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La calculatrice est interdite.

Soit P = X
5

+ 2X
4

+X
3

+X
2

+ 2X + 1.

1. Déterminez l'ordre de multiplicité de la racine −1 pour P .

2. Déterminer la décomposition primaire de P dans R[X] et dans C[X].

Exercice 1 : échau�ement polynomiale

1. On trouve que −1 est racine d'ordre de multiplicité 3, par exemple en dérivant 3 fois.

2. On factorise et il vient
P (X) = (X + 1)3(X2 −X + 1)

Le polynôme de degré 2 n'a pas de racine réelle, donc la factorisation dans R[X] est terminée.

Dans C[X] on obtient P (X) = (X + 1)3(X − eiπ/3)(X − e−iπ/3).

Donnez l'expression en fonction de n du terme général des suites (un) ci dessous.

1. u0 = 1 et ∀n ∈ N, un+1 =
1

2
un − 2

2. u0 = 3, u1 = 0 et ∀n ∈ N, un+2 = −
un+1

2
+
un

2

Exercice 2 : échau�ement séquentiel

1. C'est une suite arithmético-géométrique. On cherche c =
1

2
c− 2, c'est à dire c = −4.

On a alors pour tout n ∈ N, un+1 − c =
1

2
un − 2− 1

2
c+ 2, c'est à dire

un+1 − c =
1

2
(un − c)

La suite (un − c) est donc géométrique et pour tout n ∈ N, un − c = (u0 − c)
(

1

2

)n
. On en

déduit un = 5

(
1

2

)n
− 4

2. C'est une suite récurrente linéaire d'ordre 2 d'équation caractéristique x2 +
1

2
x− 1

2
= 0.

−1 est racine évidente, l'autre racine est
1

2
et par conséquent il existe A,B réels tels que

∀n ∈ N, un = A.(−1)n +B

(
1

2

)n
Comme u0 = 3 et u1 = 0 on déduit le système{

A+B = 3

−A+
1

2
B = 0

⇔
L2←←L1+L2

{
A+B = 3

3

2
B = 3

⇔
{
A = 1
B = 2

On en déduit un = (−1)n +
1

2n−1
.

Soit a la fonction dé�nie sur R par a(x) =
ex

ex + e−x
.

1. Avec un changement de variable, calculer une primitive de a.

2. Déterminer les solutions de l'équation di�érentielle suivante sur l'intervalle R :

(E) : (e
x

+ e
−x

)y
′ − exy = e

x

Exercice 3 : changement de variable et équation di�érentielle



1. Posons A(x) =

∫ x

0

ex

ex + e−x
dt. Ainsi, a est une primitive de a (celle qui s'annule en 0)

E�ectuons le changement de variable u = ex. Alors du = exdx.
Les bornes deviennent alors e0 = 1 et ex et on obtient :

A(x) =

∫ ex

0

1

u+ 1
u

du

=

∫ ex

0

u

1 + u2
du

= [
1

2
ln(1 + u2)]e

x

0

=
1

2
ln(1 + e2x)

2. On commence par réécrire l'équation sous la forme

y′ − ex

ex + e−x
y =

ex

ex + e−x

On reconnait devant le y la fonction a étudiée précédemment.
L'équation homogène est

Eh : y′ − a(x)y = 0

dont les solutions sont

∃λ ∈ R, y(x) = λe
1
2
ln(1+e2x) = λ

√
1 + e2x

On cherche maintenant une solution particulière, mais avant de vouloir faire des variations de
la constante, on regarde si il n'y en a pas une solution évidente... et e�ectivement yp = −1
convient. Ouf ! (mais la variation de la constante restait possible)

(E) : ∃λ ∈ R, y(x) = λ
√

1 + ex − 1

Soient les matrices : A =

(
1 0 0
6 −5 6
2 −2 3

)
, H =

(
0 0 0
3 −3 3
1 −1 1

)
, I =

(
1 0 0
0 1 0
0 0 1

)
1. a) Montrer que A est inversible et calculez A

−1
.

b) Montrer qu'il existe un réel a tel que AH = aH.

c) Montrer qu'il existe un réel b tel que A = I + bH.

