
Classe de PSI

Corrigé du devoir surveillé no 4 (v0)

Problème
d’après INP PSI 2024

File d’attente

I — Temps d’arrivée du n-ième client

1) Soit k ∈N∗. L’événement [T1 = k] est réalisé quand le premier client arrive à
l’instant k, c.à.d. quand il n’y a pas de client aux instants 1 à (k − 1), mais un
client à l’instant k. Lorsque k ⩾ 2 :

[T = k] =
k−1
⋂

i=1
[X i = 0]∩ [Xk = 1].

Comme les variables (Xk)k⩾1 sont indépendantes :

P(T1 = k) = P

�

k−1
⋂

i=1
[X i = 0]∩ [Xk = 1]

�

=
k−1
∏

i=1
P(X i = 0)× P(Xk = 1)

= (1− p)k−1 p.

Pour k = 1 : P(T1 = 1) = P(X1 = 1) = p = (1− p)0 p
donc la formule est vraie également.

Conclusion : ∀ k ∈ N∗, P(T1 = k) = (1 − p)k−1 p. La variable T1 suit la loi
géométrique de paramètre p.

2) Soit A l’événement « aucun client n’arrive dans la file ». Alors :

A=
∞
⋂

i=1
[T1 ̸= k] =

∞
⊎

k=1
[T1 = k]

donc P(A) = 1− P

�

∞
⊎

k=1
[T1 = k]

�

= 1−
∞
∑

k=1
P(T1 = k) = 1− p

∞
∑

k=1
(1− p)k−1.

Comme |1− p |< 1 : P(A) = 1− p ·
(1− p)0

1− (1− p)
= 0

Conclusion : Il est quasiment impossible qu’aucun client n’arrive dans la file.

3) La série entière définissant GT1
est :
∑

k⩾1
P(T1 = k) tk =

∑

k⩾1
p (1− p)k−1 tk.

En t = 1
1−p > 0, son terme général s’écrit : p (1− p)k−1

�

1
1−p

�k
= p

1−p ,

qui est constant, donc borné, donc R⩾ 1
1−p ;

mais qui ne tend pas vers 0, donc R⩽ 1
1−p , et ainsi R= 1

1−p .

Sa somme sur l’ouvert de convergence vaut :

∀ t ∈ ]−R, R[ , GT1
(t) = p

∞
∑

k=1

(1− p)k−1 tk = p t
∞
∑

k=1

�

(1− p) t
�k−1

=
p t

1− (1− p) t
car | (1− p) t |< (1− p)R= 1.

Conclusion : R=
1

1− p
et ∀ t ∈ ]−R, R[ , GT1

(t) =
p t

1− (1− p) t
.

4) Sur son ouvert de convergence, la somme d’une série entière est dérivable
terme à terme. Ainsi :

∀ t ∈ ]−R, R[ , G′T1
(t) =

d
dt

�∞
∑

k=1

P(T1 = k) tk

�

=
∞
∑

k=1

P(T1 = k) k tk−1.

Comme R= 1
1−p > 1, on peut appliquer ce résultat en t = 1 :

G′T1
(1) =

∞
∑

k=1

k P(T1 = k) = E(T1).

Mais d’autre part, pour tout t ∈ ]−R, R[ :

G′T1
(t) =

d
dt

�

p t
1− (1− p) t

�

=
p×
�

1− (1− p) t
�

− p t ×−(1− p)
�

1− (1− p) t
�2

=
p
�

1− (1− p) t
�2 .

Finalement : E(T1) = G′T1
(1) =

p
�

1− (1− p)
�2 =

1
p

.

Pour tout n ∈ N∗, on note Tn la variable aléatoire égale au temps écoulé entre l’ar-
rivée du client d’indice n− 1 et le client d’indice n.

5) • Les variables T1 et T2 prennent leurs valeurs dans N∗ ∪ {∞}.
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• Prenons k et ℓ dans N∗ et calculons P(T1 = k, T2 = ℓ) :

[T1 = k, T2 = ℓ] =

�

k−1
⋂

i=1
[X i = 0]

�

∩ [Xk = 1]

∩
�

k+ℓ−1
⋂

i=k+1
[X i = 0]

�

∩ [Xk+ℓ = 1].

