
Chapitre 13

Fonctions vectorielles de la variable réelle
Dans ce chapitre I désigne un intervalle d’intérieur non vide, a un point de I et E un
K-espace vectoriel de dimension finie non nulle.
On s’intéresse aux fonctions définies de I dans E.

I Dérivation
I. A Dérivée en un point

On appelle taux d’accroissement en a l’application :

τa(f) : I {a} −→ E

t 7−→ f(t)−f(a)
t−a

L’application f est dite dérivable en a lorsque son taux d’accroissement en a
admet une limite dans E quand t tend vers a. Dans ce cas cette limite est appelée
dérivée de f en a et elle est notée f ′(a).

Définition 1.1

Remarque 1.2 : La fonction taux d’accroissement étant à valeurs dans un espace
vectoriel normé, une limite éventuelle est nécessairement finie.

La fonction f est dérivable en a ∈ I si et seulement si il existe ℓ ∈ E et une fonction
ε : I −→ E telle que :

∀t ∈ I, f(t) = f(a) + (t − a)ℓ + (t − a)ε(t), avec ε(t) −−−→
t→a

0E ,

et dans ce cas ℓ = f ′(a).

Théorème 1.3

Interprétation cinématique : Si f désigne la position d’un point en fonction du
temps, le vecteur f ′(a) représente la vitesse instantanée du point à l’instant a.

Si la fonction f est dérivable en a, alors elle est continue en a.
Proposition 1.4

Notation : Si B = (e1, . . . , en) est une base de E, on appelle fonctions coordon-
nées de f : I −→ E dans la base B les fonctions f1, . . . , fn définies de I dans K
telles que :

∀t ∈ I, f(t) =
n∑

k=1
fk(t)ek.

Rappel : Une fonction f : I −→ E est continue en a ∈ I si et seulement si chacune
de ses fonctions coordonnées est continue en a.

Soit B = (e1, . . . , en) une base de E et f : I −→ E.
La fonction f est dérivable en a si et seulement si chacune de ses fonctions coor-
données dans la base B est dérivable en a.
Dans ce cas, si l’on note fk ces fonctions coordonnées :

f ′(a) =
n∑

k=1
f ′

k(a)ek.

Proposition 1.5

Remarques 1.6 : • On retrouve ainsi que f : I −→ C est dérivable en a si et seule-
ment si les fonctions Re f et Im f le sont : ce sont les fonctions coordonnées
de f dans la base (1, i) du R-espace vectoriel C.

• En particulier pour f : I −→ Rn avec f = (f1, . . . , fn), f est dérivable
en a si et seulement si ∀k ∈ J1 ; nK, fk est dérivable en a et dans ce cas,
f ′(a) =

(
f ′

1(a), . . . , f ′
n(a)

)
.

• Si a n’est pas l’extrémité droite de I, f est dite dérivable à droite en a lorsque
la restriction de f à I ∩ [a ; +∞[ est dérivable en a.
Dans ce cas on appelle dérivée à droite en a :

(
f|I∩[a ;+∞[

)′ (a), notée f ′
d(a).

• Si a n’est pas l’extrémité gauche de I, f est dite dérivable à gauche en a
lorsque la restriction de f à I ∩ ]−∞ ; a] est dérivable en a.
Dans ce cas on appelle dérivée à gauche en a :

(
f|I∩]−∞ ;a]

)′ (a), notée f ′
g(a).

Définition 1.7

Soit a un point intérieur de I et f : I −→ E.
La fonction f est dérivable en a si et seulement si elle est dérivable à gauche et à
droite en a et f ′

g(a) = f ′
d(a) ; et dans ce cas f ′(a) = f ′

g(a) = f ′
d(a).

Proposition 1.8
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I. B Fonction dérivée

Une fonction f : I −→ E est dite dérivable sur I lorsqu’elle est dérivable en tout
point de I.
On appelle dérivée de f et on note f ′ la fonction t 7→ f ′(t).

Définition 1.9

Soit B une base de E. La fonction f : I −→ E est dérivable sur I si et seulement
si ses fonctions coordonnées dans B sont dérivables sur I.
Dans ce cas, les fonctions coordonnées de f ′ sont les dérivées des fonctions coor-
données de f .

