n°s feuille 20 en 25-26 : solution

1°) Le fluide étant parfait, I’équation de propagation est celle de d’Alembert, donc la relation de dispersion est

k =2

Cq

Dans la suite de cette question, on adoptera un indice « inc », puisque 1’on s’intéresse a une onde « incidente ».

L’onde étant progressive, et se propageant selon +1iiy, et v;,.(x, t) étant le champ des vitesses selon +1i,, on a la

relation entre la surpression p; et la vitesse : Pyjnc = ZgVine, d’0U ‘plinc (x,t) = Z,vo cos(wt — kx)‘.

La question suivante porte sur le vecteur densité de flux de puissance sonore, 7, :

_ =

Thne = Piinc Vines
d’ou
Tme = ZqV§ cos?(wt — kx) .

2 2
ZaVy = __ PoCaVi
2 x 2

Et sa valeur moyenne est < 7, >= Uy, qui est un vecteur. Ce qu’on nous demande est en fait

. ., .. Zavd cqvi
I’intensité sonore incidente : ljp, = == = p(’T‘”’

2°) Intensité (ou niveau) sonore : .

Le fluide air et le muscle (assimilé ici a un fluide, d’impédance acoustique Z,,,) sont supposés étre des fluides

m
parfaits. Donc les ondes planes s’y propagent sans s’atténuer, donc les intensités sonores peuvent étre calculées en
n’importe point du domaine ou ces ondes existent.

Pour le champ des vitesses de I’onde transmise on a, en notant k,,, le nombre d’onde dans le muscle
(avec kp, = Cﬁ) Ve (X, 1) = Vg cos(wt — kpypx) Uy

m
Et en utilisant le coefficient de transmission T, v¢y cos(wt — 0) = T vy cos(wt — 0), donc vy = T V.
D’ou Vg (x,t) = 1y cos(wt — kpypx) Uy.
Puis pytr = ZyVsr, 00 P14 (X, t) = TZ,, v cos(wt — kpx).

On a donc Ty = Prgr Vir» A’00 Ty = T2Zv3 cos2 (0t — kppX) Uy.

Pour le champ des vitesses de I’onde réfléchie on a : v, (x,t) = v, cos(wt + kx) Uy.
Et en utilisant le coefficient de réflexion 7, v, cos(wt + 0) = r v cos(wt — 0), donc v, = 1 V.

D’ou vy, (x,t) = rvg cos(wt + kx) u,.

Puis (du fait qu’on n’utilise que le vecteur unitaire u,, et que v, est la composante v, selon ce +uy) P1r = —Zg ¥y,

d’ou pyi,(x,t) = —rZ,v, cos(wt + kx).
On a donc T, = pqy Uy, d0U T, = —12Z,08 cos? (wt + kx) .

Calculons a présent les intensités acoustiques :

. . . Zavi
e Enn’importe quel point d’abscisse x < 0, [;, = =2¢



. . R . T2 Zvd
e Enn’importe quel point d’abscisse x = 0, I, = Tmo

. . . 2Zqv8
e Enn’importe quel point d’abscisse x < 0, [,. = %
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On peut rappeler (ou redémontrer) les résultats du cours, non demandés explicitement ici : r = =*—" et 2

3°) Avec I’animation python, on voit tout d’abord que I’onde incidente, qui arrive dans le domaine x < 0, est

d’amplitude 1,0 donc vy = 1,0 m.s™ 1.

Une fois que I’onde réfléchie est bien en place on voit que, dans le domaine x < 0, I’onde de vitesse observée est
quasiment une onde stationnaire (il y a une onde stationnaire + une onde régressive, mais on voit surtout la

stationnaire)
En revanche, dans le domaine x > 0, on a une onde 100% progressive.

Or, ’onde de vitesse dans le domaine x > 0 est uniquement I’onde transmise ; son amplitude est donc 7 v,. Et on
mesure sur le graphique 2 que T v, =~ 0,05 m.s™1, donc on peut trouver .

7= 0,05.

Cherchons a mieux comprendre ce qui se passe dans le domaine x < 0 :

On a vu dans le cours que 1 4+ r = 7, donc r = —0,95, ce qui confirme que I’onde globale dans le domaine x < 0
est quasi stationnaire, puisque 1’onde réfléchie est presque de méme amplitude (|7| proche de 1) que ’onde

incidente.

Dans le domaine x < 0, I’onde de vitesse est vy, (x < 0,t) = vy cos(wt — kx) + rvy cos(wt + kx),

c’est-a-dire v (x < 0,t) = vo(cos(wt — kx) + r cos(wt + kx)).

