Chapitre 18
Polynémes (1)

Dans tout ce chapitre, K est un corps commutatif (R ou C en général), et n,m,p,r des entiers
naturels. Des écritures du type a;, b;,... pour ¢« € N désignerons toujours des éléments de K.

1 Définitions

1.1 Polynémes a une indéterminée

Définition 1.1 (Polynéme a une indéterminée)

Un polynéme a une indéterminée X a coefficients dans K est une somme formelle

n
Zaka ou ar € K pourtout k=0,....,n,neN
k=0

et ol par définition on a

n

Zaka:Zkak < Vk=0,...,max(n,m), ax = by,
k=0

k=0 =

ou par convention ay = 0si k > n et by = 0 si & > m. On note K[X] l'ensemble des polyndmes a
une indéterminée a coefficients dans K.

Remarques.

1. On a bien siir K C K[X], puisque sia € K, on a a = aX°.

2. SiP=%7 aX" onaaussi P=>3 " aX"sim>n,eta, =0 pourk > n.

3. Attention : on ne peut pas donner de valeur a X. C’est une notation formelle pour repérer la
position du coefficient a;. Toute écriture du type X = 2 est a bannir.

Définition 1.2 (Polynémes constants)

1.  Un polynéme P est constant s’il est de la forme aX?, ott a € K. On note alors simplement P = a.
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2. On définit le polynoéme nul (et on le note 0) par : 0 = 0X°.

3. On définit le polyndome constant égal & 1 (et on le note 1) par : 1 = 1X°.

Définition 1.3 (Degré d’un polynéme)

Soit un polynéme P = Z ar X" avec P # 0.
k=0

1. Le degré de P est le plus grand des entiers k € {0,...,n} tel que
ap 70 et Vji=k+1,...,n, a; =0,

ol par convention a,; = 0. On note deg(P) le degré de P.
On note K,[X] 'ensemble des polynomes de degrés < n.
Par convention, le degré du polyndéme nul est —oo.

Le coefficient ageg(py est le coefficient dominant de P.

AN

Le polynéme P est unitaire si son coefficient dominant vaut 1.

Proposition 1.4| "
Soit P = Zaka € K[X]. Alors :
k=0
1. deg(P) <n.

2. deg(P) = n si et seulement si a,, # 0.

3. Sia, # 0 pour un certain p € [0,n], alors deg(P) > p.

Proposition 1.5 l

Les polyndmes de degré 0 sont les polyndémes constants non nuls.

Remarques.

1. On voit par la définition que si d est le degré d’'un polynéme P, on a

n

P= Xd:akxk => a X"
k=0 k=0
pour tout entier n > d avec a; = 0 pour k > d. Par exemple,
1+3X*—7X°=1+3X"-7X>+0.X°+0.X".
On note parfois

+o00
P = Zaka = Zaka.
k=0 k

avec a; = 0 pour k > d. Cette notation est tres utile lorsqu’on ne veut pas introduire le degré d’'un
polynome.
2. On peut bien entendu utiliser Y, T', .. comme notation pour l'indéterminée.
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3. Un polynéme et une fonction polynomiale, ce n’est pas tout a fait la méme chose. On verra qu’en
sup (i.e. si K = R ou K = C), on pourra confondre les deux, mais ce n’est pas le cas si le corps K

contient un nombre fini d’éléments.
4. On peut construire I’ensemble des polynémes comme ’ensemble des suites nulles & partir d'un

certain rang, avec X = (0,1,0,0,...).

1.2 Somme, produit

Définition 1.6 (Somme, produit) . .
Soient n,m € N, A€ K, et P =Y a,X* € K[X], Q =Y wX* € K[X].
k=0 k=0

1. On définit AP par \P = Z)\aka.

k=0
max(n,m)
2. On définit la somme P + Q) par P+ Q = Z (ar, +bp) X", ot ap = 0si k > n et by = 0 si
k=0
k> m.

n+m k n+m

3. On définit le produit P(Q) par P(Q) = Z (Z aibk_i> Xk = Z ( Z aibj> X* o a; = 0 pour
k=0 \i=0 k=0 \i+j=k

i >n et b; =0 pour j > m.

Remarques.
1. Il n’y a aucune raison pour que n soit le degré de P, ou m le degré de (). Cela n’a aucune

importance.
2. Pour obtenir un X* dans un produit, on multiplie un X? par un X7 tels que i + j = k.