Proposition 1.10

Une fonction f : I −→ E est constante sur l’intervalle I si et seulement si elle est
dérivable sur I et que sa dérivée est nulle sur I.

Théorème 1.11

I. C Opérations sur les fonctions dérivables

Soit f : I −→ E et g : I −→ E deux fonctions dérivables en a ∈ I et λ, µ ∈ K.
Alors λf + µg est dérivable en a et :

(λf + µg)′(a) = λf ′(a) + µg′(a).

Proposition 1.12

Soit f : I −→ E et g : I −→ E deux fonctions dérivables sur I et λ, µ ∈ K.
Alors λf + µg est dérivable sur I et :

(λf + µg)′ = λf ′ + µg′.

Proposition 1.13

Remarque 1.14 : L’ensemble D(I, E) des fonctions dérivables sur I à valeurs dans
E est donc un sous-espace vectoriel de F(I, E) et f 7→ f ′ est une application
linéaire de D(I, E) dans F(I, E).

Soit L une application linéaire de E dans un espace vectoriel F de dimension finie.
Si f est dérivable en a ∈ I, alors L ◦ f est dérivable en a et :

(L ◦ f)′(a) = L
(
f ′(a)

)
.

Proposition 1.15

Soit L une application linéaire de E dans un espace vectoriel F de dimension finie.
Si f est dérivable sur I, alors L ◦ f est dérivable sur I et :

(L ◦ f)′ = L ◦ f ′.

Proposition 1.16

Notation : La fonction L ◦ f est notée L(f) et de même si M : E1 × · · · × Ep −→ F
est multilinéaire, on note :

M(f1, . . . , fp) : I −→ F
t 7−→ M

(
f1(t), . . . , fp(t)

)
.

Soit E, F, G des espaces vectoriels de dimension finie et B une application bilinéaire
de E × F dans G.
Si f : I −→ E et g : I −→ F sont dérivables en a ∈ I, alors B(f, g) est dérivable
en a et :

B(f, g)′(a) = B
(
f ′(a), g(a)

)
+ B

(
f(a), g′(a)

)
.

Proposition 1.17

Soit E, F, G des espaces vectoriels de dimension finie et B une application bilinéaire
de E × F dans G.
Si f : I −→ E et g : I −→ F sont dérivables sur I, alors B(f, g) est dérivable sur I
et :

B(f, g)′ = B(f ′, g) + B(f, g′).

Proposition 1.18

Exemples 1.19 : • Soit φ : I −→ K et g : I −→ E dérivables sur I, alors φ · g est
dérivable sur I et (φg)′ = φ′g + φg′.

• Soit f et g dérivables de I dans un espace euclidien (E, ⟨ , ⟩), montrer que :
t 7→ ⟨f(t), g(t)⟩ est dérivable sur I.

• Soit f dérivable de I dans un espace euclidien (E, ⟨ , ⟩). Montrer que si ∥f∥
est constante sur I, alors pour tout t ∈ I, f(t) et f ′(t) sont orthogonaux.

Soit E1, . . . , Ep et F des espaces vectoriels de dimension finie (p ⩾ 1) et M une
application multilinéaire de E1 × · · · × Ep dans F .
Si f1, . . . , fp sont des fonctions de I dans E1, . . . , Ep respectivement, dérivables en
a ∈ I, alors M(f1, . . . , fp) est dérivable en a et :

M(f1, . . . , fp)′(a) = M(f ′
1, f2, . . . , fp)(a)+M(f1, f ′

2, . . . , fp)(a)+
· · · + M(f1, f2, . . . , f ′

p)(a).

Proposition 1.20

Remarque 1.21 : De même pour la dérivabilité sur un intervalle.
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Exemple 1.22 : Si f1, . . . , fn sont des fonctions dérivables de I à valeurs dans un
K-espace vectoriel E de dimension n, alors detB(f1, . . . , fn) est dérivable sur I
et (

detB(f1, . . . , fn)
)′

= detB(f ′
1, f2, . . . , fn)+ detB(f1, f ′

2, . . . , fn)+

· · · + detB(f1, f2, . . . , f ′
n).

Si A est une fonction dérivable de I dans Mn(R), alors det(A) est dérivable sur
I et en notant C1, . . . , Cn les fonctions colonnes de A :(

det ◦A
)′ = det(C ′

1, C2, . . . , Cn) + det(C1,C ′
2, . . . , Cn)+

· · · + det(C1, C2, . . . , C ′
n).

