Chapitre 13
Fonctions vectorielles de la variable réelle

Dans ce chapitre I désigne un intervalle d’intérieur non vide, a un point de I et £ un
K-espace vectoriel de dimension finie non nulle.
On s’intéresse aux fonctions définies de I dans FE.

I Dérivation

I. A Dérivée en un point

(Définition 1.1)
On appelle taux d’accroissement en a ’application :

To(f) + IN{a} — E
L f-f)

t—a
L’application f est dite dérivable en a lorsque son taux d’accroissement en a
admet une limite dans E quand t tend vers a. Dans ce cas cette limite est appelée
dérivée de f en a et elle est notée f/(a).

\. J

Remarque 1.2 : La fonction taux d’accroissement étant & valeurs dans un espace
vectoriel normé, une limite éventuelle est nécessairement finie.

(Théoréme 1.3)

La fonction f est dérivable en a € I si et seulement si il existe ¢ € E et une fonction
e: I — FE telle que :

Vte I, f(t) = fla)+ (t —a)l + (t — a)e(t), avec &(t) 5 0m

et dans ce cas £ = f'(a).

\. J

Interprétation cinématique : Si f désigne la position d’un point en fonction du
temps, le vecteur f(a) représente la vitesse instantanée du point a 'instant a.

Proposition 1.4)
Si la fonction f est dérivable en a, alors elle est continue en a. ]

Notation : Si B = (ey,...,e,) est une base de F, on appelle fonctions coordon-
nées de f: I — E dans la base B les fonctions fi,..., f,, définies de I dans K
telles que :

VEe L f(t) = fr(t)er
k=1

Rappel : Une fonction f: I — FE est continue en a € [ si et seulement si chacune
de ses fonctions coordonnées est continue en a.

fiProposition 1.5)
Soit B = (e1,...,e,) une base de E et f: I — E.

La fonction f est dérivable en a si et seulement si chacune de ses fonctions coor-
données dans la base B est dérivable en a.

Dans ce cas, si ’on note fi ces fonctions coordonnées :

f'(a) = fila)ey.
k=1

Remarques 1.6 : ¢ On retrouve ainsi que f : I — C est dérivable en « si et seule-
ment si les fonctions Re f et Im f le sont : ce sont les fonctions coordonnées
de f dans la base (1,7) du R-espace vectoriel C.

e En particulier pour f : I — R"™ avec f = (f1,...,fn), [ est dérivable
en a si et seulement si Vk € [1;n], fr est dérivable en a et dans ce cas,

f/(a) = (f{(a),,f,’l(a))

(Définition 1.7)

e Sia n’est pas 'extrémité droite de I, f est dite dérivable a droite en a lorsque
la restriction de f & I N[a;+oo[ est dérivable en a.

Dans ce cas on appelle dérivée a droite en a : (f|]r‘|[a;+oo[)/ (a), notée fi(a).

e Si a n’est pas I'extrémité gauche de I, f est dite dérivable & gauche en a
lorsque la restriction de f & I N]—oc0;a] est dérivable en a.

Dans ce cas on appelle dérivée a gauche en a : (f|[ﬁ]7oc ;a])/ (a), notée f,(a).

\. J

Proposition 1.8)

Soit @ un point intérieur de I et f : I — E.
La fonction f est dérivable en a si et seulement si elle est dérivable a gauche et a
droite en a et f;(a) = fj(a); et dans ce cas f'(a) = f;(a) = fj(a).
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I. B Fonction dérivée

(Définition 1.9)

Une fonction f : I — E est dite dérivable sur I lorsqu’elle est dérivable en tout
point de 1.
On appelle dérivée de f et on note f’ la fonction ¢t — f/(¢).

\. J

’_[Proposition 1.10) .
Soit B une base de E. La fonction f : I — E est dérivable sur I si et seulement
si ses fonctions coordonnées dans B sont dérivables sur I.

Dans ce cas, les fonctions coordonnées de f’ sont les dérivées des fonctions coor-
données de f.

\

__(Théoréme 1.11)

Une fonction f : I — E est constante sur 'intervalle I si et seulement si elle est
dérivable sur I et que sa dérivée est nulle sur I.

\. J

I. C Opérations sur les fonctions dérivables

’_[Proposition 1.12)

Soit f: I — E et g: I — F deux fonctions dérivables en a € I et A\, u € K.
Alors Af 4+ ug est dérivable en a et :

(A + 1g)'(a) = Af'(a) + ng'(a).