Exemples.
1. Ona

(a0+a1X)(bo+b1X—i—ng2) = a0b0+(aobl+a,1bo)X+(aobg+&1b1+a2b0)X2+(aobg+albg+a2b1+a3b0>X3 =
agbo + (aoby + arbg) X + (agbs + a1b) X? + a1by X°.
2. Ona

(CLO + CL1X + CLQX + G3X3)(b0 + le + b2X2) = aobo + (CLle + albo)X + (aon + Cllbl + CLQbo)X2+
(a0b3+a1b2+agb1~|—agbo)X3—|—(a4bg+a3b1+agbg—l—a1b3+aob4)X4+(a0b5+a1b4+a2b3—|—a3b2—|—a4bl+a5bo)X5 =
agbo + (a0b1 + albo)X + (CLQbQ + a1b1 + agbo)X2 —+ (a1b2 + &le + ang)X3 + ((Igbl + &2b2)X4 + a3b2X5
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Proposition 1.7 (Structure d’anneau)

L’ensemble K[X]| muni de I’addition et de la multiplication définies en 1.6 est un anneau commutatif,
dont les éléments neutres pour 'addition et la multiplication sont respectivement les polyndmes
constants égaux a 0 et 1.

Proposition 1.8 (Autres écritures du produit)

Soient n,m € N, et deux polynoémes a coefficients dans K : P = Z ar Xk et Q = Z b X*. On a
k=0 k=0

PQ = Zn: i a;ib X =Y " ab X"

=0 5=0 0<ign
0<j<m

ot a; = 0 pour ¢ > n et b; = 0 pour j > m.

1.3 Intégrité de K[X]

Proposition 1.9 (Degré d’un produit)
Soient P,Q € K[X]. Alors deg(PQ) = deg(P) + deg(Q) (somme dans R).

Proposition 1.10 (Degré d’une somme)

Solent P, € K[X]. Alors
1. deg(P+ Q) < max (deg(P), deg(Q)).

2. Sideg(P) # deg(Q), alors deg(P + ()) = max (deg(P), deg(Q)).

| Corollaire 1.11|
Soit P € K[X]|, P #0, et n € N. Alors deg(P") = ndeg(P).

ICorollaire 1.12|
Soit n € N* et Py,..., P, € K[X]. Alors deg(P; + - -- + P,) < max(deg(P,),...,deg(P,)).

|Propositi0n 1.13 |

1. L’anneau K[X] est intégre.

2. Les éléments inversibles de K[X] sont les polynémes constants non nuls.

1.4 Composée de polyndmes

| Définition 1.14 |
Soient P, () € K[X]. On définit le polynéme composé P o () par

PoQ=PQX)) =) aQ" s P=) aXx"
k k
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Exemples.

1. Les polynomes pairs sont les polynomes qui s’écrivent P(X?), et les polyndomes impairs ceux qui
s’écrivent X P(X?).

2. X?0(X+1)=(X+1)2et (X+1)oX2=X2+1.
3. Attention, (X +1)P # P(X +1)!!

’Proposition 1.15|
Soient A, B, R € K[X]. Alors (Ao R) Xx (BoR) = (AB)oRet (A+ B)JoR=Ao R+ BoR.

‘Proposition 1.16|
Soient A, B € K[X] avec B non constant. Alors deg(A o B) = deg(A) deg(B).

2 Division euclidienne

Définition 2.1 (Diviseurs, multiples)

Le polynome A divise B s’il existe un polyndéme D tel que
B =AD, noté A|B.

Le polynéme B est alors un multiple de A et A un diviseur de B.

| Définition 2.2 |
Les polynémes A et B sont associés s’il existe A € K* tel que A = AB, et on note A ~ B.

Exemples.

L (X —1)(X —2)divise (X — 1)2(X —2)(X2+ X +1).
2. Le polyndéme nul ne divise que lui-méme mais est divisible par tous les polyndmes.

3. Les polynomes 6 X2 — 3X + 12 et 4X? — 2X + 8 sont associés.

‘Proposition 2.3‘
Soient A et B deux polynomes. Si A|B et si B # 0, alors deg(A) < deg(B).