Comme les variables (Xk) sont indépendantes :

P(T1 = k, T2 = ℓ) =
k−1
∏

i=1

P(X i = 0)× P(Xk = 1)×
k+ℓ−1
∏

i=k+1

P(X i = 0)× P(Xk+ℓ = 1)

= (1− p)k+ℓ−2 p2.

• Si on prend k =∞, alors pour tout ℓ ∈N∗ ∪ {∞} :

[T1 =∞, T2 = ℓ] ⊂ [T1 =∞] = A donc P(T1 =∞, T2 = ℓ)⩽ P(A) = 0,

donc P(T1 =∞, T2 = ℓ) = 0.
Si on prend k ∈N∗ et ℓ=∞ :

[T1 = k, T2 =∞] ⊂
∞
⋂

i=k+1
[X i = 0]

donc P(T1 = k, T2 =∞)⩽ P

�

∞
⋂

i=k+1
[X i = 0]

�

= lim
N→∞

P

�

N
⋂

i=k+1
[X i = 0]

�

= lim
N→∞

(1− p)N−k = 0.

Conclusion : La loi jointe du couple (T1, T2) est donnée par :

T1(Ω) ⊂N∗ ∪ {∞} , T2(Ω) ⊂N∗ ∪ {∞} ,

∀ k,ℓ ∈N∗ ∪ {∞} : P(T1 = k, T2 = ℓ) =

�

(1− p)k+ℓ−2 p2 si k,ℓ ∈N∗,
0 si k =∞ ou ℓ=∞.

• Déterminons la loi (marginale) de T2 : pour tout ℓ ∈N∗, par la formule des
probabilités totales sur le s.q.c.e. ([T1 = k])k∈N∗ :

P(T2 = ℓ) =
∞
∑

k=1

P(T1 = k, T2 = ℓ) =
∞
∑

k=1

(1− p)k+ℓ−2 p2

= (1− p)ℓ−1 p ·
∞
∑

k=1

(1− p)k−1 p
︸ ︷︷ ︸

P(T1=k)

= (1− p)ℓ−1 p.

On constate que T2 ,→G (p) également.

• Constatons que T1 ⊥⊥ T2 : pour tous k,ℓ ∈N∗ :

P(T1 = k, T2 = ℓ) = (1− p)k+ℓ−2 p2 = (1− p)k−1 p× (1− p)ℓ−1 p

= P(T1 = k)× P(T2 = ℓ).

Si k =∞ ou ℓ=∞, les deux extrémités sont nulles, donc l’égalité est vraie
également.

Conclusion : Les variables T1 et T2 sont indépendantes, de loi G (p).

On note Dn = T1+· · ·+Tn la variable aléatoire qui donne le temps d’arrivée du client
d’indice n.
On admet que les variables (Tn)n∈N∗ sont indépendantes identiquement distribuées
(i.i.d.) et qu’en conséquence, leurs fonctions génératrices vérifient :

∀ t ∈ ]−R, R[ , GDn
(t) =
�

GT1
(t)
�n

.

6) Fixons α ∈ R. En posant R′ = 1 si α /∈N et R′ = +∞ sinon, on a :

∀ x ∈
�

−R′, R′
�

, (1+ x)α =
∞
∑

n=0

an

n!
xn où an =







1 si n= 0,
n−1
∏

k=0
(α− k) si n⩾ 1.

7) D’après les propriétés admises sur les variables Tn et Dn :

∀ t ∈ ]−R, R[ , GDn
(t) =
�

GT1
(t)
�n
=
�

p t
1− (1− p) t

�n

= pn tn · (1− q t)−n en posant q := 1− p.

