Lycée Victor Hugo - Besangon
Polynoémes - intégrales et equations différentielles- suites - matrices
DS5 - durée : 3h

PCSI2 — MATHEMATIQUES 16 JANVIER 2026

La calculatrice est interdite.

(‘Exercice 1 : échauffement polynomiale

Soit P = X% +2x* + X3+ x? y2x +1.
1. Déterminez ’ordre de multiplicité de la racine —1 pour P.
2. Déterminer la décomposition primaire de P dans R[X] et dans C[X].

1. On trouve que —1 est racine d’ordre de multiplicité 3, par exemple en dérivant 3 fois.

2. On factorise et il vient
P(X)=(X+13X?-X+1)

Le polynome de degré 2 n’a pas de racine réelle, donc la factorisation dans R[X] est terminée.

Dans C[X] on obtient | P(X) = (X + 1)3(X — ™/3)(X — e7/3).

(b Exercice 2 : échauffement séquentiel

Donnez ’expression en fonction de n du terme général des suites (uy ) ci dessous.
1
1. ugp=1letVn eN, uyp11 = Eun -2

Un41 Un

2. ugp=3,u1 =0etVn €N, upio = 2 2

1
1. C’est une suite arithmético-géométrique. On cherche ¢ = 3¢~ 2, c’est a dire ¢ = —4.

1 1
On a alors pour tout n € N, w11 —c = §un -2 — §C + 2, c’est a dire

1
Upil — C = §(un —¢)

n
La suite (u, — c¢) est donc géométrique et pour tout n € N, u,, — ¢ = (ug — ¢) <> . On en

2
. n\"
déduit |u, =5 () —4

2

1 1
2. (Uest une suite récurrente linéaire d’ordre 2 d’équation caractéristique 22 + 3T~ 5= 0.

1
—1 est racine évidente, 'autre racine est 3 et par conséquent il existe A, B réels tels que

1 n
Vn € Nyu, = A.(-1)"+ B <2)

Comme ug = 3 et u; = 0 on déduit le systéme

A+B =3 A+B =3 A =1
1 3 -~
—A+§B 0 LoceiiiL =3 (:){ B =

1
on—1 :

On en déduit |u, = (—1)" +

(‘ Exercice 3 : changement de variable et équation différentielle

e

Soit a la fonction définie sur R par a(z) =

et 4+ e~
1. Avec un changement de variable, calculer une primitive de a.
2. Déterminer les solutions de I’équation différentielle suivante sur ’intervalle R :

(E) : (e +e )y —e¥y=e"



el’

et 4+ e
Effectuons le changement de variable u = e”. Alors du = e*dx.
Les bornes deviennent alors ¢ = 1 et ¢ et on obtient :

dt. Ainsi, a est une primitive de a (celle qui s’annule en 0)

1. Posons A(x) :/
0

x

€ 1
Ax)= | ——d
() /ou+;“

€
_ / LY
0 1 +u
1 .
= [§1n(1 + u?)]§
1
=3 In(1 4 €%*)

2. On commence par réécrire I’équation sous la forme

, 6$ e$
y - y=
er +e* et +e*

On reconnait devant le y la fonction a étudiée précédemment.
L’équation homogéne est

Ey:y —a(x)y=0
dont les solutions sont

N eR,y(z) = Aez (HE™) = (/1 4 e2e

On cherche maintenant une solution particuliére, mais avant de vouloir faire des variations de
la constante, on regarde si il n’y en a pas une solution évidente... et effectivement y, = —1
convient. Ouf! (mais la variation de la constante restait possible)

(E):INeRy(z) =AV1+e* -1

@Exercice 4 : des suites et des matrices

1 0 0 0 0 0 1 0 0
Soient les matrices: A=|6 -5 6}, H=[(3 -3 3|, I=(0 1 O
2 -2 3 1 -1 1 0 0 1

1. a) Montrer que A est inversible et calculez AL
b) Montrer qu’il existe un réel a tel que AH = aH.
c¢) Montrer qu’il existe un réel b tel que A =1 + bH.

