
n°5 feuille 20 en 25-26 : solution 

 

1°) Le fluide étant parfait, l’équation de propagation est celle de d’Alembert, donc la relation de dispersion est  

𝑘 =
𝜔

𝑐𝑎
. 

Dans la suite de cette question, on adoptera un indice « inc », puisque l’on s’intéresse à une onde « incidente ». 

L’onde étant progressive, et se propageant selon +𝑢⃗ 𝑥, et 𝑣𝑖𝑛𝑐(𝑥, 𝑡) étant le champ des vitesses selon +𝑢⃗ 𝑥, on a la 

relation entre la surpression 𝑝1 et la vitesse : 𝑝1𝑖𝑛𝑐 = 𝑍𝑎𝑣𝑖𝑛𝑐, d’où 𝑝1𝑖𝑛𝑐 (𝑥, 𝑡) = 𝑍𝑎𝑣0 cos(𝜔𝑡 − 𝑘𝑥).   

La question suivante porte sur le vecteur densité de flux de puissance sonore, 𝜋𝑖𝑛𝑐⃗⃗⃗⃗ ⃗⃗⃗⃗  : 

 𝜋𝑖𝑛𝑐⃗⃗⃗⃗ ⃗⃗⃗⃗ = 𝑝1𝑖𝑛𝑐  𝑣𝑖𝑛𝑐⃗⃗ ⃗⃗ ⃗⃗  ⃗,  

d’où  

𝜋𝑖𝑛𝑐⃗⃗⃗⃗ ⃗⃗⃗⃗ = 𝑍𝑎𝑣0
2 cos2(𝜔𝑡 − 𝑘𝑥) 𝑢⃗ 𝑥.  

Et sa valeur moyenne est < 𝜋𝑖𝑛𝑐⃗⃗⃗⃗ ⃗⃗⃗⃗ >=
𝑍𝑎𝑣0

2

2
 𝑢⃗ 𝑥 =

𝜌0𝑐𝑎𝑣0
2

2
 𝑢⃗ 𝑥, qui est un vecteur. Ce qu’on nous demande est en fait 

l’intensité sonore incidente : 𝐼𝑖𝑛𝑐 =
𝑍𝑎𝑣0

2

2
=

𝜌0𝑐𝑎𝑣0
2

2
 

 

2°) Intensité (ou niveau) sonore : 𝐼 =< ‖ 𝜋⃗  ‖ >. 

 

Le fluide air et le muscle (assimilé ici à un fluide, d’impédance acoustique 𝑍𝑚) sont supposés être des fluides 

parfaits. Donc les ondes planes s’y propagent sans s’atténuer, donc les intensités sonores peuvent être calculées en 

n’importe point du domaine où ces ondes existent. 

Pour le champ des vitesses de l’onde transmise on a, en notant 𝑘𝑚 le nombre d’onde dans le muscle  

(avec 𝑘𝑚 =
𝜔

𝑐𝑚
) : 𝑣𝑡𝑟⃗⃗ ⃗⃗  ⃗ (𝑥, 𝑡) = 𝑣𝑡0 cos(𝜔𝑡 − 𝑘𝑚𝑥) 𝑢𝑥⃗⃗⃗⃗ . 

Et en utilisant le coefficient de transmission 𝜏, 𝑣𝑡0 cos(𝜔𝑡 − 0) = 𝜏 𝑣0 cos(𝜔𝑡 − 0), donc 𝑣𝑡0 = 𝜏 𝑣0. 

D’où 𝑣𝑡𝑟⃗⃗ ⃗⃗  ⃗ (𝑥, 𝑡) = 𝜏𝑣0 cos(𝜔𝑡 − 𝑘𝑚𝑥) 𝑢𝑥⃗⃗⃗⃗ . 

 

Puis 𝑝1𝑡𝑟 = 𝑍𝑚𝑣𝑡𝑟, d’où 𝑝1𝑡𝑟(𝑥, 𝑡) = 𝜏𝑍𝑚𝑣0 cos(𝜔𝑡 − 𝑘𝑚𝑥).   