2. a) Montrez qu'il existe une suite (bn) telle que, pour tout n ∈ N, A
n

= I + bnH.
On précisera la relation de récurrence entre bn+1 et bn.

b) En déduire que : A
n

(
1
3
3

)
=

(
1

3bn + 3
bn + 3

)

c) Calculer bn en fonction de n et exprimer la matrice

(
1

3bn + 3
bn + 3

)
en fonction de n.

3. On considère maintenant les suites (un)n∈N et (vn)n∈N dé�nies par :

{
u0 = v0 = 3
∀n ∈ N, un+1 = 6− 5un + 6vn et vn+1 = 2− 2un + 3vn

On note, pour tout n ∈ N, Xn =

(
1
un
vn

)
.

a) Montrer que pour tout entier naturel n, Xn+1 = AXn.

b) En déduire que, pour tout entier naturel n, Xn = A
n
X0.

c) Calculer �nalement un et vn en fonction de n.

Exercice 4 : des suites et des matrices

1. a) La méthode de Gauss-Jordan donne assez rapidement :

A−1 =
1

3

3 0 0
6 −3 6
2 −2 5


b) on calcule :

AH =

1 0 0
6 −5 6
2 −2 3

0 0 0
3 −3 3
1 −1 1

 =

 0 0 0
−9 9 −9
−3 3 −3

 = −3

0 0 0
3 −3 3
1 −1 1


Ainsi AH = −3H, c'est à dire AH = aH, avec a = −3



c) A nouveau on calcule :

A− I =

1 0 0
6 −5 6
2 −2 3

−
1 0 0

0 1 0
0 0 1

 =

0 0 0
6 −6 6
2 −2 2

 = 2H

On a A = I + 2H , qui est bien de la forme A = I + bH, avec b = 2

2. a) Analyse : Si une telle suite existe, on a An = I + bnH. Comme A0 = I, nécessairement
b0 = 0.

De plus, An+1 = AAn = AI + bnAH = A+ bn(−3H) d'après la question 1b.

D'après 1c, A = I + 2H d'où An+1 = I + (2− 3bn)H et donc il faut bn+1 = 2− 3bn.

Synthèse : Soit (bn) la suite dé�nie par b0 = 0 et, pour tout n ∈ N, bn+1 = 2− 3bn
Soit n ∈ N. Montrons par récurrence que An = I + bnH

Initialisation :
On a b0 = 0, donc I + b0H = I. Or A0 = I, donc l'initialisation est véri�ée.

Hérédité :
Soit n ∈ N. Supposons que An = I + bnH .
On a alors, en multipliant par A à gauche,

A×An = A(I + bnH) = AI + bnAH

Or AI = A = I + 2H et AH = −3H, donc

An+1 = A+ bnAH = (I + 2H)− 3bnH = I + (2− 3bn)H

Par dé�nition de la suite
(
bn
)
, on a 2− 3bn = bn+1, ce qui donne :

An+1 = I + bn+1H

ce qui prouve l'hérédité.

Conclusion : On a prouvé, par récurrence que :

∀n ∈ N, An = I + bnH

b) On applique le résultat précédent au calcul proposé :

An

 1
2
3

 = (I + bnH)

 1
2
3

 =

 1
2
3

+ bnH

 1
2
3



Or, H

 1
2
3

 =

0 0 0
3 −3 3
1 −1 1

1
3
3

 =

0
3
1

, donc

An

1
3
3

 =

1
3
3

+ bn

0
3
1

 =

 1
3bn + 3
bn + 3


c) Pour tout n ∈ N, bn+1 = −3bn + 2, donc la suite

(
bn
)
est arithmético-géométrique.

On cherche c tel que c = −3c+ 2, c'est à dire c = 1/2 .
On a donc 2 égalités : (1) : ∀n ∈ N, bn+1 = −3bn + 2 et (2) : c = −3c+ 2.
En les soustrayant on obtient : ∀n ∈ N, bn+1 − c = −3(bn − c),
Donc la suite (bn−c) est géométrique de raisons −3, d'où ∀n ∈ N, bn−c = (b0−c)×(−3)n.