2. a) Montrez qu’il existe une suite (by,) telle que, pour tout n € N, A™ =1 + b, H.
On précisera la relation de récurrence entre b, 1 et by.

1 1
b) En déduire que : A" (3| = (3bn +3
3 by + 3
1
c¢) Calculer by, en fonction de n et exprimer la matrice | 3b, + 3 | en fonction de n.

bn +3

3. On considére maintenant les suites (un)nen et (vn)nen définies par :

ug =vg =3
Vn €N, wupy1 =6—5u, +6v, et VUpt1 = 2 — 2up + 3vpn

1
On note, pour tout n € N, Xn = (un)
Un
a) Montrer que pour tout entier naturel n, X,41; = AXp.
b) En déduire que, pour tout entier naturel n, X, = A" Xj.

c¢) Calculer finalement u,, et vy, en fonction de n.

1. a) La méthode de Gauss-Jordan donne assez rapidement :

(3 00
At=-1[6 -3 6
3\2 —2 5
b) on calcule :
1 00\ /0 0 0 00 0 0 0 0
AH=1|6 -5 6|3 -3 3|=(-9 9 —9|=-3|3 -3 3
2 —2 3/ \1 -1 1 -3 3 -3 1 -1 1

Ainsi | AH = —3H, c’est a dire AH = aH, avec a = —3




c)

A nouveau on calcule :

1 0 0 100 0 0 O
A-I=1[6 =5 6| —-10 1 0)]=|6 -6 6| =2H
2 -2 3 0 01 2 -2 2

Ona |A=1+2H| quiest bien de la forme A =1+ bH, avec b =2

Analyse : Si une telle suite existe, on a A" = I 4+ b, H. Comme A° = I, nécessairement

bo = 0.
De plus, A"t = AA™ = AT +b,AH = A+ b,(—3H) d’aprés la question 1b.
D’apres lc, A =1 +2H don A" =T+ (2 — 3by)H et donc il faut b, 11 = 2 — 3b,,.
Synthése : Soit (b,,) la suite définie par by = 0 et, pour tout n € N, b,41 =2 — 3b,
Soit n € N. Montrons par récurrence que A" =1 + b, H

Initialisation :
Ona by =0, donc [ +boH =1.0r A° =1, donc Dlinitialisation est vérifiée.

Hérédité :
Soit n € N. Supposons que A" =1+ b,H .
On a alors, en multipliant par A a gauche,

Ax A" =A(I +b,H) = Al +b,AH

Or AI=A=1+2H et AH = —-3H, donc

A" = A4 b AH = (I +2H) — 3b,H =T + (2 — 3b,) H

Par définition de la suite (bn), on a 2 — 3b, = by41, ce qui donne :

A =T 4 b, H
ce qui prouve ’hérédité.

Conclusion : On a prouvé, par récurrence que :

Vn € N, A" =1+b,H

On applique le résultat précédent au calcul proposé :

1 1 1 1
A" 2 | = (IT+b,H) | 2 = 2 | +b,H| 2
3 3 3 3
1 0 0 O 1 0
Or,H| 2 | =3 -3 3 31 =13], donc
3 1 -1 1 3 1
1 1 0 1
A" 3] = (3| +b, |3 = | 3bp,+3
3 3 1 by + 3
Pour tout n € N, b1 = —3b, + 2, donc la suite (bn) est arithmético-géométrique.

On cherche ¢ tel que ¢ = =3¢+ 2, c’est a dire c=1/2 .
On a donc 2 égalités : (1) :Vn €N, byy; =-3b,+2 et (2): ¢=—3c+ 2.
En les soustrayant on obtient : Vn eN, b1 —c=—=3(b, — ),

Donc la suite (b, —c) est géométrique de raisons —3, d’ott Vn € N, b,—c = (bg—c) x(—3)".