 

On a donc 𝜋𝑡𝑟⃗⃗⃗⃗⃗⃗ = 𝑝1𝑡𝑟  𝑣𝑡𝑟⃗⃗ ⃗⃗  ⃗, d’où 𝜋𝑡𝑟⃗⃗⃗⃗⃗⃗ = 𝜏2𝑍𝑚𝑣0
2 cos2(𝜔𝑡 − 𝑘𝑚𝑥) 𝑢⃗ 𝑥. 

 

Pour le champ des vitesses de l’onde réfléchie on a : 𝑣𝑟⃗⃗  ⃗ (𝑥, 𝑡) = 𝑣𝑟0 cos(𝜔𝑡 + 𝑘𝑥) 𝑢𝑥⃗⃗⃗⃗ . 

Et en utilisant le coefficient de réflexion 𝑟, 𝑣𝑟0 cos(𝜔𝑡 + 0) = 𝑟 𝑣0 cos(𝜔𝑡 − 0), donc 𝑣𝑟0 = 𝑟 𝑣0. 

D’où 𝑣𝑟⃗⃗  ⃗ (𝑥, 𝑡) = 𝑟𝑣0 cos(𝜔𝑡 + 𝑘𝑥) 𝑢𝑥⃗⃗ ⃗⃗ . 

 

Puis (du fait qu’on n’utilise que le vecteur unitaire 𝑢𝑥⃗⃗⃗⃗ , et que 𝑣𝑟 est la composante 𝑣𝑟⃗⃗  ⃗ selon ce +𝑢𝑥⃗⃗⃗⃗ ) 𝑝1𝑟 = −𝑍𝑎𝑣𝑟,  

d’où 𝑝1𝑟(𝑥, 𝑡) = −𝑟𝑍𝑎𝑣0 cos(𝜔𝑡 + 𝑘𝑥).   

 

On a donc 𝜋𝑟⃗⃗⃗⃗ = 𝑝1𝑟  𝑣𝑟⃗⃗  ⃗, d’où 𝜋𝑟⃗⃗⃗⃗ = −𝑟2𝑍𝑎𝑣0
2 cos2(𝜔𝑡 + 𝑘𝑥) 𝑢⃗ 𝑥. 

 

Calculons à présent les intensités acoustiques : 

• En n’importe quel point d’abscisse 𝑥 ≤ 0, 𝐼𝑖𝑛𝑐 =
𝑍𝑎𝑣0

2

2
  



• En n’importe quel point d’abscisse 𝑥 ≥ 0, 𝐼𝑡𝑟 =
𝜏2𝑍𝑚𝑣0

2

2
  

• En n’importe quel point d’abscisse 𝑥 ≤ 0, 𝐼𝑟 =
𝑟2𝑍𝑎𝑣0

2

2
  

D’où 𝑅 =
𝐼𝑟

𝐼𝑖𝑛𝑐
= 𝑟2  et 𝑇 =

𝐼𝑡𝑟

𝐼𝑖𝑛𝑐
=

𝑍𝑚

𝑍𝑎
𝜏2   

 

On peut rappeler (ou redémontrer) les résultats du cours, non demandés explicitement ici : 𝑟 =
𝑍𝑎−𝑍𝑚

𝑍𝑎+𝑍𝑚
 et 𝜏 =

2𝑍𝑎

𝑍𝑎+𝑍𝑚
  

 

3°) Avec l’animation python, on voit tout d’abord que l’onde incidente, qui arrive dans le domaine 𝑥 ≤ 0, est 

d’amplitude 1,0 donc 𝑣0 = 1,0 m. s−1. 

 

Une fois que l’onde réfléchie est bien en place on voit que, dans le domaine 𝑥 ≤ 0, l’onde de vitesse observée est 

quasiment une onde stationnaire (il y a une onde stationnaire + une onde régressive, mais on voit surtout la 

stationnaire) 

 

En revanche, dans le domaine 𝑥 ≥ 0, on a une onde 100% progressive. 