Remarquons que |q t | < 1 pour tout t ∈ ]−R, R[, donc on peut prendre
x = −q t dans le DSE de la question précédente :

∀ t ∈ ]−R, R[ , GDn
(t) = pn tn ·

∞
∑

k=0

ak

k!
(−q t)k

Calculons les ak dans le contexte où α= −n :

∀ k ⩾ 1, ak =
k−1
∏

ℓ=0

(−n− ℓ) = (−1)k
k−1
∏

ℓ=0

(n+ ℓ) = (−1)k
(n+ k− 1)!
(n− 1)!

,

Bertrand MICAUX, Lycée Victor Hugo (Besançon) [ DS-4-corr-v0 | ’25 | 08/03/2025 ] Page 2 / 5



formule exacte également pour k = 0, où les deux membres valent 1.
En injectant dans le DSE de GDn

:

∀ t ∈ ]−R, R[ , GDn
(t) = pn tn ·

∞
∑

k=0

(−1)k
(n+ k− 1)!
(n− 1)! k!

(−q t)k

= pn tn ·
∞
∑

k=0

�

n+ k− 1
k

�

qk tk

=
∞
∑

k=0

�

n+ k− 1
k

�

pn qk tn+k

=
∞
∑

k=n

�

k− 1
k− n

�

pn qk−n tn.

Mais le DSE de GDn
s’écrit aussi : ∀ t ∈ ]−R, R[ , GDn

(t) =
∞
∑

k=0

P(Dn = k) tk.

Par unicité du DSE, on peut identifier les coefficients :

∀ k ∈N, P(Dn = k) =







0 si k < n,
�

k− 1
k− n

�

pn qk−n si k ⩾ n.

II — Étude du comportement de la file

Une suite récurrente
Soient a > 0 et f : R −→ R

x 7−→ exp
�

a (x − 1)
�

.
On s’intéresse au comportement de la suite (zn)n∈N∗ définie par :

z1 ∈ ] 0,1 [ et ∀n ∈N∗, zn+1 = f (zn).

8) • Comme a > 0, la fonction f est strictement croissante sur R.
De plus, elle est continue sur l’intervalle ]0, 1[.
Par le théorème de la bijection monotone, elle est bijective de I := ] 0,1 [
dans J :=
�

lim
0+

f , lim
1−

f
�

=
�

e−α, 1
�

⊂ ] 0, 1 [.
En particulier, l’intervalle I est stable par f .

• Puisque z1 ∈ I et que zn+1 = f (zn) pour tout n ∈ N∗, on prouve par récur-
rence sur n que tous les zn sont dans I .

• Supposons que z1 < z2. En appliquant la fonction f , strictement monotone
sur R, on obtient z2 < z3, puis en recommençant, que z3 < z4 et ainsi de

suite. On démontre par récurrence que zn < zn+1 pour tout n ∈ N∗ ; autre-
ment dit : zn+1 − zn > 0, de même que z2 − z1 > 0.
On montre de même que si z1 > z2, alors zn > zn+1 pour tout n⩾ 1.
Dans tous les cas : zn+1 − zn est du même signe que z2 − z1.

9) • D’après la question précédente, la suite (zn)n⩾1 est toujours monotone, et
elle est bornée car tous ses termes sont dans ] 0, 1 [.
Le théorème de convergence monotone prouve que la suite (zn)n⩾1 est
convergente.

• En notant ℓ ∈ R sa limite, puisque 0 ⩽ zn ⩽ 1 pour tout n ⩾ 1, en passant
à la limite dans les inégalités larges, 0⩽ ℓ⩽ 1.

• Par définition de la suite : ∀n⩾ 1, zn+1 = f (zn).
Quand n→∞ :
∗ zn+1 −−−−→n→∞

ℓ par le théorème des suites extraites,

∗ zn −−−−→n→∞
ℓ ∈ R et f est continue en ℓ (elle l’est sur R),

donc par composition de limites : f (zn) −−−−→n→∞
f (ℓ).

Par unicité de la limite de la suite (zn+1)n⩾1 : ℓ= f (ℓ).
Conclusion : La suite (zn)n⩾1 converge vers une limites ℓ ∈ [0,1] vérifiant
f (ℓ) = ℓ.