En calculant b0 − c = −1

2
, on obtient :

Finalement :



∀n ∈ N, bn =
1

2
− 1

2
(−3)n

En reportant dans le vecteur colonne précédent, on obtient :

∀n ∈ N,

 1
3bn + 3
bn + 3

 =


1

9

2
− 3

2
(−3)n

7

2
− 1

2
(−3)n


3. a) Pour tout entier n, on a d'une part :

AXn =

1 0 0
6 −5 6
2 −2 3

 1
un
vn

 =

 1
6− 5un + 6vn
2− 2un + 3vn


et d'autre part, étant donné la dé�nition des suites

(
Xn

)
,
(
un
)
et
(
vn
)
:

Xn+1 =

 1
un+1

vn+1

 =

 1
6− 5un + 6vn
2− 2un + 3vn


donc ∀n ∈ N, Xn+1 = AXn

b) On l'a fait déjà plusieurs fois par récurrence (et il fallait le refaire encore). Attention : on
ne peut pas dire "c'est une suite géométrique de raison A" car A n'est pas un réel ou un
complexe....

c) En utilisant les questions précédentes on obtient :

 1
un
vn

 = Xn = An

1
3
3

 =

 1
3bn + 3
bn + 3

 =


1

9

2
− 3

2
(−3)n

7

2
− 1

2
(−3)n



et �nalement ∀n ∈ N, un =
9

2
− 3

2
(−3)n et vn =

7

2
− 1

2
(−3)n

On rappelle que C3[X] désigne l'ensemble des polynômes de degré au plus 3.
Pour tout P ∈ C3[X], on dé�nit l'application ϕ par :

ϕ(P (X)) = P (X + 1)− P (X)

où P (X + 1) désigne la composition de X + 1 par P (et non pas le produit)

1. (Exemple pour comprendre) Véri�ez que ϕ(X) = 1 et ϕ(X
2
) = 2X + 1.

2. Montrez que pour tout P ∈ R3[X], ϕ(P ) ∈ C3[X].

3. Soit P tel que ϕ(P ) = 0 :

a) Montrez que si P admet une racine α ∈ C, alors α + 1 est racine de P aussi.

b) En déduire que pour tout n ∈ N, α + n est racine aussi. Que dire �nalement de P ?

c) Conclure sur l'ensemble des polynômes véri�ant ϕ(P ) = 0.

4. Soit P = a + bX + cX
2

+ dX
3
avec a, b, c, d ∈ R.

a) Soient α, β, γ et δ tel que

ϕ(P ) = α + βX + γX
2

+ δX
3

Exprimez α, β, γ et δ en fonction de a,b, c et d.

b) En déduire qu'il existe A ∈ M4(R) telle que

A

 a
b
c
d

 =

 α
β
γ
δ


c) Calculez A

4
. En déduire ϕ(ϕ(ϕ(ϕ(P )))) en fonction de a, b, c et d.

Exercice 5 : une application qui transforme des polynômes

1. C'est une véri�cation.

2. Soit P ∈ R3[X] et Q = ϕ(P ). Par composition et somme de polynômes, Q est un polynôme.
De plus, P (X + 1) est de degré deg(P ) × 1 et par somme, deg(Q) ≤ deg(P ) ≤ 3, donc

Q = ϕ(P ) ∈ R3[X] .

3. a) Supposons ϕ(P ) = 0. Alors P (X+1) = P (X). Supposons α racine de P . Alors P (α+1) =

P (α) = 0, donc α+ 1 est racine de P



b) Par récurrence : Si n = 1, c'est la question a).

Soit n ≥ 1 et supposons que α + n est racine. D'après a), on a vu que si un nombre est
racine, alors ce nombre +1 est racine aussi. Ainsi, α + n + 1 est racine. La propriété est
héréditaire.

Ainsi, pour tout n ∈ N, α + n racine de P , donc P admet une in�nité de racines : c'est
impossible sauf si P est le polynôme nul.

c) Conclusion : P est nul ou n'a pas de racine, pas même complexes, donc P est nul ou P est une constante non nulle.
Les constantes véri�ent e�ectivement φ(P ) = 0, ce qui répond donc à la question.