 

Or, l’onde de vitesse dans le domaine 𝑥 ≥ 0 est uniquement l’onde transmise ; son amplitude est donc 𝜏 𝑣0. Et on 

mesure sur le graphique 2 que 𝜏 𝑣0 ≃ 0,05 m. s−1, donc on peut trouver 𝜏. 

 𝜏 ≃ 0,05. 

 

Cherchons à mieux comprendre ce qui se passe dans le domaine 𝑥 ≤ 0 : 

On a vu dans le cours que 1 + 𝑟 = 𝜏, donc r ≃ −0,95, ce qui confirme que l’onde globale dans le domaine 𝑥 ≤ 0 

est quasi stationnaire, puisque l’onde réfléchie est presque de même amplitude (|𝑟| proche de 1) que l’onde 

incidente. 

 

Dans le domaine 𝑥 ≤ 0, l’onde de vitesse est 𝑣𝑡𝑜𝑡(𝑥 ≤ 0, 𝑡) = 𝑣0 cos(𝜔𝑡 − 𝑘𝑥) + 𝑟𝑣0 cos(𝜔𝑡 + 𝑘𝑥),  

c’est-à-dire 𝑣𝑡𝑜𝑡(𝑥 ≤ 0, 𝑡) = 𝑣0(cos(𝜔𝑡 − 𝑘𝑥) + 𝑟 cos(𝜔𝑡 + 𝑘𝑥)). 

 

Puisque 𝑟 est proche de −1, on peut écrire 𝑟 = −1 + (𝑟 + 1) , la quantité (𝑟 + 1) étant petite devant (−1).  

On a donc : 𝑣𝑡𝑜𝑡(𝑥 ≤ 0, 𝑡) = 𝑣0(cos(𝜔𝑡 − 𝑘𝑥) + (−1 + 𝑟 + 1) cos(𝜔𝑡 + 𝑘𝑥)), 

c’est-à-dire 𝑣𝑡𝑜𝑡(𝑥 ≤ 0, 𝑡) = 𝑣0(cos(𝜔𝑡 − 𝑘𝑥) − cos(𝜔𝑡 + 𝑘𝑥)) + 𝑣0(𝑟 + 1) cos(𝜔𝑡 + 𝑘𝑥)  

   = 2𝑣0 sin(𝜔𝑡) sin(𝑘𝑥) + 𝑣0(𝑟 + 1) cos(𝜔𝑡 + 𝑘𝑥) 

Il y a bien un terme prépondérant (le premier, en bleu), de type onde plane stationnaire harmonique, d’amplitude 

2𝑣0,  

donc 2,0 m. s−1, avec un nœud en 𝑥 = 0.  

Et il y a un terme bien plus faible en amplitude (le second, en rouge), de type onde progressive, qui se propage, 

dans le sens 𝑥 décroissant, d’amplitude 1 + 𝑟  c’est-à-dire ≃ 0,05. 

 

En utilisant la relation donnant 𝑡, rappelée au 2°) : 𝜏 =
2

1+
𝑍𝑚
𝑍𝑎

, on obtient 
𝑍𝑚

𝑍𝑎
=

2

𝜏
− 1, d’où 

𝑍𝑚

𝑍𝑎
≃ 39.  



On en déduit 𝑟 =
1−

𝑍𝑚
𝑍𝑎

1+
𝑍𝑚
𝑍𝑎

= −0,95 et 𝑅 = 𝑟2 = 0,90  et  𝑇 =
𝑍𝑚

𝑍𝑎
𝜏2 = 0,10 (on a 𝑇 = 1 − 𝑅). 

Pour trouver le rapport des célérités, on va utiliser d’autres informations présentes sur les images : les périodes 

spatiales des ondes dans les deux milieux. On rappelle que, grâce à la linéarité des équations régissant les ondes 

acoustiques dans les fluides parfaits, si l’onde incidente est purement sinusoïdale, les ondes transmise et réfléchie le 

sont aussi, avec la même fréquence. 