‘ Proposition 2.4 ‘

Deux polynémes A et B sont associés si et seulement si A divise B et B divise A.

Théoréme 2.5 (Division euclidienne)

Soient A, B deux polynomes avec B non nul. Alors il existe un unique couple (@, R) de polynomes
tel que
A=BQ+ R et deg(R) < deg(B).
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Exemple.
Division de A = 2X* -~ 3X3 4+ 3X2+6X +1par B=2X%2+X —1. On trouve Q = X2 —2X +3 et
R=X+4.

| Méthode 2.6
Sia € K, on a pour tout polynéme P

P=(X—-a)Q+D,

ou b € K puisque le reste dans la division par X — a doit étre de degré nul ou —oo. En évaluant

I’égalité en a, on obtient |b = P(a)|.

3 Polynome dérivé

Dans ce §, K C C, donc Q C K.

Définition 3.1 (Polyn6éme dérivé)
Soit P =) axX* € K[X].

k=0

1. Le polyndome dérivé de P est le polyndme P’ = Z ka, X 1.
k=1

2. On définit par récurrence le polynéme dérivé d’ordre n € N*
pn) — (p(nfl))’7

ou PO = P,

‘Proposition 3.2‘
Soient P € K[X]. Alors P’ = 0 si et seulement si P est constant.

‘Proposition 3.3|
Soient P,Q € K[X]et \,u € K.

L. (AP +pQ) =P+ u@'.

2. (PQ) =PQ+PQ.

Proposition 3.4 ‘

Pour p,n € N, on a

0 sinon.

n! n— :
(XM)® = {w—_m!X bosinzp

Proposition 3.5‘
Soient P € K[X] non constant.
1. deg(P') = deg(P) — 1 et dom(P’) = deg(P)dom(P).
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2. Pour tout n < deg(P), on a deg(P™) = deg(P) — n.
3. Ple®) = (deg(P))!dom(P).

4. pleg(P)+1) — .

Proposition 3.6 (Formule de Leibniz) .
Soient P, () deux polynoémes et n € N. Alors (PQ)(") = (n) prRIQIn—k),

4 Racines d’un polynoéme

4.1 Fonction polynomiale, formule de Taylor

Définition 4.1 (Foglction polynomiale)

Soit P =Y aX* € K[X].
k=0
1. La fonction polynomiale associée & P est la fonction

P K — K
r — Zakxk.
k=0

n

2. Soit @ € K. On note P(a) = P(a) = Zakak.

k=0
Théoréme 4.2 (Formule de Taylor)
Soit P € K[X] et a € K. Alors
+0o0 deg(P)
P (a) P (a)
P =3 W —ap = Y o
k=0 k=0
Remarque.
- —~ PM(a) .
Soit P € K[X] et a € K. Alors, pour tout m > deg(P), on a P(X) = Z X (X — a)®, puisque

k=0

P®)(a) =0 si k > deg(P).

Méthode 4.3 (Quotient et reste par (X —a)")
Soient P € K[X], n € N* et a € K. Alors le quotient et le reste de la division euclidienne de P par

+o0 n—1
Pk P)
(X — @)™ sont respectivement k'(a) (X —a)"™" et Z k'(a) (X —a)¥, car
k=n ’ k=0 '
<= P®)(a) k e~ P#)(a) bon <= PP(a) k
P(X):kz oo (X —a)f = (X —a) kz (X —a) +kz (X —a)t
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4.2 Racine simple

Définition 4.4 (Racine)

Un scalaire a € K est racine d'un polynéme P si P(a) = 0.

Exemple.
i et —i sont des (les!) racines de X%+ 1 vu dans C[X].

’Proposition 4.5 ‘

Soient A et B deux polynomes et a € K une racine de A. Si A|B, alors a est une racine de B.

’Proposition 4.6|
Soit P € K[X] et a € K. Alors a est une racine de P si et seulement si X — «|P.

‘ Proposition 4.7|

Soit P € K[X] et a,...,a, € K des scalaires deux a deux distincts. Alors les a; sont des racines
n

de P si et seulement si H(X — ;)| P.

i=1

‘Corollaire 4.8|
Un polynome de degré n € N admet au plus n racines distinctes.

| Méthode 4.9
On utilise souvent cette proposition par contraposée, pour montrer qu'un polynéme est nul.