’_[Proposition 1.13)

Soit f: I — E et g: I — FE deux fonctions dérivables sur I et A\, yu € K.
Alors \f 4 pg est dérivable sur I et :

A +ng) =M+ pg'.

\. J

Remarque 1.14 : L’ensemble D(I, E) des fonctions dérivables sur I & valeurs dans
E est donc un sous-espace vectoriel de F(I, E) et f — f' est une application
linéaire de D(I, F) dans F(I, E).

Proposition 1.15)

Soit L une application linéaire de E dans un espace vectoriel F' de dimension finie.
Si f est dérivable en a € I, alors Lo f est dérivable en a et :

(Lo f)(a) = L(f(a))-

Proposition 1.16)

Soit L une application linéaire de E dans un espace vectoriel F' de dimension finie.
Si f est dérivable sur I, alors L o f est dérivable sur I et :

(Lo f) =Lof"

Notation : La fonction Lo f est notée L(f) et de mémesi M : Ey X --- X B, — F
est multilinéaire, on note :

M(fi,...,fp) + I — F
t — M(fi(t),..., (1))

fiProposition 1.17)
Soit E, F, G des espaces vectoriels de dimension finie et B une application bilinéaire
de E x F dans G.

Si f:I— Eetg:I— F sont dérivables en a € I, alors B(f,g) est dérivable
en a et :

B(f.9)'(a) = B(f'(a),9(a)) + B(f(a),g'(a))-

’_[Proposition 1.18) .
Soit E, F, G des espaces vectoriels de dimension finie et B une application bilinéaire
de E x F dans G.

Sif:1— FEetg:I— F sont dérivables sur I, alors B(f, g) est dérivable sur I
et :

B(f,9) = B(f',9)+ B(f.4g').

\. J

Exemples 1.19 : o Soit ¢ : I — K et g: I — E dérivables sur I, alors ¢ - g est
dérivable sur I et (vg) = ¢'g + g’

e Soit f et g dérivables de I dans un espace euclidien (F,{ , )), montrer que :
t— (f(t),g(t)) est dérivable sur I.

e Soit f dérivable de I dans un espace euclidien (F,(, )). Montrer que si || f||
est constante sur I, alors pour tout ¢t € I, f(t) et f'(t) sont orthogonaux.

fiProposition 1.20)

Soit Ei,...,E, et F des espaces vectoriels de dimension finie (p > 1) et M une
application multilinéaire de Ey x --- x E, dans F.
Si fi,..., fp sont des fonctions de I dans Ej, ..., E, respectivement, dérivables en

a €I, alors M(f1,...,fp) est dérivable en a et :

M(fisee £p) (@) = M(SL for o o) @FM (1, fhoo o) @)+
s+ M(f1, S f)(a).

\ J

Remarque 1.21 : De méme pour la dérivabilité sur un intervalle.
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Exemple 1.22 : Si fi,..., f, sont des fonctions dérivables de I & valeurs dans un
K-espace vectoriel F de dimension n, alors detg(fi, ..., fn) est dérivable sur I
et

(detB(fl, . .7fn)>/ = dets(f1, fa,- .-, fa)+dets(fi, fo, o fo)+
-+ detp(f1, fo, - - ’f'r/z)

Si A est une fonction dérivable de I dans M,,(R), alors det(A) est dérivable sur
I et en notant C1,...,C), les fonctions colonnes de A :
(detoA)" = det(Cy, Cs, ..., Cp) + det(C1,Ch, ..., C)+
-+ +det(Cq,Co, . .. ’Cr/z)

’_[Proposmlon 1.23)
Soit I et J des intervalles, f : I — E et ¢ : J — R deux fonctions telles que
e(J) C 1.

Si ¢ est dérivable en a € J et f est dérivable en b = ¢(a), alors f o ¢ est dérivable

en a et :
(fow)(a)=¢'(a)f (¢(a)).

JProposition 1.24)
Soit I et J des intervalles, f: I — Eet ¢ :J — R.
Si:

1. ¢ est dérivable sur J,

2. f est dérivable sur I,

3. o(J) CI;

alors f o ¢ est dérivable sur J et :

(fow) =¢" - (fow).