10) Soit ψ: x ∈ ] 0,1] 7→ ln(x)− a (x − 1) ∈ R. Pour x ∈ ] 0,1] (rem. : sinon ψ(x)
n’est pas défini !) quelconque :

0⩽ψ(x) ⇐⇒ 0⩽ ln(x)− a (x − 1) (définition de ψ)

⇐⇒ a (x − 1)⩽ ln(x) (+ a (x − 1))

⇐⇒ f (x)⩽ x (t 7→ exp(t) strictement croissante sur R)

On montre par les mêmes arguments que : 0=ψ(x) ⇐⇒ f (x) = x .

11) Supposons que a ⩽ 1.

• La fonction ψ est dérivable sur ] 0, 1] et :

∀ x ∈ ] 0, 1] , ψ′(x) =
1
x
− a ⩾ 1− a ⩾ 0,

avec une seule annulation éventuelle en 1 de cette dérivée.
La fonction ψ est donc strictement croissante sur ] 0,1], donc elle s’y an-
nule au plus une fois.
Puisque ψ(1) = 0, elle ne s’annule qu’en 1.

• D’après la question précédente, le seul point de ] 0,1] où f (x) = x est
donc x = 1. De plus, f (0) = e−a ̸= 0, donc l’équation f (x) = x admet
une seule solution sur [0, 1], qui est 1.
D’après la question 9, la limite de la suite (zn)n>1 est nécessairement 1.

Conclusion : Si a ⩽ 1, alors zn −−−−→n→∞
1.
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12) Supposons maintenant que a > 1.

• Cette fois, la dérivée de ψ s’annule sur ] 0, 1] en x0 =
1
a ∈ ] 0,1 [, et ψ est

strictement croissante que ] 0, x0 ]
et strictement décroissante sur [x0, 1].
Étudions les annulations de ψ :
∗ On sait que ψ(1) = 0.
∗ Puisque ψ est strictement décroissante sur [x0, 1], pour tout

x ∈ [x0, 1 [, ψ(x)>ψ(1) = 0.
Ainsi ψ ne s’annule pas sur [x0, 1 [.
∗ En particulier : ψ(x0)> 0, tandis que lim

0+
ψ= −∞.

Cela donne envie d’appliquer le théorème de la bijection monotone sur
I1 := ] 0, x0 ] : ψ est strictement croissante sur I1, y est continue, et
comme lim

0+
ψ < 0 < ψ(x0), l’équation ψ(x ) = 0 admet une unique

solution α sur I1.
L’équation ψ(x) = 0 admet exactement 2 solutions α et 1 sur ] 0,1] ;
puisque f (0) ̸= 0, ce sont aussi les solutions de f (x) = x sur [0, 1].

• Supposons que z1 ∈ ] 0,α].
D’après ce qui précède, ψ(z1)⩽ 0, donc f (z1)⩾ z1 d’où z2 ⩾ z1.
Grâce à la question 8, la suite (zn)n⩾1 est donc croissante.
De plus, en partant de z1 ⩽ α et en appliquant f (croissante), on montre
par récurrence que zn ⩽ α pour tout n ∈N∗.
En passant à la limite dans les inégalités larges, on obtient ℓ⩽ α,
et comme ℓ ne peut être que α ou 1> α, obligatoirement ℓ= α.

• Supposons que z1 ∈ ]α, 1 [.
Cette fois, ψ(z1) > 0, et en raisonnant comme précédemment, la
suite (zn)n>1 est décroissante.
Mais alors : ∀n⩾ 1, zn ⩽ z1 ;
en passant à la limite dans les inégalités larges : ℓ⩽ z1 < 1.
Dans ce cas, la seule possibilité restante est ℓ= α.

Conclusion : Quand a > 1, la suite (zn)n⩾1 converge toujours vers le point
fixe α de la fonction f sur ] 0,1 [.