Soit I et J des intervalles, f : I −→ E et φ : J −→ R deux fonctions telles que
φ(J) ⊂ I.
Si φ est dérivable en a ∈ J et f est dérivable en b = φ(a), alors f ◦ φ est dérivable
en a et :

(f ◦ φ)′(a) = φ′(a)f ′(φ(a)
)
.

Proposition 1.23

Soit I et J des intervalles, f : I −→ E et φ : J −→ R.
Si :
1. φ est dérivable sur J ,
2. f est dérivable sur I,
3. φ(J) ⊂ I ;
alors f ◦ φ est dérivable sur J et :

(f ◦ φ)′ = φ′ · (f ′ ◦ φ).

Proposition 1.24

I. D Fonctions de classe Ck

Une fonction f : I −→ E est dite 1 fois dérivable sur I lorsqu’elle est dérivable sur I
et la dérivée d’ordre 1 de f est f (1) = f ′, puis par récurrence, pour tout k ∈ N avec
k ⩾ 2, on dit que f : I −→ E est k fois dérivable sur I lorsqu’elle est dérivable
sur I et que sa dérivée est k −1 fois dérivable sur I. Dans ce cas on appelle dérivée
d’ordre k et on note f (k) la dérivée d’ordre k − 1 de f ′.

Définition 1.25

Remarque 1.26 : Toute fonction f : I −→ E est 0 fois dérivable sur I et f (0) = f .

Soit f : I −→ E.
• Soit k ∈ N, la fonction f est dite de classe Ck sur I lorsque f est k fois

dérivable sur I et f (k) est continue sur I.
• La fonction f est dite de classe C∞ sur I lorsqu’elle est de classe Ck sur I

pour tout k ∈ N.

Définition 1.27

Notation : Pour k ∈ N ∪ {∞}, on note Ck(I, E) l’ensemble des fonctions de classe
Ck sur I à valeurs dans E.

Dans la suite de cette partie, k ∈ N ∪ {∞}.

Soit f, g ∈ Ck(I, E) et λ, µ ∈ K.
Alors λf + µg ∈ Ck(I, E) et si k ∈ N :

(λf + µg)(k) = λf (k) + µg(k).

Proposition 1.28

Soit L une application linéaire de E dans un espace vectoriel F de dimension finie.
Si f ∈ Ck(I, E), alors L ◦ f ∈ Ck(I, E) et si k ∈ N :

(L ◦ f)(k) = L ◦ f (k).

Proposition 1.29

Soit B = (e1, . . . , en) une base de E et f : I −→ E.
La fonction f est de classe Ck sur I si et seulement si chacune de ses fonctions
coordonnées dans la base B est de classe Ck sur I.
Dans ce cas, si l’on note fi ces fonctions coordonnées :

f (k) =
n∑

i=1
f

(k)
i ei.

Proposition 1.30

Soit E, F, G des espaces vectoriels de dimension finie et B une application bilinéaire
de E × F dans G.
Si f : I −→ E et g : I −→ F sont de classe Ck sur I, alors B(f, g) est de classe Ck

sur I et :

B(f, g)(k) =
k∑

j=0

(
k

j

)
B(f (j), g(k−j)).

Proposition 1.31 (Formule de Leibniz)
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Soit E1, . . . , Ep et F des espaces vectoriels de dimension finie (p ⩾ 1) et M une
application multilinéaire de E1 × · · · × Ep dans F .
Si f1, . . . , fp sont des fonctions de I dans E1, . . . , Ep respectivement, de classe Ck

sur I, alors M(f1, . . . , fp) de classe Ck sur I.

Proposition 1.32

Soit I et J deux intervalles, et deux fonctions f ∈ Ck(I, E) et φ ∈ Ck(J,R) telles
que φ(J) ⊂ I.
Alors f ◦ φ est de classe Ck sur J à valeurs dans E.

Proposition 1.33

II Intégration sur un segment
Dans cette section, les fonctions sont définies sur un segment [a ; b] (avec a < b) et à
valeurs dans E.