Puisque 7 est proche de —1, on peut écrire r = —1 + (r + 1), la quantité (r + 1) étant petite devant (—1).
On a donc : v (x < 0,t) = vy(cos(wt — kx) + (—1 + r + 1) cos(wt + kx)),
c’est-a-dire vy (x < 0,t) = vy(cos(wt — kx) — cos(wt + kx)) + vo(r + 1) cos(wt + kx)
= 2v, sin(wt) sin(kx) + vo(r + 1) cos(wt + kx)
Il y a bien un terme prépondérant (le premier, en bleu), de type onde plane stationnaire harmonique, d’amplitude
2vy,
donc 2,0 m.s™1, avec un nceud en x = 0.
Et il y a un terme bien plus faible en amplitude (le second, en rouge), de type onde progressive, qui se propage,

dans le sens x décroissant, d’amplitude 1 + r c¢’est-a-dire = 0,05.

s . . . Z 2 , B
En utilisant la relation donnant ¢, rappelée au 2°) : t = on obtient Z—m =-—1,dou Z—m = 39,
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On en déduit r = ZZZ =—0,95¢etR=712=0,90 et [T = ZZ—m‘rZ =0,10/(onaT =1 —R).
+

Sr— a

Zq

Pour trouver le rapport des célérités, on va utiliser d’autres informations présentes sur les images : les périodes
spatiales des ondes dans les deux milieux. On rappelle que, grace a la linéarité des équations régissant les ondes
acoustiques dans les fluides parfaits, si I’onde incidente est purement sinusoidale, les ondes transmise et réfléchie le
sont aussi, avec la méme fréquence.
Mais la longueur d’onde fait intervenir la célérité, qui n’est pas la méme dans les deux milieux.

.y . C
Dans le milieu « air » (x < 0), 4, = TCL

oge C
Dans le milieu « muscle » (x > 0), 4, = Tm
Or on mesure sur I’image fixe générée par python que, exprimées en unités arbitraires de 1’axe horizontal :

o Ag=65u.a.

o An=27u.a.

Cm 27

ca 65

On en déduit 4,2

4°) Remarque préliminaire : dans ce qui suit, A, et By sont a priori des complexes, et devraient €tre soulignés,

comme dans I’énoncé. Mais on verra dans les calculs qu’ils sont réels, comme a,, donc on peut ne pas les

souligner.

On écrit la continuité de la vitesseenx =0:  a; = Ay + By D
Continuité de la surpressionen x =0 : Zaaq = (Ag - Bg)Ze (2).
Continuité de la vitesseen x =¢ : Age_jkee + Bgejkee = C, e Jkme 3).
Continuité de la surpressionen X =e : Z,(Age~Tkee — B elke?) = 7, Ce=/kme 4)

Les équations (1) et (2) donnent : A, = % (1 + %) et By = %( - %)

En reportant dans (3) : % [(1 + i—‘:) e Jkee 4 (1 - i_‘:) ejkee] = C, e Jkme 3"

En reportant dans (4) : Z, % (1 + %) e Tkee — (1 - %) ejkee] = ZyCppe~Time 4)

(Ze+Zg)e Tkee—(Z,—2)elkee
€ (Ze+Za)e_jkee+(Ze_Za)ejkee m

En divisant (4’) par (3’) puis en multipliant en haut et en bas par Z, : Z

D’ot, en multipliant de chaque c6té par (Z, + Z,)e/*e® + (Z, — Z,)e/*® puis en passant tout & droite :
0="2n(Z, +Zy)e ke + 7, (Z, — Z,)e/*e® — Z,(Z, + Zg)e T¥e® + Z,(Z, — Z,) e *e®

Puis en multipliant par e/¥e® et en regroupant certains termes :



0= Zm(Ze + Za) - Ze(Ze + Za) + ejZkee[Zm(Ze - Za) + Ze(Ze - Za)]>
D’ou ejZkee(Zm +Z)(Zg—Zo) = Uy —2e)(Ze +Zy)

(Ze +Za)(Zm_Ze)
(Za=Ze)(Zm+Ze) (Eq D).

Ce qui donne : exp(2jk.e) =
Le terme de droite étant réel, cette relation impose que le terme de gauche le soit aussi. Puisque son module vaut 1,

le membre de gauche est donc égal a +1 ou —1. Il en est donc de méme pour le membre de droite.

e Lasolution +1 condvuita (Z, —Zo)(Zp +Ze) = (Ze + Zo)Zyy — Ze)
COUZo L — Lol + Zale™ 23 = Zolu™® Lol — 23 — ZaZe
et, apres simplification, 2Z,(Z,, — Z;) = 0,
ce qui ne convient pas, puisque Z, # 0 (sinon, (2) conduit a a; = 0, donc pas d’onde incidente)
et Z, # Z, puisque les impédances acoustiques de 1’air et du muscle sont tres différentes (c’est pour ¢a

qu’on met du gel).

e Donc c¢’était la solution —1 :
(Za - Ze)(Zm + Ze) = _(Ze + Za)(Zm - Ze)

&0t ZyZpm, /izm/ﬁaze 2Ly —7.7, +Z§/+ ZoZ,
40l 222 = 274 Zy,, puis|Z, = \[ZaZy)

Il faut donc exp(2jk.e) = —1, c’est-a-direle = (2n + 1) %, avec n entier.