Groupes de clients
On suppose que les clients de la file d’attente sont servis suivant leur ordre d’arrivée
par un unique serveur et que la durée de service de chaque client est une variable
aléatoire qui suit la loi de Poisson de paramètre λ > 0 :

On rappelle qu’initialement, la file contient un unique client : le client d’indice 0.

On note S la variable aléatoire égale à la durée de service de ce client : comme
à chaque instant il arrive au plus un nouveau client, il peut arriver entre 0 et S
nouveaux clients pendant le temps de passage au guichet du client d’indice 0. Les

variables S et (Xn)n∈N∗ sont supposées indépendantes.
On appelle « clients du premier groupe » les clients qui sont arrivés pendant que le
client d’indice 0 était servi.
Par récurrence, pour tout k ⩾ 2, on définit les clients du k-ième groupe comme étant
les clients qui sont arrivés pendant que ceux du (k− 1)-ième groupe étaient servis.
Pour tout k ⩾ 1, on note Vk la variable aléatoire égale au nombre de clients du
k-ième groupe.
Par construction, pour n ∈ N∗, si le n-ième groupe est vide, alors l’événement
{Vk = 0} est réalisé pour tout k ⩾ n.

13) D’après l’énoncé, S ,→ P (λ), donc l’ensemble des valeurs possibles de S est
S(Ω) =N et :

∀n ∈N, P(S = n) = e−λ
λn

n!
.

14) L’événement Z =
⋃

n∈N∗ {Vn = 0} est réalisé lorsque l’un, au moins, des événe-
ments {Vn = 0} l’est. Cela signifie qu’il existe un numéro n pour lequel aucun
nouveau client n’est arrivé pendant que l’on servait les clients du groupe n. Une
fois ce groupe servi, il n’y a donc plus personne dans la file d’attente.

Conclusion : L’événement Z est réalisé lorsqu’au cours de l’expérience, il ar-
rive que la file contienne zéro client en attente.

15) Fixons n ∈ N∗. Le nombre Nn de clients arrivés dans la file dans l’intervalle
de temps J1, nK : compte le nombre de succès (un client arrive) au cours de
n épreuves de Bernoulli (un client est-il arrivé ?) indépendantes (les variables
(Xk) le sont) et de probabilité de succès p constante.

Conclusion : Nn suit la loi binomialeB(n, p).
16) • Fixons n ∈N et supposons l’événement [S = n] réalisé : le temps de service

du client initial vaut n.
Les clients du premier groupe sont donc ceux arrivés entre les instants 1 et
n : ils sont au nombre de Nn. On en tire :

∀ k ∈N, P(V1 = k | S = n) = P(Nn = k | S = n).

Remarquons que Nn = X1+X2+· · ·+Xn. Puisque les variables (X1, . . . , Xn, S)
sont indépendantes, par le lemme des coalitions, Nn ⊥⊥ S et pour cette rai-
son :

∀ k ∈N, P(V1 = k | S = n) = P(Nn = k | S = n) = P(Nn = k)

=







�

n
k

�

pk qn−k si 0⩽ k ⩽ n,

0 si k > n.

• Déterminons maintenant la loi de V1. On sait que V1(Ω) = N : prenons
k ∈ N et appliquons la formule des probabilités totales sur le s.c.e. engen-
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dré par la variable S :

P(V1 = k) =
∞
∑

n=0

P(S = n) · P(V1 = k | S = n) =
∞
∑

n=k

e−λ
λn

n!
·
�

n
k

�

pk qn−k

= e−λ
pk

k!

∞
∑

n=k

λn

(n− k)!
qn−k = e−λ

pk

k!

∞
∑

n=0

λn+k

n!
qn

= e−λ
(λ p)k

k!

∞
∑

n=0

(λq)n

n!
= e−λ

(λ p)k

k!
eλq = e−λ p (λ p)k

k!
.

Conclusion : V1 ,→P (λ p).