1. Siun polynéme P vérifie deg(P) < n, n € N, et a au moins n + 1 racines distinctes, alors P = 0.

2. On peut mélanger avec une démonstration par l’absurde : soit P un polynoéme, et on suppose
qu’il est non nul, et on note n € N son degré. Si on montre qu’alors P a au moins n + 1 racines
distinctes, on aboutit & une contradiction.

3. Un polyndéme qui admet une infinité de racines distinctes est nul.

Exemples.

1. On a vu dans le chapitre sur C que pour tout entier n, il existe un polynéme P tel que pour tout
r € R,
cos(nz) = P(cos(x)).

(Ecrire que cos(nz) est la partie réelle de (cos(x) + isin(z))™). Un tel polynome est unique. En effet,
si () en est un autre, on a

(P = @)(cos(z)) =0
pour tout réel z, donc P — @ s’annule sur [0, 1], donc P — @ = 0.

2. La fonction exponentielle n’est pas polynomiale. En effet, si elle ’était, il existerait un polynome
P tel que pour tout nombre complexe z, on ait

P(z) =¢€*.
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En particulier, pour tout nombre entier k,
P(2ikm) =1,
donc P =1 et I'exponentielle serait constante : absurde.

3. Le polynéme X" — 1 admet n racines complexes distinctes qui sont les racines n®™¢ de I'unité, et

n—1

X"—1=H<X—e%).

k=0

4.  Le corollaire 4.8 permet d’identifier un polyndéme et sa fonction polynomiale lorsque le corps K
est infini (par exemple R ou C), i.e. si P et ) sont deux polyndmes, on a

P=Q < P=Q < YacK, Pla) =Q(a).

En effet, 'implication de gauche a droite est évidente. Pour l'autre, si P(a) = Q(a) pour tout a € K,
le polynéme P — () admet une infinité de racines, donc est nul.

4.3 Racines multiples

Définition 4.10 (Ordre de multiplicité)

1.  Un polynéme P admet a € K comme racine d’ordre n € N* si (X — a)" divise P et (X — a)"™!
ne divise pas P. L’entier n est [’ordre de multiplicité de la racine a.

2. Un polynéme P admet a € K comme racine d’ordre au moins n € N* si (X — a)” divise P.

Remarques.

1. On peut prolonger cette définition & n = 0 : une racine d’ordre 0 n’est pas une racine.
2. (X —a)" divise P et (X —a)"*! ne divise pas P signifie que P = (X — a)"Q avec Q(a) # 0.

Définition 4.11 (Racine simple, multiple)

Une racine simple (resp. multiple) de P € K[X] est une racine d’ordre exactement 1 (resp. d’ordre
au moins 2).

Remarques.

1. Il y a donc deux maniéres de compter les racines : on compte les racines distinctes, ot on les
compte avec leur ordre de multiplicité. L'exemple (X — 2)%(X + 3)4(X — 1) a 3 racines distinctes et
7 racines comptées avec leur ordre de multiplicité.

2. Une racine d’ordre n n’est pa une racine d’ordre p si p < n ou p > n.

3. Sia est une racine d’ordre exactement r de P, alors (X — a)®|P si et seulement si s < r. En effet,
(X —a)tt fP.

223



H. Thys, MP2I du lycée Victor Hugo de Besangon

Exemple.
Le polynome (X — 2)*(X +3)*(X — 1) admet 2 comme racine double, —3 comme racine d’ordre 4 et
1 comme racine simple.

Proposition 4.12 (Caractérisation d’une racine d’ordre au moins n)

Un polynéme P € K[X] admet a € K comme racine d’ordre au moins n € N* si et seulement si
P(a) =---=P"Y(a) =0.

Proposition 4.13 (Caractérisation d’une racine d’ordre n)

Un polynéme P € K[X] admet a € K comme racine d’ordre n € N* si et seulement si P(a) = --- =
P"=V(a) =0 et P™(a) #0

Méthode 4.14 (Montrer qu’un scalaire est une racine multiple/simple)

Soient a € K et P € K[X].

1. Pour montrer que a est racine multiple de P, on montre que P(a) = P'(a) = 0 ou que (X — a)?
divise P. Mais attention, cela ne donne pas son ordre de multiplicité.

