3
r,Us r 3 og [Cr3+]cf2c - 4 3 2 0og [HSO?)_]CEef

. 2 0,06, [Cry0, % |[H¥* 5 _. 006, [5042
E (CI'207 /CI‘3+) + Tlogz[&T]z =F (504 /HSOg ) + Tlogw

E°(Cr,0,%~/Cr3*) — E°(S0,%~ /HSO5 ) = 0,01 log(K,)
0 2- 3+ _ o, 2— — —
log(K,) = (Cr,0,2~ /Cr )0'(;51 (S0,%~/HSO3 ). log(K,) = 1,32'0(1),17 — 114

K, = 10'¢ >>>1. |La réaction est quasi-totale.

Il nous faut superposer le diagramme E-pH du chlore et celui du cyanure.

Ce dernier est trés simple : la demi-réaction rédox est : CNO™ + 2e~ + 2H* = CN~ + H,0.

—1rg+12
Le potentiel de Nernst associé est E = E® + O'Zﬁlog (%
E = EO - 0,06 pH E(V)

= —0,13 — 0,06 pH .

). Et sur la frontiére, [CNO~] = [CN~], donc

A

Les domaines de prédominance de
CN~ et CIO™ sont disjoints, donc HCIO
ClO~ (bon oxydant car placé au- CL

dessus d’une droite située haut) La2v
oxyde CN~ (bon réducteur car au- ar o~
dessous d’une droite située bas) de
fagon quasi-totale suivant la
réaction : CN~ + CIO~ =CNO~ + |
Cl (régle du gamma  trés
favorable).

v

CNO~
Point de vue thermodynamique :
En acidifiant, C1O~ se transforme
pour commencer, en HCIO.

Puis, lorsque le pH devient faible
(inférieur a environ 2, cf diagramme E-pH), les domaines de prédominance de HCIO et C1~ sont disjoints. Il y
a fmédia—mutation de HCIO et CI” en C12|.

pH
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HCIO + CI~ + H* = Cl, + H,0
Qui provient de HCIO + e~ + H* = 2Cl, + H,0 et -Cl, + e~ =CI

Cl; est trés toxique, il ne faut pas acidifier une solution d’eau de Javel.

|Pb n°4 : Physique : Ondes sonores\

Ala) On applique le principe fondamental de la dynamique a une particule de fluide dans le référentiel terrestre, supposé

galiléen : p S dx (Z—f + (¢ grad) 17) = —gradP Sdx ,d’ou|p (Z—f + (¢ grad) 17) = —gradP| (El)

A1b) Equation locale de conservation de la masse : |div(pv) + Z—f =0| (E2)

Alc) y = —l(g—g) ou encore [y = _(ap) (E3)

apP

A2a) Approx. acoustique : | p/Po | , | wp | , | v/co | sont des |inﬁniment petits du 1¢ ordre|.

A2b) (E1), (E2) et (E3) deviennent (cf cours) : pg % = — a_p (E4) po o + —=0(ES5) u=poxp (E6)

2
A3a) On combine ces 3 équations et on trouve —— Za — Po )(ﬁ =0 t — Po )(27 = 0.
A3b) ¢y = \/% co=0,33 km.s”!| puisque 7 x 1,3 =9
A3c) Modéle du gaz parfait : Pp~" = Cte, d’ou a_ yd—p =0ety= . Co = e
P p YPo M

B1a) L’OPPS a une structure [longitudinale. On le démontre en prenant les notations complexes, et p (Z—f) = —gradP conduit a

pjwv = j Ep . On a bien montré que ¥ est colinéaire a E, donc sa partie réelle 1’est aussi.

B1b) Exemples d’ondes planes longitudinales : onde longitudinale dans un , onde de [courant dans une ligne]

Electriqud bifilaire
Exemples d’ondes planes transversales : onde de déplacement dans une , champ E ou B d’une onde

¢électromagnétique dans le vide, ou onde de tension dans une ligne bifilaire.

B2a) L’onde se propage dans le sens des x croissants. En effet si la phase wt — kx prend une certaine valeur ¢, en x; a t;, elle
w(tz—t1)

reprend la méme valeur a t, > t; en x;, tel que w, — kx, = wt; — kx;, donc tel que x, = x; + , donc x, > x;.

(32
B2b) L’équation de d’Alembert donne : (—jk)?p — (]CL;p = 0, d’ou la « relation de dispersion » k2cy? = w?.
[ 02 =
B2c) (E5) et (E6) donnent j k v =y jw p, d’ou p = pycy v. La surpression et la vitesse sont (pour I’onde se

propageant dans le sens des x croissants).

=2 . 7 . r r 5
B3a) Le vecteur R se nomme Ivecteur densité de flux de puissance sonore| (ou vecteur densité de courant énergétique, ou de
Poynting sonore).

B3b) RS = Fv = pSv, d’ou R = pv, puis < R >= (pycy v?) = <

> donc< R >=
(2P0Co)

B3c) Intensité acoustique : [I = < ||§|| >\ |Izg = 1010g( ) avec |Iml-n =1.10"2?W.m™? |

mm

On utilise 10log pour les grandeurs énergétiques (quadratiques), et 20log pour les grandeurs de base, donc non quadratiques
(tension, courant, vitesse, surpression). On fait cela pour ftrouver le méme nombre de dB|, que I’on s’intéresse aux grandeurs de
base ou aux grandeurs quadratiques.

B3d) Si I’amplitude de la surpression acoustique de I’OSPPS est multipliée par 2, I’amplitude de la vitesse est multipliée

3 . P
par 2 aussi| (puisque v =
PoCo
i i =4

B3e) Si ’amplitude de la surpression acoustique de I’OSPPS est multipliée par 100, alors I’intensité en dB subit un
laccroissement de 40 dB|. En effet, ;—2 = 10* puis 10log(10*) = 40.
1




