
Chapitre 18

Polynômes (1)

Dans tout ce chapitre, K est un corps commutatif (R ou C en général), et n,m, p, r des entiers
naturels. Des écritures du type ai, bi, . . . pour i ∈ N désignerons toujours des éléments de K.

1 Définitions

1.1 Polynômes à une indéterminée

Définition 1.1 (Polynôme à une indéterminée)

Un polynôme à une indéterminée X à coefficients dans K est une somme formelle

nX

k=0

akX
k où ak ∈ K pour tout k = 0, . . . , n, n ∈ N

et où par définition on a

nX

k=0

akX
k =

mX

k=0

bkX
k ⇐⇒ ∀ k = 0, . . . ,max(n,m), ak = bk,

où par convention ak = 0 si k > n et bk = 0 si k > m. On note K[X] l’ensemble des polynômes à
une indéterminée à coefficients dans K.

Remarques.

1. On a bien sûr K ⊂ K[X ], puisque si a ∈ K, on a a = aX0.
2. Si P =

Pn
k=0 akX

k, on a aussi P =
Pm

k=0 akX
k si m � n, et ak = 0 pour k > n.

3. Attention : on ne peut pas donner de valeur à X. C’est une notation formelle pour repérer la
position du coefficient ak. Toute écriture du type X = 2 est à bannir.

Définition 1.2 (Polynômes constants)

1. Un polynôme P est constant s’il est de la forme aX0, où a ∈ K. On note alors simplement P = a.
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2. On définit le polynôme nul (et on le note 0) par : 0 = 0X 0.

3. On définit le polynôme constant égal à 1 (et on le note 1) par : 1 = 1X 0.

Définition 1.3 (Degré d’un polynôme)

Soit un polynôme P =

nX

k=0

akX
k avec P 6= 0.

1. Le degré de P est le plus grand des entiers k ∈ {0, . . . , n} tel que

ak 6= 0 et ∀ j = k + 1, . . . , n, aj = 0,

où par convention an+1 = 0. On note deg(P ) le degré de P .
2. On note Kn[X] l’ensemble des polynômes de degrés � n.
3. Par convention, le degré du polynôme nul est −∞.
4. Le coefficient adeg(P ) est le coefficient dominant de P .
5. Le polynôme P est unitaire si son coefficient dominant vaut 1.

Proposition 1.4

Soit P =

nX

k=0

akX
k ∈ K[X]. Alors :

1. deg(P ) � n.

2. deg(P ) = n si et seulement si an 6= 0.

3. Si ap 6= 0 pour un certain p ∈ [[0, n]], alors deg(P ) � p.

Proposition 1.5

Les polynômes de degré 0 sont les polynômes constants non nuls.

Remarques.

1. On voit par la définition que si d est le degré d’un polynôme P , on a

P =

dX

k=0

akX
k =

nX

k=0

akX
k

pour tout entier n � d avec ak = 0 pour k > d. Par exemple,

1 + 3X2 − 7X5 = 1 + 3X2 − 7X5 + 0.X6 + 0.X7.

On note parfois

P =

+∞X

k=0

akX
k =

X

k

akX
k.

avec ak = 0 pour k > d. Cette notation est très utile lorsqu’on ne veut pas introduire le degré d’un
polynôme.

2. On peut bien entendu utiliser Y , T , .. comme notation pour l’indéterminée.
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3. Un polynôme et une fonction polynomiale, ce n’est pas tout à fait la même chose. On verra qu’en
sup (i.e. si K = R ou K = C), on pourra confondre les deux, mais ce n’est pas le cas si le corps K
contient un nombre fini d’éléments.

4. On peut construire l’ensemble des polynômes comme l’ensemble des suites nulles à partir d’un
certain rang, avec X = (0, 1, 0, 0, . . . ).

1.2 Somme, produit

Définition 1.6 (Somme, produit)

Soient n,m ∈ N, λ ∈ K, et P =
nX

k=0

akX
k ∈ K[X], Q =

mX

k=0

bkX
k ∈ K[X].

1. On définit λP par λP =

nX

k=0

λakX
k.