Mais la longueur d’onde fait intervenir la célérité, qui n’est pas la même dans les deux milieux. 

Dans le milieu « air » (𝑥 < 0), 𝜆𝑎 =
𝑐𝑎

𝑓
 . 

Dans le milieu « muscle » (𝑥 > 0), 𝜆𝑚 =
𝑐𝑚

𝑓
 . 

 

Or on mesure sur l’image fixe générée par python que, exprimées en unités arbitraires de l’axe horizontal : 

• 𝜆𝑎 = 6,5 𝑢. 𝑎.  

• 𝜆𝑚 = 27 𝑢. 𝑎.  

 

On en déduit 
𝑐𝑚

𝑐𝑎
=

27

6,5
= 4,2. 

 

4°) Remarque préliminaire : dans ce qui suit, 𝐴𝑔 et 𝐵𝑔 sont a priori des complexes, et devraient être soulignés, 

comme dans l’énoncé. Mais on verra dans les calculs qu’ils sont réels, comme 𝑎1, donc on peut ne pas les 

souligner. 

 

On écrit la continuité de la vitesse en x = 0 :  𝑎1 = 𝐴𝑔 + 𝐵𝑔       (1) 

 

Continuité de la surpression en x = 0 :   𝑍𝑎𝑎1 = (𝐴𝑔 − 𝐵𝑔)𝑍𝑒      (2). 

 

Continuité de la vitesse en x = e :   𝐴𝑔𝑒−𝑗𝑘𝑒𝑒 + 𝐵𝑔𝑒𝑗𝑘𝑒𝑒 = 𝐶𝑚𝑒−𝑗𝑘𝑚𝑒    (3). 

 

Continuité de la surpression en x = e :   𝑍𝑒(𝐴𝑔𝑒−𝑗𝑘𝑒𝑒 − 𝐵𝑔𝑒𝑗𝑘𝑒𝑒) = 𝑍𝑚𝐶𝑚𝑒−𝑗𝑘𝑚𝑒  (4) 

 

Les équations (1) et (2) donnent : 𝐴𝑔 =
𝑎1

2
(1 +

𝑍𝑎

𝑍𝑒
)  et  𝐵𝑔 =

𝑎1

2
(1 −

𝑍𝑎

𝑍𝑒
). 

 

En reportant dans (3) :    
𝑎1

2
[(1 +

𝑍𝑎

𝑍𝑒
) 𝑒−𝑗𝑘𝑒𝑒 + (1 −

𝑍𝑎

𝑍𝑒
) 𝑒𝑗𝑘𝑒𝑒] = 𝐶𝑚𝑒−𝑗𝑘𝑚𝑒    (3’) 

En reportant dans (4) :    𝑍𝑒
𝑎1

2
[(1 +

𝑍𝑎

𝑍𝑒
) 𝑒−𝑗𝑘𝑒𝑒 − (1 −

𝑍𝑎

𝑍𝑒
) 𝑒𝑗𝑘𝑒𝑒] = 𝑍𝑚𝐶𝑚𝑒−𝑗𝑘𝑚𝑒   (4’) 

En divisant (4’) par (3’) puis en multipliant en haut et en bas par 𝑍𝑒 : 𝑍𝑒
(𝑍𝑒+𝑍𝑎)𝑒−𝑗𝑘𝑒𝑒−(𝑍𝑒−𝑍𝑎)𝑒𝑗𝑘𝑒𝑒

(𝑍𝑒+𝑍𝑎)𝑒−𝑗𝑘𝑒𝑒+(𝑍𝑒−𝑍𝑎)𝑒𝑗𝑘𝑒𝑒 = 𝑍𝑚 

D’où, en multipliant de chaque côté par (𝑍𝑒 + 𝑍𝑎)𝑒
−𝑗𝑘𝑒𝑒 + (𝑍𝑒 − 𝑍𝑎)𝑒

𝑗𝑘𝑒𝑒 puis en passant tout à droite : 