17) Posons zn := P(Vn = 0) pour tout n ∈N∗.
D’après l’énoncé, si un événement [Vn = 0] est réalisé, tous les événé-
ments [Vk = 0], pour k > n, le sont aussi par convention.
En d’autres termes : la suite d’événements

�

[Vn = 0]
�

n⩾1 est croissante pour
l’inclusion.
Par la continuité croissante de la probabilité :

lim
n→∞

zn = lim
n→∞

P(Vn = 0) = P

�

∞
⋃

n=1
[Vn = 0]

�

= P(Z).

18) Fixons j ∈N.

• 1er cas : si j = 0. On a d’après l’énoncé :

P(Vn+1 = 0 | V1 = 0) = 1=
�

P(Vn = 0)
�0

.

• 2e cas : si j = 1. Supposons l’événement [V1 = j] réalisé. Le premier
groupe est composé des clients de 1 à j. Par analogie avec les groupes de
clients définis dans l’énoncé, pour tout client d’indice i ∈ J1, j K, on note G(i)1
l’ensemble des clients du deuxième groupe arrivés pendant que i était servi.
Puis, récursivement, on note G(i)k l’ensemble des clients du (k + 1)e groupe

arrivés pendant que les clients de G(i)k−1 étaient servis.

Par construction, le (k + 1)e groupe est l’union disjointe des G(i)k , pour les
i ∈ J1, j K. On en déduit que :

Vk+1 =
j
∑

i=1

V (i)k ,

où V (i)k représente le nombre de clients du sous-groupe G(i)k .

Or, pour tout i, la variable V (i)k suit un processus identique à celui de la va-
riable Vk, en ne considérant que les temps de passage des clients appartenant
aux groupes issus du client i.

On en déduit que V (i)k suit la même loi que Vk. Nous admettrons que les

variables V (i)k , pour i ∈ J1, pK, sont indépendantes, et qu’elles sont indépen-
dantes de V1 (une preuve rigoureuse serait franchement laborieuse à écrire !).

Pour n ∈N∗ fixé, on remarque que :

[Vn+1 = 0] =
n
⋂

i=1
[V (i)n = 0]

car toutes les V (i)n sont positives, donc Vn+1 > 0 dès que l’une n’est pas nulle.
En utilisant l’indépendance :

P (Vn+1 = 0 | V1 = j) =
j
∏

i=1

P

�

n
⋂

i=1
[V (i)n = 0]
�

�

� V1 = j

�

=
j
∏

i=1

P
�

V (i)n = 0
�

=
j
∏

i=1

P
�

V (i)n = 0
�

=
�

P(Vn = 0)
� j

.

Conclusion : ∀ j, n ∈N, P(Vn+1 = 0 | V1 = j) =
�

P(Vn = 0)
� j

.

19) Fixons n ∈N∗. Calculons P(Vn+1 = 0) en lui appliquant la formule des proba-
bilités totales sur le s.c.e. engendré par V1 (qui suit la loi P (λ p) d’après Q16) :

zn+1 = P(Vn+1 = 0) =
∞
∑

j=0

P(V1 = j) · P(Vn+1 = 0 | V1 = j)

=
∞
∑

j=0

e−λp (λ p) j

j!
·
�

P(Vn = 0)
� j
= e−λp ·

∞
∑

j=0

(λ p zn)
j

j!

= e−λp · exp (λ p zn)

= exp
�

λ p (zn − 1)
�

.

20) La suite (zn)n⩾1 de cette partie vérifie toutes les hypothèses de la suite récur-
rente de la partie II avec a = λ p > 0 :

∗ La question précédente montre que zn+1 = f (zn) pour tout n⩾ 1 ;
∗ z1 = P(V1 = 0) = e−λ ∈ ] 0,1 [.

D’après les résultats de Q11 et Q12 :

∗ Si λ p ⩽ 1, alors zn −−−−→n→∞
1.

On en déduit que P(Z) = 1 : il est quasi certain qu’à un moment donné, la
file d’attente sera vide.
∗ Si λ p > 1, alors zn −−−−→n→∞

α ∈ ] 0, 1 [.
Cette fois P(Z) = α : il y a un risque non négligeable (de probabilité 1−α)
que la file d’attente ne se vide jamais.
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