2. On définit la somme P + Q par P + Q =

max(n,m)X

k=0

(ak + bk)X
k, où ak = 0 si k > n et bk = 0 si

k > m.

3. On définit le produit PQ par PQ =

n+mX

k=0

 
kX

i=0

aibk−i

!
Xk =

n+mX

k=0

 
X

i+j=k

aibj

!
Xk, où ai = 0 pour

i > n et bj = 0 pour j > m.

Remarques.

1. Il n’y a aucune raison pour que n soit le degré de P , ou m le degré de Q. Cela n’a aucune
importance.

2. Pour obtenir un Xk dans un produit, on multiplie un X i par un Xj tels que i+ j = k.

Exemples.

1. On a

(a0+a1X)(b0+b1X+b2X
2) = a0b0+(a0b1+a1b0)X+(a0b2+a1b1+a2b0)X

2+(a0b3+a1b2+a2b1+a3b0)X
3 =

a0b0 + (a0b1 + a1b0)X + (a0b2 + a1b1)X
2 + a1b2X

3.

2. On a

(a0 + a1X + a2X + a3X
3)(b0 + b1X + b2X

2) = a0b0 + (a0b1 + a1b0)X + (a0b2 + a1b1 + a2b0)X
2+

(a0b3+a1b2+a2b1+a3b0)X
3+(a4b0+a3b1+a2b2+a1b3+a0b4)X

4+(a0b5+a1b4+a2b3+a3b2+a4b1+a5b0)X
5 =

a0b0+ (a0b1+ a1b0)X + (a0b2 + a1b1+ a2b0)X
2+(a1b2 + a2b1 + a3b0)X

3+ (a3b1 + a2b2)X
4+ a3b2X

5
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Proposition 1.7 (Structure d’anneau)

L’ensemble K[X] muni de l’addition et de la multiplication définies en 1.6 est un anneau commutatif,
dont les éléments neutres pour l’addition et la multiplication sont respectivement les polynômes
constants égaux à 0 et 1.

Proposition 1.8 (Autres écritures du produit)

Soient n,m ∈ N, et deux polynômes à coefficients dans K : P =
nX

k=0

akX
k et Q =

mX

k=0

bkX
k. On a

PQ =

nX

i=0

mX

j=0

aibjX
i+j =

X

0�i�n
0�j�m

aibjX
i+j,

où ai = 0 pour i > n et bj = 0 pour j > m.

1.3 Intégrité de K[X]

Proposition 1.9 (Degré d’un produit)

Soient P,Q ∈ K[X]. Alors deg(PQ) = deg(P ) + deg(Q) (somme dans R).

Proposition 1.10 (Degré d’une somme)

Soient P,Q ∈ K[X]. Alors

1. deg(P +Q) � max (deg(P ), deg(Q)).

2. Si deg(P ) 6= deg(Q), alors deg(P +Q) = max (deg(P ), deg(Q)).

Corollaire 1.11
Soit P ∈ K[X ], P 6= 0, et n ∈ N. Alors deg(P n) = n deg(P ).

Corollaire 1.12
Soit n ∈ N∗ et P1, . . . , Pn ∈ K[X]. Alors deg(P1 + · · ·+ Pn) � max(deg(P1), . . . , deg(Pn)).

Proposition 1.13

1. L’anneau K[X] est intègre.

2. Les éléments inversibles de K[X] sont les polynômes constants non nuls.

1.4 Composée de polynômes

Définition 1.14
Soient P,Q ∈ K[X]. On définit le polynôme composé P ◦Q par

P ◦Q = P (Q(X)) =
X

k

akQ
k si P =

X

k

akX
k.
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Exemples.

1. Les polynômes pairs sont les polynômes qui s’écrivent P (X 2), et les polynômes impairs ceux qui
s’écrivent XP (X2).

2. X2 ◦ (X + 1) = (X + 1)2 et (X + 1) ◦X2 = X2 + 1.

3. Attention, (X + 1)P 6= P (X + 1) ! !

Proposition 1.15

Soient A,B,R ∈ K[X]. Alors (A ◦R)× (B ◦R) = (AB) ◦R et (A+ B) ◦R = A ◦R+ B ◦R.