En calculant bg — ¢ = —5 on obtient :

Finalement :

n



1 1

N, b, == —=(-3)"
vneN, by =5 —5(=3)
En reportant dans le vecteur colonne précédent, on obtient :
1
1 9 3 n
¥n €N, b, +3 | = g—?(—?ﬂ
bn +3 n
-39

3. a) Pour tout entier n, on a d’une part :

1 0 0 1 1
AX, =16 -5 6 u, | = [ 6 — 5uy, + 6vy,
2 -2 3 Up, 2 — 2u, + vy,

et d’autre part, étant donné la définition des suites (Xn), (un) et (vn)

1 1
Xn+1= | tnt+1 | = | 6 — duy, + 6vy,
Un+1 2 — 2uy + 3vu,

‘donc VneN, X, =A4X,

b) On ’a fait déja plusieurs fois par récurrence (et il fallait le refaire encore). Attention : on
ne peut pas dire "c’est une suite géométrique de raison A" car A n’est pas un réel ou un
complexe....

c) En utilisant les questions précédentes on obtient :

1 1 1 9 3, .
Up | = Xp=A" 3] = (30, +3] = %—%(—3)
Un 3 bn +3 b 7(_3)71
2 2
9 3 7 1
final =_———(=3)" =_ (=3
et finalement |Vn € N, u, 5 2( 3)" et vy, 5 2( 3)

@Exercice 5 : une application qui transforme des polynémes

On rappelle que C3[X] désigne I’ensemble des polynémes de degré au plus 3.
Pour tout P € C3[X], on définit ’application ¢ par :

P(P(X)) = P(X +1) — P(X)

ol P(X + 1) désigne la composition de X 4+ 1 par P (et non pas le produit)
1. (Exemple pour comprendre) Vérifiez que ¢(X) =1 et «p(XQ) =2X 4+ 1.
2. Montrez que pour tout P € R3[X], p(P) € C3[X].
3. Soit P tel que ¢(P) =0 :
a) Montrez que si P admet une racine o € C, alors o + 1 est racine de P aussi.
b) En déduire que pour tout n € N, o + n est racine aussi. Que dire finalement de P ?
c¢) Conclure sur ’ensemble des polynémes vérifiant ¢ (P) = 0.
4. Soit P =a+bX +cX? +dX> avec a, b, c,d € R.
a) Soient «, 8, v et § tel que
o(P) = o+ BX +~vX2 +5x°

(1)

c¢) Calculez A*. En déduire @(p(p(e(P)))) en fonction de a, b, c et d.

Exprimez «, 3, v et § en fonction de a,b, c et d.
b) En déduire qu’il existe A € M4 (R) telle que

92 ™R
N——

QL0 o R

1. C’est une vérification.

2. Soit P € R3[X] et Q = ¢(P). Par composition et somme de polynémes, @ est un polynome.
De plus, P(X + 1) est de degré deg(P) x 1 et par somme, deg(Q) < deg(P) < 3, donc

1Q = ¢(P) € Rg[x]|
3. a) Supposons p(P) =0. Alors P(X +1) = P(X). Supposons « racine de P. Alors P(a+1) =
P(a) =0, donc ‘ a + 1 est racine de P‘




b) Par récurrence : Si n = 1, c’est la question a).

Soit n > 1 et supposons que «a + n est racine. D’aprés a), on a vu que si un nombre est
racine, alors ce nombre +1 est racine aussi. Ainsi, a +n + 1 est racine. La propriété est
héréditaire.

Ainsi, pour tout n € N, a + n racine de P, donc P admet une infinité de racines : ¢’est
impossible sauf si P est le polyndéme nul.

c¢) Conclusion : P est nul ou n’a pas de racine, pas méme complexes, donc| P est nul ou P est une constant
Les constantes vérifient effectivement ¢(P) = 0, ce qui répond donc a la question.