II. A Fonctions continues par morceaux

Une fonction f : [a ; b] −→ E est dite continue par morceaux sur [a ; b] lors-
qu’il existe une subdivision (a0, . . . , ap) de [a ; b] telle que pour tout i ∈ J0 ; p − 1K,
f|]ai ;ai+1[ est prolongeable en une fonction continue sur [ai ; ai+1].
Une telle subdivision est dite adaptée à f .

Définition 2.1

Remarque 2.2 : Une fonction est continue par morceaux si et seulement si il existe
une subdivision (a0, . . . , ap) de [a ; b] telle que :
• pour tout i ∈ J0 ; p − 1K, f est continue sur ]ai ; ai+1[ ;
• pour tout i ∈ J1 ; p − 1K, f a des limites (finies) à gauche et à droite en ai ;
• f a une limite (finie) à droite en a = a0 et à gauche en b = ap.

Notation L101 : on note Cpm([a ; b], E) l’ensemble des fonctions continues par mor-
ceaux sur [a ; b] à valeurs dans E.

Exemples 2.3 : • Les fonctions continues sur [a ; b] sont continues par morceaux
sur [a ; b] ;

• les fonctions en escalier sur [a ; b] sont continues par morceaux sur [a ; b] ;

Une fonction f : [a ; b] −→ E est continue par morceaux sur [a ; b] si et seulement
si chacune de ses fonctions coordonnées est continue par morceaux sur [a ; b].

Proposition 2.4

Soit f ∈ Cpm([a ; b], E), alors f est bornée sur [a ; b].
Proposition 2.5

L’ensemble Cpm([a ; b], E) est un sous-espace vectoriel de F([a ; b], E).
L’application f 7→ ∥f∥∞ = sup

t∈[a ;b]
∥f(t)∥ définit une norme sur Cpm([a ; b], E).

Proposition 2.6

II. B Intégrale d’une fonction continue par morceaux

Soit f ∈ Cpm([a ; b], E) et B = (e1, . . . , en) une base de E. On note f1, . . . , fn les
fonction coordonnées de f dans B.
Alors le vecteur

I =
n∑

i=1

(∫ b

a

fi(t) dt

)
· ei

ne dépend pas de la base de E choisie. On l’appelle l’intégrale de f sur [a ; b].

Définition/Proposition 2.7

Notation : L’intégrale de f sur [a ; b] est notée :
∫

[a ;b] f ou
∫ b

a
f ou

∫ b

a
f(t) dt.

On étend les notations
∫ b

a
f et

∫ b

a
f(t) dt pour un couple (a, b) ∈ I2 avec f conti-

nue par morceaux sur I par :∫ a

a

f = 0 et
∫ b

a

f = −
∫ a

b

f si a > b.

II. C Propriétés

L’application f 7→
∫ b

a
f est linéaire de Cpm([a ; b], E) dans E :

∀f, g ∈ Cpm([a ; b], E), ∀λ, µ ∈ K,

∫ b

a

λf(t) + µg(t) dt = λ

∫ b

a

f(t) dt + µ

∫ b

a

g(t) dt.

Proposition 2.8 (Linéarité)

Soit f : I −→ E continue par morceaux sur I et a, b, c ∈ I, alors :∫ c

a

f(t) dt =
∫ b

a

f(t) dt +
∫ c

b

f(t) dt.

Proposition 2.9 (Relation de Chasles)
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Si f ∈ Cpm([a ; b], E) et L ∈ L(E, F ) avec F un espace vectoriel de dimension finie,
alors L(f) ∈ Cpm([a ; b], F ) et :

L

(∫ b

a

f

)
=
∫ b

a

L(f).

Proposition 2.10

Soit f ∈ Cpm([a ; b], E) et n ∈ N∗, on appelle somme de Riemann d’ordre n
associée à f le vecteur :

b − a

n

n−1∑
k=0

f

(
a + k

b − a

n

)
.

Définition 2.11

Soit f ∈ Cpm([a ; b], E), alors :

b − a

n

n−1∑
k=0

f

(
a + k

b − a

n

)
−−−−−→
n→+∞

∫ b

a

f.

Théorème 2.12

On peut toujours se ramener au cas particulier [a ; b] = [0 ; 1] qui est plus simple à
mettre en oeuvre :

1
n

n−1∑
k=0

f

(
k

n

)
−−−−−→
n→+∞

∫ 1

0
f(t) dt.

Il suffit alors de :
• faire apparaître 1

n en tête ;
• se ramener à une somme de 0 à n − 1 ;
• faire apparaître les k

n ;
• en déduire la fonction f associée.