Proposition 1.16

Soient A,B ∈ K[X ] avec B non constant. Alors deg(A ◦ B) = deg(A) deg(B).

2 Division euclidienne

Définition 2.1 (Diviseurs, multiples)

Le polynôme A divise B s’il existe un polynôme D tel que

B = AD, noté A|B.

Le polynôme B est alors un multiple de A et A un diviseur de B.

Définition 2.2
Les polynômes A et B sont associés s’il existe λ ∈ K∗ tel que A = λB, et on note A ∼ B.

Exemples.

1. (X − 1)(X − 2) divise (X − 1)2(X − 2)(X2 +X + 1).

2. Le polynôme nul ne divise que lui-même mais est divisible par tous les polynômes.

3. Les polynômes 6X2 − 3X + 12 et 4X2 − 2X + 8 sont associés.

Proposition 2.3

Soient A et B deux polynômes. Si A|B et si B 6= 0, alors deg(A) � deg(B).

Proposition 2.4

Deux polynômes A et B sont associés si et seulement si A divise B et B divise A.

Théorème 2.5 (Division euclidienne)

Soient A,B deux polynômes avec B non nul. Alors il existe un unique couple (Q,R) de polynômes
tel que

A = BQ+R et deg(R) < deg(B).
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Exemple.
Division de A = 2X4 − 3X3 + 3X2 + 6X + 1 par B = 2X2 +X − 1. On trouve Q = X2 − 2X + 3 et
R = X + 4.

Méthode 2.6
Si a ∈ K, on a pour tout polynôme P

P = (X − a)Q+ b,

où b ∈ K puisque le reste dans la division par X − a doit être de degré nul ou −∞. En évaluant
l’égalité en a, on obtient b = P (a) .

3 Polynôme dérivé

Dans ce §, K ⊂ C, donc Q ⊂ K.

Définition 3.1 (Polynôme dérivé)

Soit P =
nX

k=0

akX
k ∈ K[X].

1. Le polynôme dérivé de P est le polynôme P ′ =

nX

k=1

kakX
k−1.

2. On définit par récurrence le polynôme dérivé d’ordre n ∈ N∗

P (n) =

P (n−1)

�′
,

où P (0) = P .

Proposition 3.2

Soient P ∈ K[X]. Alors P ′ = 0 si et seulement si P est constant.

Proposition 3.3

Soient P,Q ∈ K[X] et λ, µ ∈ K.

1. (λP + µQ)′ = λP ′ + µQ′.

2. (PQ)′ = P ′Q+ PQ′.

Proposition 3.4

Pour p, n ∈ N, on a

(Xn)(p) =

(
n!

(n−p)!
Xn−p si n � p

0 sinon.

Proposition 3.5

Soient P ∈ K[X] non constant.

1. deg(P ′) = deg(P )− 1 et dom(P ′) = deg(P )dom(P ).
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2. Pour tout n � deg(P ), on a deg(P (n)) = deg(P )− n.

3. P (deg(P )) = (deg(P ))!dom(P ).

4. P (deg(P )+1) = 0.

Proposition 3.6 (Formule de Leibniz)

Soient P,Q deux polynômes et n ∈ N. Alors (PQ)(n) =

nX

k=0

�
n

k

�
P (k)Q(n−k).

4 Racines d’un polynôme

4.1 Fonction polynomiale, formule de Taylor

Définition 4.1 (Fonction polynomiale)

Soit P =

nX

k=0

akX
k ∈ K[X].

1. La fonction polynomiale associée à P est la fonction

eP : K −→ K

x 7−→
nX

k=0

akx
k.

2. Soit α ∈ K. On note P (α) = eP (α) =
nX

k=0

akα
k.

Théorème 4.2 (Formule de Taylor)

Soit P ∈ K[X ] et a ∈ K. Alors

P (X) =

+∞X

k=0

P (k)(a)

k!
(X − a)k =

deg(P )X

k=0

P (k)(a)

k!
(X − a)k.