I. D Fonctions de classe C*

Définition 1.25)
Une fonction f : I — F est dite 1 fois dérivable sur I lorsqu’elle est dérivable sur I
et la dérivée d’ordre 1 de f est f) = f/, puis par récurrence, pour tout k € N avec
k > 2, on dit que f: I — FE est k fois dérivable sur I lorsqu’elle est dérivable
sur I et que sa dérivée est k— 1 fois dérivable sur I. Dans ce cas on appelle dérivée
d’ordre k et on note f*) la dérivée d’ordre k — 1 de f.

Remarque 1.26 : Toute fonction f : I — E est 0 fois dérivable sur I et f(© = f.

Définition 1.27)

Soit f: I — E.

e Soit k € N, la fonction f est dite de classe C* sur I lorsque f est k fois
dérivable sur I et f(¥) est continue sur I.

« La fonction f est dite de classe C* sur I lorsqu’elle est de classe C* sur I
pour tout k € N.

Notation : Pour k € NU {co}, on note C¥(I, E) 'ensemble des fonctions de classe
CF sur I a valeurs dans E.

Dans la suite de cette partie, k € NU {oc}.

Proposition 1.28)

Soit f,g € CK(I,E) et \, u € K.
Alors \f +pug € C*(I,E) et si k € N :

NS+ 1g)®) = Xf®) 4 gk,

fiProposition 1.29)

Soit L une application linéaire de F dans un espace vectoriel F' de dimension finie.
Si f€CF(I,E), alors Lo feCF(I,E)etsikeN:

~

(Lo f)¥) = Lo f®.

\ J

’iProposition 1.30)
Soit B = (e1,...,e,) une base de Eet f: I — E.

La fonction f est de classe C¥ sur I si et seulement si chacune de ses fonctions
coordonnées dans la base B est de classe C* sur I.

Dans ce cas, si I'on note f; ces fonctions coordonnées :

f(k) — Zfi(k)ei

i=1

\. J

’_[Proposnzlon 1.31 (Formule de Leibniz))

Soit E, F, G des espaces vectoriels de dimension finie et B une application blhnealre
de FE x F dans G.
Sif:I— Eetg:I— F sont de classe C¥ sur I, alors B(f,g) est de classe C*

sur [ et :
ks , ,
B(f,9)" =>" ( .>B(f(”,g(k_”)-
J

Jj=0
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Proposition 1.32)

Soit Ey,...,E, et F' des espaces vectoriels de dimension finie (p > 1) et M une
application multilinéaire de E; x --- x E, dans F.

Si fi,..., fp sont des fonctions de I dans FEj,..., E, respectivement, de classe ck
sur I, alors M(f1,..., f,) de classe C* sur I.

Proposition 1.33)
Soit I et J deux intervalles, et deux fonctions f € C*(I, E) et p € C*(J,R) telles
que p(J) C I.

Alors f o ¢ est de classe C* sur J a valeurs dans FE.

II Intégration sur un segment

Dans cette section, les fonctions sont définies sur un segment [a;b] (avec a < b) et &
valeurs dans E.

II. A Fonctions continues par morceaux

(Définition 2.1)

Une fonction f : [a;b] — E est dite continue par morceaux sur [a;b] lors-
qu'il existe une subdivision (ao,...,ap) de [a;b] telle que pour tout ¢ € [0;p — 1],
Jllai sai41] €St prolongeable en une fonction continue sur [a;; a;y1].

Une telle subdivision est dite adaptée a f.

Remarque 2.2 : Une fonction est continue par morceaux si et seulement si il existe
une subdivision (ao, ..., ap,) de [a;b] telle que :

e pour tout i € [0;p — 1], f est continue sur Ja; ; a;11];
e pour tout i € [1;p — 1], f a des limites (finies) & gauche et a droite en a; ;
o f a une limite (finie) & droite en a = ap et & gauche en b = a,,.

Notation L101 : on note Cpy,([a;b], E) 'ensemble des fonctions continues par mor-
ceaux sur [a;b] & valeurs dans E.

Exemples 2.3 : o Les fonctions continues sur [a;b] sont continues par morceaux
sur [a;b];

o les fonctions en escalier sur [a;b] sont continues par morceaux sur [a;b|;

Proposition 2.4)

Une fonction f : [a;b] — E est continue par morceaux sur [a;b] si et seulement
si chacune de ses fonctions coordonnées est continue par morceaux sur [a;bl.

Proposition 2.5)
Soit f € Cpm([a;b], E), alors f est bornée sur [a;b].

Proposition 2.6)

L’ensemble Cp,([a;b], E) est un sous-espace vectoriel de F([a;b], E).
L’application f +— || f|l.. = sup || f(¢)|| définit une norme sur Cp,([a;b], E).
t€la ;b

II. B Intégrale d’une fonction continue par morceaux

fiDéﬁnition/Proposition 2.7)

Soit f € Cpm([a;b], E) et B = (eq,...
fonction coordonnées de f dans B.

Alors le vecteur
n b
I=3 (/ ﬂ(t)dt) e
i=1 a

ne dépend pas de la base de E choisie. On 'appelle ’intégrale de f sur [a;b].

,én) une base de E. On note fi,..., f, les

J

Notation : L’intégrale de f sur [a;b] est notée : f[a,b] f ou f;f ou ff f(t)dt.

On étend les notations f; f et f: f(t) dt pour un couple (a,b) € I? avec f conti-
nue par morceaux sur I par :

a b a
/f:O et /f:—/fsia>b.
a a b
II. C Propriétés

’_[Proposition 2.8 (Linéarité))
L’application f — f: f est linéaire de Cpy,([a;b], E) dans E :

b b b
¥£.9 € Cait). B YA € K, [ AF(0)+ pg(dt = A [ p)dt [ gttt

\. J

fiProposition 2.9 (Relation de Chasles)]
Soit f: I — E continue par morceaux sur [ et a,b,c € I, alors :

/acf(t)dt:/abf(t)dt—k/bcf(t)dt.
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Proposition 2.10)

Si f €Cpm(la;b],E) et L € L(E,F) avec F un espace vectoriel de dimension finie,
alors L(f) € Cpm([a;b], F) et

L(/abf>=/:L(f)-

__(Définition 2.11)

Soit f € Cpm([a;b], E) et n € N*, on appelle somme de Riemann d’ordre n
associée a f le vecteur :

nl

~

Théoréme 2.12)

Soit f € Cpm([a;b], E), alors :

b—a’n_

>

b—

n

)

_(Méthode 2.13)

On peut toujours se ramener au cas particulier [a;b] =
mettre en oeuvre :

n—1 1
2 () = [ o
I1 suffit alors de :

faire apparaitre % en téte;

e se ramener a une somme de 0 an —1;

faire apparaitre les % ;

en déduire la fonction f associée.

[0;1] qui est plus simple &

Exemples 2.14 : Calculer
n—1 n 1
. L j : 2 .
nEI—&I-loo n o R et nEI—&r-loo - n+k

fiProposition 2.15 (Inégalité triangulaire))
Soit f € Cpm/([a;b],

E) (avec a < b), alors :

< /abeII-

fiCorollaire 2.16)
Soit f € Cpm([a;b], E), alors :

l

Intégrale fonction de sa borne supérieure

< (0 =-a)fllw

[

II. D

rJThéoréme 2.17)
Soit f € C(I,E) et a € I. Alors lapplication

FL'—)/f

est de classe Ct sur I et Vo € I, F'(z) = f(

\

Remarques 2.18 : ¢ F est la primitive de f qui s’annule en a.

e Si g est une primitive de f sur I et a,b € I, alors

/abf(t)dt=

) et a,z €I, alors :
+/l f(t)dt

(b) — g(a).

. SifeC\(IE

Méthode 2.19)

v(x)
Pour étudier une fonction du type : x — / (t) dt, définie par une intégrale

dont seules les bornes (et non 'intégrande) dependent de la variable, on introduit
une primitive de l'intégrande.
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Exemple 2.20 : On considere la fonction f définie par :

1_2
: ——dt
/ xH/JC_l In(t

1. Déterminer ’ensemble de définition D de f.

2. Montrer que f est de classe C' sur D et calculer f’.

Proposition 2.21 (Changement de variable))
Soit f € C(I, E) et p € C*(J,R) telles que ¢(J) C I. Pour tous a,b € J :

b @(b)
/@’(S)f(w(s)) dsz/ £(t) dt.
a e(a)

Théoréme 2.22 (Inégalité des accroissements finis)

Soit f € C(I, E) telle que f est de classe C* sur lintérieur de I et M € R*.
Si:Vtel|f'(t)| <M, alors :

Va,b e L[ f(b) = fa)l < M |b—al.

Attention : L’égalité des accroissements finis, valable pour f € C*(I,R), ne se gé-
néralise pas aux fonctions a valeurs complexes ou vectorielles.

Contre exemple 2.23 : f:R — C,t s e,

IITI Formules de Taylor

Théoréme 3.1 (Formule de Taylor avec reste intégral) )
Soit f € CPYL(I,E) et a,b € I, alors :

i (k) (a) + /b (b;'t)pf(p+1)(t) dt.
=0 @ ’

fiThéoréme 3.2 (Inégalité de Taylor-Lagrange))
o Soit f € CPTYI,E) et a,bel

avec || R, < %Mpﬂ ot M1 est un majorant de || f®*+V|| sur [a;8] (ou
sur [b;al).

o Soit f €CP(I,E)etabel

k!
k=0
avec || R,|| < ‘b( ‘)1,‘ K, ou K, est un majorant de Hf — f®)(a (a)|| sur [a;b] (ou
sur [b;al).
Remarque 3.3 : || fP*D|| est continue sur le segment [a; b] (ou [b;a]) donc majorée.

Théoréme 3.4 (Formule de Taylor-Young))
Soit f € CP(I,E) et a € I, alors :

5 = ST f00) 4o (@ o).

k=0

Remarques 3.5 : ¢ La conclusion du théoréme peut se traduit par : il existe une
fonction € : I — E telle que e(x) — 0O et
r—a

n

1@ =3 T 00 4 (@ - 0 c(o)

k=0

e Pour p > 1, le résultat reste vrai sous ’hypothése (plus faible) : f est p fois
dérivable sur I.

Méthode 3.6
¢ La formule de Taylor-Young décrit le comportement local de la fonction f autour
de a. Elle peut servir dans un calcul de limite en a.

o Les formules de Taylor avec reste intégral et I'inégalité de Taylor-Lagrange sont
des résultats globaux : valables pour tout b € I.
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IV Intégration et dérivation d’une suite ou série de
fonctions

IV. A Intégration d’une limite uniforme sur un segment

(Théoréme 4.1) .

Soit (fn)nen une suite de fonctions définies sur un intervalle I de R et & valeurs
dans F, a un point de 1.
Si:

e Vn €N, f, est continue sur I ;

(fn)nen converge uniformément sur tout segment de I vers une fonction f.

Alors la suite (F),)nen converge uniformément vers F' sur tout segment de I ou

pour tout n € N :
F, : a:r—>/ fn(t)dt et F:xr—>/ f)de
(Corollaire 4.2)
Soit (fn)nen une suite de fonctions définies sur un segment [a ; b].
Si:

o Vn €N, f, est continue sur [a;b];

(fn)nen converge uniformément sur [a;b] vers une fonction f.
Alors f est continue sur [a;b] et :
t)ydt ——

/ fultydt —— lbﬂwdt

\. J

Attention :

La convergence simple ne suffit pas!

IV. B Dérivation d’une suite de fonctions

. (Théoréme 4.3)

Soit (fn)nen une suite de fonctions définies sur un intervalle I de R, & valeurs dans
E.Si:

e pour tout n € N, f,, € C1(I);

(fn)nen converge simplement vers f sur [ ;
o (f])nen converge uniformément vers g sur tout segment de I ;
alors :

(fn)nen converge uniformément vers f sur tout segment de I ;
o festdeclasse Cl sur I et f' =g.

\. J

Remarque 4.4 : En pratique, on vérifie la convergence uniforme de (f),),en sur des
intervalles adaptés a la situation.

Attention : La convergence uniforme doit étre celle des dérivées!

IV. C Intégration et dérivation d’une série de fonctions

fiProposmlon 4.5)

Soit > fy, une série de fonctions définies sur un intervalle I de R et & valeurs dans
FE, a un point de I.
Sic

e Vn €N, f, est continue sur [ ;

> fn converge uniformément sur tout segment de I vers une fonction S.

Pour tout n € N et tout « € I, on pose :

Fn:xr—>/ fn(t)dtetT:xH/ S(t)dt

Alors la suite Y F, converge uniformément vers T sur tout segment de I.

\ J

fiProposition 4.6)
Soit Y fy, une série de fonctions sur un segment [a;b] et a valeurs dans E.
Sic

e VYn €N, f, est continue sur [a;b];

> fn converge uniformément vers une fonction S sur [a;b],

+oo b b b [+
fn t)dt | = S(t)dt = fn t dt
le U) L() L<§<ﬂ

fiProposmlon 4.7)

Soit Y f,, une suite de fonctions définies sur un intervalle I de R, & valeurs dans |
E.Si:

 pour tout n € N, f,, € C1(I);

alors :

>~ fn converge simplement sur I ;

« 2

alors :

converge uniformément sur tout segment de I ;

> fn converge uniformément sur tout segment de I ;

+oo ! +oo
(£n)-Sa
n=0 n=0

—+o0
o > fn estdeclasse C! sur I et
n=0
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Exemple 4.8 : Soit A € M, (K) et

R — M,(K)
t — exp(t-A)

12

La fonction ¢ est de classe C! de R dans M,,(K) et Vt € R, ¢/ (t) = Axexp(tA) =
exp(t- A) x A.

Remarque 4.9 : De méme pour la généralisation a la classe C*.

V  Fonctions a valeurs réelles (rappels)

V. A Dérivabilité et extremum

(Théoréme 5.1)
Soit f: I — R, si

e o est un point intérieur de I (pas une extrémité);

e f est dérivable en xg;
e f admet un extremum local en xg ;
alors f'(zg) = 0.

Attention : 1. La réciproque est fausse :

J'(z0) =0 f a un extremum local en .

Contre exemple : la fonction

2. Le théoreme ne s’applique pas aux extrémités des I.

(Méthode 5.2)

Pour chercher les extrema d’une fonction f dérivable sur I, il faut s’assurer que
ces extrema existent (ce qui est le cas par exemple si I est un segment); puis on
considere les points d’annulation de la dérivée et les extrémités.

V. B Théoreme de Rolle et égalité des accroissements finis

Théoréme 5.3 (de Rolle))

Soit a et b deux réels avec a < b et f : [a;b] — R une fonction continue sur [a ;b
et dérivable sur ]a;b[.
Si f(a) = f(b), alors il existe ¢ € Ja; b tel que f'(c) = 0.

Interprétation géométrique : sous les hypotheses du théoréme, le graphe de f a
au moins une tangente horizontale.

Interprétation cinématique : sil’on se déplace sur une route rectiligne et que 'on
revient a son point de départ, alors il y a un moment ou la vitesse est nulle.

Théoréme 5.4 (Egalité des accroissements ﬁnis)]
Soit a et b deux réels avec a < b et f : [a;b] — R une fonction continue sur [a;b]
et dérivable sur |a; b
Alors il existe ¢ € |a;b] tel que f(b) — f(a) = f'(c)(b— a).

Interprétation géométrique : sous les hypotheses du théoréme, le graphe de f a
au moins une tangente parallele a la corde reliant les points du graphe d’abscisses a
et b.

Interprétation cinématique : sil’on se déplace sur une route rectiligne, alors il y a
un moment ou la vitesse est égale a la vitesse moyenne. Par exemple, si I’on parcours
5 km en une heure, alors & un instant donné la vitesse est égale & 5 km/h.

V. C Théoréme de la limite de la dérivée

(Lemme 5.5)

Soit f : I — R une fonction continue sur I et dérivable sur I\ {a} et £ € R.

: . Jx)—f(a)
Si f’(LE) ? g, alors e — — (.

T—ra

\

Soit f: I — R, si:
e f est continue sur I,
o f est dérivable sur I\ {a},
/
o f'(z) g (eR,
alors f est dérivable en a et f'(a) = £.

(Théoréme 5.7)

Soit f: I — R, si:
e f est continue sur I,
e f est dérivable sur I\ {a},

!/
o fl(x) = %00,
r#a
alors f n’est pas dérivable en a et le graphe de f a une tangente verticale en a.

Exemple 5.8 : Etudier la dérivabilité de z — z+/z.
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(Théoréme 5.9)

Soit f: I — R, si:
e f est continue sur I,
e f est de classe C! sur I\{a},

) f/(fﬂ) E}K S R,

alors
\

0; — R
Exemple 5.10 : Montrer que f : 05 +00]

" _, In(+o) est prolongeable par

€T
continuité en 0, on note encore f le prolongement sur [0;+oo.
Montrer que f est de classe C* sur [0; +ool.

’iThéorérne 5.11)

Soit f: I — R, si:
e f est continue sur I,
o f est de classe C* sur I\ {a},

o VjeL;k] f9(2) —> 4 €R,
é#a

alors
\

J

Exemple 5.12 :

Montrer que la fonction f de I’exemple précédent est de classe C*°
sur [0; +o0.
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