 0 = 𝑍𝑚(𝑍𝑒 + 𝑍𝑎)𝑒
−𝑗𝑘𝑒𝑒 + 𝑍𝑚(𝑍𝑒 − 𝑍𝑎)𝑒

𝑗𝑘𝑒𝑒 − 𝑍𝑒(𝑍𝑒 + 𝑍𝑎)𝑒
−𝑗𝑘𝑒𝑒 + 𝑍𝑒(𝑍𝑒 − 𝑍𝑎)𝑒

𝑗𝑘𝑒𝑒 

Puis en multipliant par 𝑒𝑗𝑘𝑒𝑒 et en regroupant certains termes : 



0 = 𝑍𝑚(𝑍𝑒 + 𝑍𝑎) − 𝑍𝑒(𝑍𝑒 + 𝑍𝑎) + 𝑒𝑗2𝑘𝑒𝑒[𝑍𝑚(𝑍𝑒 − 𝑍𝑎) + 𝑍𝑒(𝑍𝑒 − 𝑍𝑎)], 

D’où 𝑒𝑗2𝑘𝑒𝑒(𝑍𝑚 + 𝑍𝑒)(𝑍𝑎 − 𝑍𝑒) = (𝑍𝑚 − 𝑍𝑒)(𝑍𝑒 + 𝑍𝑎) 

Ce qui donne :   exp(2𝑗𝑘𝑒𝑒) =
(𝑍𝑒+𝑍𝑎)(𝑍𝑚−𝑍𝑒)

(𝑍𝑎−𝑍𝑒)(𝑍𝑚+𝑍𝑒)
   (Eq 1). 

 

Le terme de droite étant réel, cette relation impose que le terme de gauche le soit aussi. Puisque son module vaut 1, 

le membre de gauche est donc égal à +1 ou −1. Il en est donc de même pour le membre de droite. 

 

• La solution +1 conduit à (𝑍𝑎 − 𝑍𝑒)(𝑍𝑚 + 𝑍𝑒) = (𝑍𝑒 + 𝑍𝑎)(𝑍𝑚 − 𝑍𝑒)  

d’où 𝑍𝑎𝑍𝑚 − 𝑍𝑒𝑍𝑚 + 𝑍𝑎𝑍𝑒 − 𝑍𝑒
2 = 𝑍𝑒𝑍𝑚 + 𝑍𝑎𝑍𝑚 − 𝑍𝑒

2 − 𝑍𝑎𝑍𝑒 

et, après simplification,  2𝑍𝑒(𝑍𝑚 − 𝑍𝑎) = 0,  

ce qui ne convient pas, puisque 𝑍𝑒 ≠ 0 (sinon, (2) conduit à 𝑎1 = 0, donc pas d’onde incidente) 

et 𝑍𝑚 ≠ 𝑍𝑎 puisque les impédances acoustiques de l’air et du muscle sont très différentes (c’est pour ça 

qu’on met du gel). 

 

• Donc c’était la solution −1 :  

(𝑍𝑎 − 𝑍𝑒)(𝑍𝑚 + 𝑍𝑒) = −(𝑍𝑒 + 𝑍𝑎)(𝑍𝑚 − 𝑍𝑒)  

d’où 𝑍𝑎𝑍𝑚 − 𝑍𝑒𝑍𝑚 + 𝑍𝑎𝑍𝑒 − 𝑍𝑒
2 = −𝑍𝑒𝑍𝑚 − 𝑍𝑎𝑍𝑚 + 𝑍𝑒

2 + 𝑍𝑎𝑍𝑒 

d’où 2𝑍𝑒
2 = 2𝑍𝑎𝑍𝑚, puis 𝑍𝑒 = √𝑍𝑎𝑍𝑚 . 

 

Il faut donc exp(2𝑗𝑘𝑒𝑒) = −1, c’est-à-dire 𝑒 = (2𝑛 + 1)
𝜋

2𝑘𝑒
, avec n entier. 

 