4. a) Soit P =a+bX + ¢X?+ dX?3. On calcule ¢(P) :

OP)=a+bX +1)+ce(X +1)2+d(X +1)° — (a+bX + X2 +dX?)
=b(X +1)+e(X?+2X +1) +d(X?+3X?+3X +1) — bX — cX? —dX?
=b+c+d+ X(2¢+ 3d) + X?(3d)

Ainsi, si o(P) =a+ X +yX?+6X3 ona:

a =b+c+d
8 =2c+3d
v =3d
0 =
o 0111 a
o g1 _ 100 2 3 b
b)AlnSl,7—0003 .
0 0 00O d

¢) On trouve A* = Oy, et le calcul précédent montre qu'en calculant A ou a,b,c,d

QLO R

sont les coefficients d'un polynoéme, on obtient les coefficients de ¢(P). Donc en répétant
l'opération 4 fois, on aura les coefficients de p(p(¢(p(P)))).

a a 0

4l b ] bl [0
OI‘A " —04 c — 0 I

d d 0

Donc ’@(gp(gp((p(P)))) = 0 (le polynome nul! (et donc plus de a,b,cou d;) ) ‘

4 Exercice 6 : une fonction définie par une intégrale

Soit la fonction f : ]Ri — R deéfinie par f(z) = z — In(x).
On note ® la fonction donnée par :

20 1
¢(z>:A o

1. a) Etudier la fonction f sur son ensemble de définition en donnant son signe et son tableau de variation.

b) Montrer que ® est bien définie et dérivable sur ]Ri, et que 'on a :

In(2) — In(z)

VeeRi, () = )@ — n2a))

c¢) En déduire les variations de ® sur ]Rj_.
1
2. a) Montrez que 0 < m < 1 pour tout ¢t > 0.
t
b) En déduire que Vz € Ri, 0< ®(z) <.
c¢) En déduire lim ®(z).
x—0

1. a) Remarquons déja que f est une fonction dérivable sur R’ par sommes de fonctions déri-
vables

1
De plus, f'(z) = 1— =, donc f est décroissante sur 0, 1], puis croissante sur [1, +o0l, avec
x

un minimum en 1, avec f(1) = 1. Ainsi f est positive sur RY.



b)

c)

T 0 1 +o00
f'(x) - 0 +
+oo +00
f \ /
1

(les limites n’étaient pas demandée, mais celle en 400 s’obtient par croissance comparée)

Comme f atteint son minimum en 1 et que f(1) =1, f ne s’annule pas.

1
Ainsi, t — —— est continue sur R , donc sur tout [z, 2x] pour x > 0.
f(t) i

Ainsi ® est définie sur R7 .

1
Posons maintenant F' une primitive de 7 Alors ®(z) = F(2x) — F(x), donc par compo-
sition et somme de fonctions dérivables, ® est dérivable avec ®'(x) = 2F'(2x) — F'(z)

Comme F'(z) = il suffit de remplacer et de mettre au méme dénominateur pour

b
‘ T@)’
obtenir

In(2) — In(x)

VreR:, @'(x)= (z —In(z))(22 — In(22))

D’apres l'étude faite de f dans la question a, x — In(x) et (22 — In(2x)) sont stricte-
ment positif. Donc ®'(z) est du signe de In(2) — In(z), c’est & dire croissante sur ]0, 2] et
décroissante sur [2, +00].

1
On sait déja que — est une fonction positive. Comme de plus pour tout ¢t > 0, f(t) > 1,

f

onamgl.

On en déduit 'encadrement demandé.

Comme pour tout z > 0, 2 > x, on peut procéder par croissance de l'intégrale, en partant

de 1
0<——<1

f(t)
On intégre entre x et 2z et on tombe immédiatement sur ’encadrement proposé.

I’encadrement précédent donne par le theoréme des gendarmes que lin% d(x) =0
Tr—r