2. Pour montrer que a est racine simple de P, on montre que P(a) =0 et P'(a) # 0, ou que X —a
divise P et (X — a)? ne divise pas P.

Proposition 4.15 ‘

Soient P € K[X], a € K et n € N*. Si @ est racine d’ordre (exactement) n de P, alors a est racine
d’ordre (exactement) n — 1 de P’.

Remarque.
Attention, la réciproque est fausse. Par exemple si P = X2 +1, alors P’ = 2X admet 0 comme racine
simple, mais 0 n’est pas racine double de P.

Proposition 4.16

Solent a,...,a, € K des scalaires distincts deux & deux, et rq,...,7, € N*. Un polynéme P admet
7 ) 7 Y )
a; comme racine d’ordre au moins 7; (i = 1,...,n) si et seulement si

‘Corollaire 4.17‘
Un polyndéme de degré n admet au plus n racines comptées avec leur ordre de multiplicité.

Meéthode 4.18 (Comparez avec la méthode 4.9)

On utilise souvent ce corollaire par contraposée, pour montrer qu’un polynéme est nul.

1. Si un polynéme P vérifie deg(P) < n, n € N, et a au moins n + 1 racines comptées avec
multiplicités, alors P = 0.
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2. On peut mélanger avec une démonstration par l’absurde : soit P un polynoéme, et on suppose
qu’il est non nul, et on note n € N son degré. Si on montre qu’alors P a au moins n + 1 racines
comptées avec multiplicités, on aboutit a une contradiction.

3. Un polynéme qui admet une infinité de racines comptées avec multiplicités est nul.

’ Corollaire 4.19 ‘

Soient aq,...,a, € K des scalaires distincts deux a deux, et rq,...,7, € N*. Un polynéme P de
degré ry + - - - 4+ r, admet les a; comme racine d’ordre r; (i = 1,...,n) si et seulement si

P=)[[(X—a)", AeK"
=1

4.4 Polynomes scindés

Définition 4.20 (Polynome scindé)

Un polynoéme P est scindé sur K s'il est non constant et s’il est produit de polynémes de degré 1.

Remarque.
Autrement dit, un polynéme est scindé s’il existe n € N*, x1,...,2, € K et A € K* tels que

pP= )\ﬁ(X — x).

Exemples.

1.  X?+1 n'est pas scindé sur R mais est scindé sur C.

2. D’aprés le corollaire 4.19, un polyndéme est scindé si et seulement s’il admet n racines comptées
avec leur multiplicité.

Proposition 4.21 (Divisibilité en termes de racines)

Soient A, B deux polynémes non nul, tel que A soit scindé. Soient ay, ..., a, les racines de A deux
a deux distinctes, et r1,...,r, € N* leur ordre de multiplicité. Alors
AlB <= VYk=1,...,n, a; est une racine de B d’ordre > ry.

| Méthode 4.22]
1. Soient A, B deux polynomes non nuls, tel que A soit scindé. Pour montrer que A|B, on peut
déterminer les racines de A ainsi que leur ordre de multiplicité. On vérifie qu’elles sont racines de B
avec un ordre supérieur ou égal.

2. Cas particulier des polynoémes a coefficients complexes : ils sont tous scindés, donc on peut appli-
quer le 1.

3. Cas particulier des polynomes a coefficients réels : si A, B € R[X], on les considére comme des
polynomes a coefficients complexes. On appliques alors le 1 avec les racines (réelles et) complexes de

A.

225



H. Thys, MP2I du lycée Victor Hugo de Besangon

5 Etude de C[X] et R[X]

Théoréme 5.1 (Théoréme fondamental de 1’algébre)

Tout polynéme complexe non constant admet au moins une racine dans C.

‘ Corollaire 5.2 ‘

Tout polynéme complexe non constant est scindé sur C.

Remarque.
FAUX pour les polynémes réels dans R : X2 + 1 n’est pas scindé sur R.

| Méthode 5.3 |

On peut appliquer la méthode 4.22 pour montrer que A|B, puisque si A € C[X] est non constant, il
est scindé.

| Méthode 5.4

Si A, B € R[X], pour montrer que A|B, on peut appliquer la méthode 4.22 en considérant les racines
complexes de A.