Remarque.

Soit P ∈ K[X ] et a ∈ K. Alors, pour tout m � deg(P ), on a P (X) =
mX

k=0

P (k)(a)

k!
(X − a)k, puisque

P (k)(a) = 0 si k > deg(P ).

Méthode 4.3 (Quotient et reste par (X − a)n)

Soient P ∈ K[X], n ∈ N∗ et a ∈ K. Alors le quotient et le reste de la division euclidienne de P par

(X − a)n sont respectivement
+∞X

k=n

P (k)(a)

k!
(X − a)k−n et

n−1X

k=0

P (k)(a)

k!
(X − a)k, car

P (X) =

+∞X

k=0

P (k)(a)

k!
(X − a)k = (X − a)n

+∞X

k=n

P (k)(a)

k!
(X − a)k−n +

n−1X

k=0

P (k)(a)

k!
(X − a)k.
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4.2 Racine simple

Définition 4.4 (Racine)

Un scalaire a ∈ K est racine d’un polynôme P si P (a) = 0.

Exemple.
i et −i sont des (les !) racines de X2 + 1 vu dans C[X ].

Proposition 4.5

Soient A et B deux polynômes et a ∈ K une racine de A. Si A|B, alors a est une racine de B.

Proposition 4.6

Soit P ∈ K[X ] et α ∈ K. Alors α est une racine de P si et seulement si X − α|P .

Proposition 4.7

Soit P ∈ K[X] et α1, . . . ,αn ∈ K des scalaires deux à deux distincts. Alors les αi sont des racines

de P si et seulement si
nY

i=1

(X − αi)|P .

Corollaire 4.8
Un polynôme de degré n ∈ N admet au plus n racines distinctes.

Méthode 4.9
On utilise souvent cette proposition par contraposée, pour montrer qu’un polynôme est nul.

1. Si un polynôme P vérifie deg(P ) � n, n ∈ N, et a au moins n+ 1 racines distinctes, alors P = 0.

2. On peut mélanger avec une démonstration par l’absurde : soit P un polynôme, et on suppose
qu’il est non nul, et on note n ∈ N son degré. Si on montre qu’alors P a au moins n + 1 racines
distinctes, on aboutit à une contradiction.

3. Un polynôme qui admet une infinité de racines distinctes est nul.

Exemples.

1. On a vu dans le chapitre sur C que pour tout entier n, il existe un polynôme P tel que pour tout
x ∈ R,

cos(nx) = P (cos(x)).

(Écrire que cos(nx) est la partie réelle de (cos(x) + i sin(x))n). Un tel polynôme est unique. En effet,
si Q en est un autre, on a

(P −Q)(cos(x)) = 0

pour tout réel x, donc P −Q s’annule sur [0, 1], donc P −Q = 0.

2. La fonction exponentielle n’est pas polynomiale. En effet, si elle l’était, il existerait un polynome
P tel que pour tout nombre complexe z, on ait

P (z) = ez.
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En particulier, pour tout nombre entier k,

P (2ikπ) = 1,

donc P = 1 et l’exponentielle serait constante : absurde.

3. Le polynôme Xn − 1 admet n racines complexes distinctes qui sont les racines nème de l’unité, et

Xn − 1 =
n−1Y

k=0

�
X − e

2ikπ
n

�
.

4. Le corollaire 4.8 permet d’identifier un polynôme et sa fonction polynomiale lorsque le corps K
est infini (par exemple R ou C), i.e. si P et Q sont deux polynômes, on a

P = Q ⇐⇒ eP = eQ ⇐⇒ ∀ a ∈ K, P (a) = Q(a).

En effet, l’implication de gauche à droite est évidente. Pour l’autre, si P (a) = Q(a) pour tout a ∈ K,
le polynôme P −Q admet une infinité de racines, donc est nul.

4.3 Racines multiples

Définition 4.10 (Ordre de multiplicité)

1. Un polynôme P admet a ∈ K comme racine d’ordre n ∈ N∗ si (X − a)n divise P et (X − a)n+1

ne divise pas P . L’entier n est l’ordre de multiplicité de la racine a.