4. a) Soit P = a+ bX + cX2 + dX3. On calcule ϕ(P ) :

ϕ(P ) = a+ b(X + 1) + c(X + 1)2 + d(X + 1)3 − (a+ bX + cX2 + dX3)

= b(X + 1) + c(X2 + 2X + 1) + d(X3 + 3X2 + 3X + 1)− bX − cX2 − dX3

= b+ c+ d+X(2c+ 3d) +X2(3d)

Ainsi, si ϕ(P ) = α+ βX + γX2 + δX3, on a :
α = b+ c+ d
β = 2c+ 3d
γ = 3d
δ = 0

b) Ainsi,

 α
β
γ
δ

 =

 0 1 1 1
0 0 2 3
0 0 0 3
0 0 0 0


︸ ︷︷ ︸

=A

 a
b
c
d



c) On trouve A4 = O4, et le calcul précédent montre qu'en calculant A

 a
b
c
d

 où a, b, c, d

sont les coe�cients d'un polynôme, on obtient les coe�cients de ϕ(P ). Donc en répétant
l'opération 4 fois, on aura les coe�cients de ϕ(ϕ(ϕ(ϕ(P )))).

Or A4

 a
b
c
d

 = O4

 a
b
c
d

 =

 0
0
0
0

,

Donc ϕ(ϕ(ϕ(ϕ(P )))) = 0 (le polynome nul ! (et donc plus de a, b, c ou d ;) ) .

Soit la fonction f : R∗+ → R dé�nie par f(x) = x− ln(x).

On note Φ la fonction donnée par :

Φ(x) =

∫ 2x

x

1

f(t)
dt.

1. a) Etudier la fonction f sur son ensemble de dé�nition en donnant son signe et son tableau de variation.

b) Montrer que Φ est bien dé�nie et dérivable sur R∗+, et que l'on a :

∀x ∈ R∗+, Φ
′
(x) =

ln(2)− ln(x)

(x− ln(x))(2x− ln(2x))
.

c) En déduire les variations de Φ sur R∗+.

2. a) Montrez que 0 ≤
1

f(t)
≤ 1 pour tout t > 0.

b) En déduire que ∀x ∈ R∗+, 0 ≤ Φ(x) ≤ x.

c) En déduire lim
x→0

Φ(x).

Exercice 6 : une fonction dé�nie par une intégrale

1. a) Remarquons déjà que f est une fonction dérivable sur R∗+ par sommes de fonctions déri-
vables

De plus, f ′(x) = 1− 1

x
, donc f est décroissante sur ]0, 1[, puis croissante sur [1,+∞[, avec

un minimum en 1, avec f(1) = 1. Ainsi f est positive sur R∗+.



x

f ′(x)

f

0 1 +∞

− 0 +

+∞+∞

11

+∞+∞

(les limites n'étaient pas demandée, mais celle en +∞ s'obtient par croissance comparée)

b) Comme f atteint son minimum en 1 et que f(1) = 1, f ne s'annule pas.

Ainsi, t 7→ 1

f(t)
est continue sur R∗+, donc sur tout [x, 2x] pour x > 0.

Ainsi Φ est dé�nie sur R∗+.

Posons maintenant F une primitive de
1

f
. Alors Φ(x) = F (2x)− F (x), donc par compo-

sition et somme de fonctions dérivables, Φ est dérivable avec Φ′(x) = 2F ′(2x)− F ′(x)

Comme F ′(x) =
1

f(x)
, il su�t de remplacer et de mettre au même dénominateur pour

obtenir

∀x ∈ R∗+, Φ′(x) =
ln(2)− ln(x)

(x− ln(x))(2x− ln(2x))
.

c) D'après l'étude faite de f dans la question a, x − ln(x) et (2x − ln(2x)) sont stricte-
ment positif. Donc Φ′(x) est du signe de ln(2)− ln(x), c'est à dire croissante sur ]0, 2] et
décroissante sur [2,+∞[.

2. a) On sait déjà que
1

f
est une fonction positive. Comme de plus pour tout t > 0, f(t) ≥ 1,

on a
1

f(t)
≤ 1.

On en déduit l'encadrement demandé.

b) Comme pour tout x > 0, 2x > x, on peut procéder par croissance de l'intégrale, en partant
de

0 ≤ 1

f(t)
≤ 1

On intègre entre x et 2x et on tombe immédiatement sur l'encadrement proposé.

c) l'encadrement précédent donne par le theorème des gendarmes que lim
x→0

Φ(x) = 0