Définition 5.5 (Polynéme conjugué)

Soit P = Z arX"* € C[X]. On définit son polynéme conjugué par P = Za_ka.
k=0 k=0

‘ Proposition 5.6 ‘

Soit P € C[X] et z € C. Alors P(z) = P(%).

‘ Proposition 5.7‘

Soit P € C[X] et k € N. Alors P®) = P"|

‘Proposition 5.8‘
Si PeC[X],onaPeR[X] & P=P.

‘ Proposition 5.9 ‘

Soit P € C[X] et a € C. Alors a est une racine d’ordre r de P si et seulement si @ est une racine
d’ordre r de P.

| Corollaire 5.10 |

Soit P € R[X] et a € C. Alors a est une racine d’ordre r de P si et seulement si @ est une racine
d’ordre r de P.

|Pr0position 5.11|
Soit z € C. Alors (X — 2)(X — %) = X2 — 2Re(2) X + |2|2.
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Proposition 5.12 (Décomposition dans R[X)

Tout polynéme réel non constant est un produit de polynémes de degré 1 et de polyndémes de degré
2 sans racine réelle.

Remarque.
Cela signifie donc qu’il existe ay,...,a, € R, rq,...,r, € N* by, ..., C1y s ER, S1,... 8, €
N* et A € R* tels que

P= (ﬁ(x — ai)”') (ﬁ()@ + b X + ci)5i> )

oit les X? + b; X + ¢; sont sans racine réelle.

Méthode 5.13 (Factorisation d’un polyndéme a coefficients réels)

Soit P € R[X]. Pour le factoriser, on peut soit le factoriser dans R[X] par des techniques "astu-
cieuses", puis déterminer ses racines complexes, soit déterminer d’abord toutes les racines complexes,
pour ensuite les regrouper avec leur conjugué, pour en déduire la factorisation dans R[X]. Exemple
avec X0 — 1.

6 Fonctions symétriques élémentaires

Définition 6.1 (Fonctions symétriques élémentaires)

Soit
n
P=) aXx"
k=0
un polynéme de degré n (donc a, # 0). Pour i = 1,...,n, on définit les fonctions symétriques
élémentaires par
g; = (—]_)ZL € K.
Qp,
Exemple.
SiP=2X?>-X%2+1,0na
-1 0 1
op=——, O9=—, 03=——.
1 9 ) 2 27 3 92
Proposition 6.2
Soit
n
P=> a.Xx"
k=0
un polynéme de degré n scindé sur K, et 1, ..., x, ses racines (non nécessairement distinctes). Alors
pour tout : =1,...,n,o0n a

o; = E Ly * " T -

1<k <<ki<n
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Exemples.
1. Si
P=4(X-2)(X +3)(X —1) =4X® — 28X + 24,
on a
0 —28 24
op=—-243-1=0= — 2= 2X(=3)+2x1+(-3)x1 = -7 = 4 3= 2x(=3)x1=—6 = -

2. o0 est la somme des racines et o, le produit des racines.

3. Ona

an (X — 1) (X — 20)(X — 23) = a, (X3 — (21 4+ 29 + 23) X2 + (2129 + 2173 + 2223) X — x1m2x3) )

7 Polyndéme d’interpolation de Lagrange

‘ Proposition 7.1 |

Soient n € N*, (xy,...,2,) € K™ deux a deux distincts, et (y1,...,y,) € K™ Il existe un unique
polynome P de degré < n — 1 tel que

VEk=1,...,n, P(x) =y

C’est le polynéome d’interpolation de Lagrange associé aux familles (zy)1<r<n €t (Yx)1<k<n-

| Définition 7.2 ]
Soit f est une fonction définie sur une partie de K, (x)i1<k<n, une famille de scalaires deux a deux
distincts dans le domaine de définition de f, et y, = f(x1) pour kK = 1,...,n. Le polynome de la
proposition 7.1 est le polynoéme d’interpolation de Lagrange de f associé a la famille (x)1<x<n-

Proposition 7.3 |

Soient n € N*, (zq,...,2,) € K" deux a deux distincts, et (yi1,...,y,) € K™. Soit Py le polynome
d’interpolation de Lagrange associé aux familles (z)1<k<n €t (Yx)i<k<n. Les polynomes A € K[X]
tels que

VE=1,...,n, A(zg) =y

sont les polynéomes Py + (H(X - xk)> Q, ou Q € K[X].

k=1
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