2. Un polynôme P admet a ∈ K comme racine d’ordre au moins n ∈ N∗ si (X − a)n divise P .

Remarques.

1. On peut prolonger cette définition à n = 0 : une racine d’ordre 0 n’est pas une racine.
2. (X − a)n divise P et (X − a)n+1 ne divise pas P signifie que P = (X − a)nQ avec Q(a) 6= 0.

Définition 4.11 (Racine simple, multiple)

Une racine simple (resp. multiple) de P ∈ K[X ] est une racine d’ordre exactement 1 (resp. d’ordre
au moins 2).

Remarques.

1. Il y a donc deux manières de compter les racines : on compte les racines distinctes, où on les
compte avec leur ordre de multiplicité. L’exemple (X − 2)2(X + 3)4(X − 1) a 3 racines distinctes et
7 racines comptées avec leur ordre de multiplicité.

2. Une racine d’ordre n n’est pa une racine d’ordre p si p < n ou p > n.
3. Si a est une racine d’ordre exactement r de P , alors (X − a)s|P si et seulement si s � r. En effet,
(X − a)r+1 6 |P .
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Exemple.
Le polynôme (X − 2)2(X +3)4(X − 1) admet 2 comme racine double, −3 comme racine d’ordre 4 et
1 comme racine simple.

Proposition 4.12 (Caractérisation d’une racine d’ordre au moins n)

Un polynôme P ∈ K[X] admet a ∈ K comme racine d’ordre au moins n ∈ N∗ si et seulement si
P (a) = · · · = P (n−1)(a) = 0.

Proposition 4.13 (Caractérisation d’une racine d’ordre n)

Un polynôme P ∈ K[X ] admet a ∈ K comme racine d’ordre n ∈ N∗ si et seulement si P (a) = · · · =
P (n−1)(a) = 0 et P (n)(a) 6= 0

Méthode 4.14 (Montrer qu’un scalaire est une racine multiple/simple)

Soient a ∈ K et P ∈ K[X ].

1. Pour montrer que a est racine multiple de P , on montre que P (a) = P ′(a) = 0 ou que (X − a)2

divise P . Mais attention, cela ne donne pas son ordre de multiplicité.

2. Pour montrer que a est racine simple de P , on montre que P (a) = 0 et P ′(a) 6= 0, ou que X − a
divise P et (X − a)2 ne divise pas P .

Proposition 4.15

Soient P ∈ K[X ], a ∈ K et n ∈ N∗. Si a est racine d’ordre (exactement) n de P , alors a est racine
d’ordre (exactement) n− 1 de P ′.

Remarque.
Attention, la réciproque est fausse. Par exemple si P = X2+1, alors P ′ = 2X admet 0 comme racine
simple, mais 0 n’est pas racine double de P .

Proposition 4.16

Soient a1, . . . , an ∈ K des scalaires distincts deux à deux, et r1, . . . , rn ∈ N∗. Un polynôme P admet
ai comme racine d’ordre au moins ri (i = 1, . . . , n) si et seulement si

nY

i=1

(X − ai)
ri|P.

Corollaire 4.17
Un polynôme de degré n admet au plus n racines comptées avec leur ordre de multiplicité.

Méthode 4.18 (Comparez avec la méthode 4.9)

On utilise souvent ce corollaire par contraposée, pour montrer qu’un polynôme est nul.

1. Si un polynôme P vérifie deg(P ) � n, n ∈ N, et a au moins n + 1 racines comptées avec
multiplicités, alors P = 0.
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2. On peut mélanger avec une démonstration par l’absurde : soit P un polynôme, et on suppose
qu’il est non nul, et on note n ∈ N son degré. Si on montre qu’alors P a au moins n + 1 racines
comptées avec multiplicités, on aboutit à une contradiction.

3. Un polynôme qui admet une infinité de racines comptées avec multiplicités est nul.

Corollaire 4.19
Soient a1, . . . , an ∈ K des scalaires distincts deux à deux, et r1, . . . , rn ∈ N∗. