
Chapitre 13 : Fonctions vectorielles de la variable réelle

Exercices

Exercice 1. Pour tout réel x, on pose :

Dn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 (0)
x2/2! x 1

x3/3! x2/2! x
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xn/n! . . . . . . x2/2! x

∣∣∣∣∣∣∣∣∣∣∣∣
.

1. Montrer que Dn est une fonction dérivable sur R et calculer sa dérivée.
2. En déduire l’expression de Dn(x).

Exercice 2. Soit u, v, w trois fonctions de classe C2 de [a ; b] dans R. On suppose :∣∣∣∣∣∣
u(a) v(a) w(a)
u(b) v(b) w(b)
u′(a) v′(a) w′(a)

∣∣∣∣∣∣ = 0.

Montrer qu’il existe c ∈ ]a ; b[ tel que :∣∣∣∣∣∣
u(a) v(a) w(a)
u(b) v(b) w(b)
u′′(c) v′′(c) w′′(c)

∣∣∣∣∣∣ = 0.

Exercice 3. Soit f : [0 ; 1] −→ E dérivable en 0 tel que f(0) = 0.
Déterminer la limite quand n → +∞ de

Sn =
n∑

k=1
f

(
k

n2

)
.

Exercice 4. Soit f : [0 ; 1] −→ [0 ; 1].
1. Montrer que si f est continue sur [0 ; 1], alors f admet un point fixe.
2. Montrer que si f est croissante sur [0 ; 1], alors f admet un point fixe.

Indication : on pourra introduire l’ensemble X = {x ∈ [0 ; 1] | f(x) ⩾ x}.

Exercice 5. Soit f : I −→ R une fonction continue et injective sur I (I intervalle de
R).
Montrer que f est strictement monotone.

Exercice 6. Soit f ∈ C∞([0 ; +∞[,R) telle qu’il existe une suite (xn)n∈N d’éléments
de ]0 ; +∞[ telle que xn −−−−−→

n→+∞
0 et ∀n ∈ N, f(xn) = 0.

Montrer que : ∀k ∈ N, f (k)(0) = 0.

Exercice 7. Étudier les suites (un)n∈N vérifiant u0 ∈ [0 ; 2] et pour tout n ∈ N, un+1 =√
2 − un.

Exercice 8. On considère la suite (un)n∈N définie par u0 ∈ [0 ; π
2 ] et pour tout

n ∈ N, un+1 = sin(2un).
1. Montrer que l’intervalle [ π

4 ; 1] est stable par f : t 7→ sin(2t).
On pourra utiliser 0, 78 < π

4 < 0, 79 et 0, 9 < sin 2 < 0, 91 et 2 cos(2) < 1.

2. Étudier la suite (un)n∈N.

Exercice 9. Pour tout entier naturel n, on considère la fonction

fn : x 7→ x3 + nx − 1.

1. Montrer que pour tout entier naturel n, l’équation fn(x) = 0 a une unique solution.
On appelle un cette unique solution et on considère la suite (un)n∈N ainsi définie
implicitement.

2. Montrer que pour tout entier naturel n, on a un ∈ ]0; 1].
3. Montrer que fn(un+1) < 0.
4. En déduire que la suite (un)n∈N est décroissante.
5. Montrer que la suite (un)n∈N converge.
6. Déterminer la valeur de la limite.

indication : on pourra raisonner par l’absurde.

Exercice 10. Soit f : [a ; b] −→ R une fonction dérivable sur [a ; b].
1. Montrer que f peut admettre un minimum sur [a ; b] en a sans qu’on ait f ′(a) = 0.
2. Montrer que si f admet un minimum sur [a ; b] en a, alors f ′(a) ⩾ 0.
3. On suppose f ′(a) < 0 et f ′(b) > 0. Montrer que l’équation f ′(x) = 0 a au moins

une solution dans [a ; b].

Exercice 11. Soit f ∈ C1([a ; +∞[, E) avec E un espace vectoriel de dimension finie.
On suppose que f ′ a une limite en +∞.
Montrer que f est lipschitizienne sur [a ; +∞[.

Exercice 12. Soit f, g ∈ C([a ; b],R) avec g ⩾ 0 sur [a ; b].
Montrer qu’il existe c ∈ [a ; b] tel que∫ b

a

f(t)g(t) dt = f(c) ×
∫ b

a

g(t) dt.
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Exercice 13. Soit f ∈ C(R,R) telle que f ̸= 0 et

(1) ∀(x, y) ∈ R2, f(x + y) + f(x − y) = 2f(x)f(y).

1. Montrer que f(0) = 1 et que f est paire.
2. Montrer qu’il existe c ∈ R∗

+ tel que le nombre K =
∫ c

0 f(t) dt soit non nul, puis que

∀x ∈ R, f(x) = 1
2K

∫ x+c

x−c

f(u) du.

3. En déduire que f est de classe C∞ sur R.
4. Montrer qu’il existe λ ∈ R tel que f ′′ = λf .

Indication : on pourra dériver deux fois la relation (1) par rapport à x puis par rapport à y.
5. En déduire les solutions de l’équation (1).

Exercice 14. Calculer les limites suivantes

lim
n→+∞

n−1∑
k=0

k√
n4 + n2k2

; lim
n→+∞

n−1∑
k=0

n

2n2 + k2 et lim
n→+∞

(
(2n)!
nnn!

) 1
n

CCINP

Exercice 15 (CCINP 3).

1. On pose g(x) = e2x et h(x) = 1
1 + x

.
Calculer, pour tout entier naturel k, la dérivée d’ordre k des fonctions g et h sur
leurs ensembles de définitions respectifs.

2. On pose f(x) = e2x

1 + x
.

En utilisant la formule de Leibniz concernant la dérivée nième d’un produit de fonc-
tions, déterminer, pour tout entier naturel n et pour tout x ∈ R\ {−1}, la valeur
de f (n)(x).

3. Démontrer, dans le cas général, la formule de Leibniz, utilisée dans la question
précédente.

Exercice 16 (CCINP 4).
1. Énoncer le théorème des accroissements finis.
2. Soit f : [a, b] −→ R et soit x0 ∈ ]a, b[.

On suppose que f est continue sur [a, b] et que f est dérivable sur ]a, x0[ et sur
]x0, b[.
Démontrer que, si f ′ admet une limite finie en x0, alors f est dérivable en x0 et
f ′(x0) = lim

x→x0
f ′(x).

3. Prouver que l’implication : ( f est dérivable en x0) =⇒ (f ′ admet une limite finie
en x0) est fausse.

Indication : on pourra considérer la fonction g définie par : g(x) = x2 sin 1
x

si
x ̸= 0 et g(0) = 0.
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