Méthode 2.13

Exemples 2.14 : Calculer

lim
n→+∞

1
n3

n−1∑
k=0

k2 et lim
n→+∞

n∑
k=1

1
n + k

Soit f ∈ Cpm([a ; b], E) (avec a < b), alors :∥∥∥∥∥
∫ b

a

f

∥∥∥∥∥ ⩽
∫ b

a

∥f∥ .

Proposition 2.15 (Inégalité triangulaire)

Soit f ∈ Cpm([a ; b], E), alors :∥∥∥∥∥
∫ b

a

f

∥∥∥∥∥ ⩽ (b − a) ∥f∥∞ .

Corollaire 2.16

II. D Intégrale fonction de sa borne supérieure

Soit f ∈ C(I, E) et a ∈ I. Alors l’application

F : x 7→
∫ x

a

f(t) dt

est de classe C1 sur I et ∀x ∈ I, F ′(x) = f(x).

Théorème 2.17

Remarques 2.18 : • F est la primitive de f qui s’annule en a.
• Si g est une primitive de f sur I et a, b ∈ I, alors∫ b

a

f(t) dt = g(b) − g(a).

• Si f ∈ C1(I, E) et a, x ∈ I, alors :

f(x) = f(a) +
∫ x

a

f ′(t) dt.

Pour étudier une fonction du type : x 7→
∫ v(x)

u(x)
φ(t) dt, définie par une intégrale

dont seules les bornes (et non l’intégrande) dépendent de la variable, on introduit
une primitive de l’intégrande.

Méthode 2.19
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Exemple 2.20 : On considère la fonction f définie par :

f : x 7→
∫ x2

x−1

1
ln(t) dt.

1. Déterminer l’ensemble de définition D de f .

2. Montrer que f est de classe C1 sur D et calculer f ′.

Soit f ∈ C(I, E) et φ ∈ C1(J,R) telles que φ(J) ⊂ I. Pour tous a, b ∈ J :∫ b

a

φ′(s)f
(
φ(s)

)
ds =

∫ φ(b)

φ(a)
f(t) dt.

Proposition 2.21 (Changement de variable)

Soit f ∈ C(I, E) telle que f est de classe C1 sur l’intérieur de I et M ∈ R+.
Si : ∀t ∈ I̊ , ∥f ′(t)∥ ⩽ M , alors :

∀a, b ∈ I, ∥f(b) − f(a)∥ ⩽ M |b − a| .

Théorème 2.22 (Inégalité des accroissements finis)

Attention : L’égalité des accroissements finis, valable pour f ∈ C1(I,R), ne se gé-
néralise pas aux fonctions à valeurs complexes ou vectorielles.

Contre exemple 2.23 : f : R −→ C, t 7→ eit.

III Formules de Taylor

Soit f ∈ Cp+1(I, E) et a, b ∈ I, alors :

f(b) =
p∑

k=0

(b − a)k

k! f (k)(a) +
∫ b

a

(b − t)p

p! f (p+1)(t) dt.

Théorème 3.1 (Formule de Taylor avec reste intégral)

• Soit f ∈ Cp+1(I, E) et a, b ∈ I

f(b) =
p∑

k=0

(b − a)k

k! f (k)(a) + Rp

avec ∥Rp∥ ⩽ |b−a|p+1

(p+1)! Mp+1 où Mp+1 est un majorant de
∥∥f (p+1)

∥∥ sur [a ; b] (ou
sur [b ; a]).

• Soit f ∈ Cp(I, E) et a, b ∈ I

f(b) =
p∑

k=0

(b − a)k

k! f (k)(a) + Rp

avec ∥Rp∥ ⩽ |b−a|p

(p)! Kp où Kp est un majorant de
∥∥f (p) − f (p)(a)

∥∥ sur [a ; b] (ou
sur [b ; a]).

Théorème 3.2 (Inégalité de Taylor-Lagrange)

Remarque 3.3 :
∥∥f (p+1)

∥∥ est continue sur le segment [a ; b] (ou [b ; a]) donc majorée.

Soit f ∈ Cp(I, E) et a ∈ I, alors :

f(x) =
x→a

p∑
k=0

(x − a)k

k! f (k)(a) + o ((x − a)p) .

Théorème 3.4 (Formule de Taylor-Young)

Remarques 3.5 : • La conclusion du théorème peut se traduit par : il existe une
fonction ε : I −→ E telle que ε(x) −−−→

x→a
0E et

f(x) =
n∑

k=0

(x − a)k

k! f (k)(a) + (x − a)p · ε(x).

• Pour p ⩾ 1, le résultat reste vrai sous l’hypothèse (plus faible) : f est p fois
dérivable sur I.

• La formule de Taylor-Young décrit le comportement local de la fonction f autour
de a. Elle peut servir dans un calcul de limite en a.

• Les formules de Taylor avec reste intégral et l’inégalité de Taylor-Lagrange sont
des résultats globaux : valables pour tout b ∈ I.

Méthode 3.6
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IV Intégration et dérivation d’une suite ou série de
fonctions

IV. A Intégration d’une limite uniforme sur un segment

Soit (fn)n∈N une suite de fonctions définies sur un intervalle I de R et à valeurs
dans E, a un point de I.
Si :
• ∀n ∈ N, fn est continue sur I ;
• (fn)n∈N converge uniformément sur tout segment de I vers une fonction f .
Alors la suite (Fn)n∈N converge uniformément vers F sur tout segment de I où
pour tout n ∈ N :

Fn : x 7→
∫ x

a

fn(t) dt et F : x 7→
∫ x

a

f(t) dt.

Théorème 4.1

Soit (fn)n∈N une suite de fonctions définies sur un segment [a ; b].
Si :
• ∀n ∈ N, fn est continue sur [a ; b] ;
• (fn)n∈N converge uniformément sur [a ; b] vers une fonction f .
Alors f est continue sur [a ; b] et :∫ b

a

fn(t) dt −−−−−→
n→+∞

∫ b

a

f(t) dt.

Corollaire 4.2

Attention : La convergence simple ne suffit pas !

IV. B Dérivation d’une suite de fonctions

Soit (fn)n∈N une suite de fonctions définies sur un intervalle I de R, à valeurs dans
E. Si :
• pour tout n ∈ N, fn ∈ C1(I) ;
• (fn)n∈N converge simplement vers f sur I ;
• (f ′

n)n∈N converge uniformément vers g sur tout segment de I ;
alors :
• (fn)n∈N converge uniformément vers f sur tout segment de I ;
• f est de classe C1 sur I et f ′ = g.

Théorème 4.3

Remarque 4.4 : En pratique, on vérifie la convergence uniforme de (f ′
n)n∈N sur des

intervalles adaptés à la situation.
Attention : La convergence uniforme doit être celle des dérivées !

IV. C Intégration et dérivation d’une série de fonctions

Soit
∑

fn une série de fonctions définies sur un intervalle I de R et à valeurs dans
E, a un point de I.
Si :
• ∀n ∈ N, fn est continue sur I ;
•
∑

fn converge uniformément sur tout segment de I vers une fonction S.
Pour tout n ∈ N et tout x ∈ I, on pose :

Fn : x 7→
∫ x

a

fn(t) dt et T : x 7→
∫ x

a

S(t) dt.

Alors la suite
∑

Fn converge uniformément vers T sur tout segment de I.

Proposition 4.5

Soit
∑

fn une série de fonctions sur un segment [a ; b] et à valeurs dans E.
Si :
• ∀n ∈ N, fn est continue sur [a ; b] ;
•
∑

fn converge uniformément vers une fonction S sur [a ; b],
alors :

+∞∑
n=0

(∫ b

a

fn(t) dt

)
=
∫ b

a

S(t) dt =
∫ b

a

(+∞∑
n=0

fn(t)
)

dt.

Proposition 4.6

Soit
∑

fn une suite de fonctions définies sur un intervalle I de R, à valeurs dans
E. Si :
• pour tout n ∈ N, fn ∈ C1(I) ;
•
∑

fn converge simplement sur I ;
•
∑

f ′
n converge uniformément sur tout segment de I ;

alors :
•
∑

fn converge uniformément sur tout segment de I ;

•
+∞∑
n=0

fn est de classe C1 sur I et
(+∞∑

n=0
fn

)′

=
+∞∑
n=0

f ′
n.

Proposition 4.7
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Exemple 4.8 : Soit A ∈ Mn(K) et

φ : R −→ Mn(K)
t 7−→ exp(t · A)

La fonction φ est de classe C1 de R dans Mn(K) et ∀t ∈ R, φ′(t) = A×exp(tȦ) =
exp(t · A) × A.

Remarque 4.9 : De même pour la généralisation à la classe Ck.

V Fonctions à valeurs réelles (rappels)

V. A Dérivabilité et extremum

Soit f : I −→ R, si
• x0 est un point intérieur de I (pas une extrémité) ;
• f est dérivable en x0 ;
• f admet un extremum local en x0 ;
alors f ′(x0) = 0.

Théorème 5.1

Attention : 1. La réciproque est fausse :

f ′(x0) = 0 ⇏ f a un extremum local en x0.

Contre exemple : la fonction .
2. Le théorème ne s’applique pas aux extrémités des I.

Pour chercher les extrema d’une fonction f dérivable sur I, il faut s’assurer que
ces extrema existent (ce qui est le cas par exemple si I est un segment) ; puis on
considère les points d’annulation de la dérivée et les extrémités.

Méthode 5.2

V. B Théorème de Rolle et égalité des accroissements finis

Soit a et b deux réels avec a < b et f : [a ; b] −→ R une fonction continue sur [a ; b]
et dérivable sur ]a ; b[.
Si f(a) = f(b), alors il existe c ∈ ]a ; b[ tel que f ′(c) = 0.

Théorème 5.3 (de Rolle)

Interprétation géométrique : sous les hypothèses du théorème, le graphe de f a
au moins une tangente horizontale.
Interprétation cinématique : si l’on se déplace sur une route rectiligne et que l’on
revient à son point de départ, alors il y a un moment où la vitesse est nulle.

Soit a et b deux réels avec a < b et f : [a ; b] −→ R une fonction continue sur [a ; b]
et dérivable sur ]a ; b[.
Alors il existe c ∈ ]a ; b[ tel que f(b) − f(a) = f ′(c)(b − a).

Théorème 5.4 (Égalité des accroissements finis)

Interprétation géométrique : sous les hypothèses du théorème, le graphe de f a
au moins une tangente parallèle à la corde reliant les points du graphe d’abscisses a
et b.
Interprétation cinématique : si l’on se déplace sur une route rectiligne, alors il y a
un moment où la vitesse est égale à la vitesse moyenne. Par exemple, si l’on parcours
5 km en une heure, alors à un instant donné la vitesse est égale à 5 km/h.

V. C Théorème de la limite de la dérivée

Soit f : I −→ R une fonction continue sur I et dérivable sur I {a} et ℓ ∈ R.
Si f ′(x) −−−→

x→a
x̸=a

ℓ, alors f(x)−f(a)
x−a −−−→

x→a
ℓ.

Lemme 5.5

Soit f : I −→ R, si :
• f est continue sur I,
• f est dérivable sur I {a},
• f ′(x) −−−→

x→a
x ̸=a

ℓ ∈ R,

alors f est dérivable en a et f ′(a) = ℓ.

Théorème 5.6

Soit f : I −→ R, si :
• f est continue sur I,
• f est dérivable sur I {a},
• f ′(x) −−−→

x→a
x ̸=a

±∞,

alors f n’est pas dérivable en a et le graphe de f a une tangente verticale en a.

Théorème 5.7

Exemple 5.8 : Étudier la dérivabilité de x 7→ x
√

x.
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Soit f : I −→ R, si :
• f est continue sur I,
• f est de classe C1 sur I {a},
• f ′(x) −−−→

x→a
x̸=a

ℓ ∈ R,

alors

Théorème 5.9

Exemple 5.10 : Montrer que f : ]0 ; +∞[ −→ R
x 7−→ ln(1+x)

x

est prolongeable par

continuité en 0, on note encore f le prolongement sur [0 ; +∞[.
Montrer que f est de classe C1 sur [0 ; +∞[.

Soit f : I −→ R, si :
• f est continue sur I,
• f est de classe Ck sur I {a},
• ∀j ∈ J1 ; kK, f (j)(x) −−−→

x→a
x ̸=a

ℓj ∈ R,

alors

Théorème 5.11

Exemple 5.12 : Montrer que la fonction f de l’exemple précédent est de classe C∞

sur [0 ; +∞[.
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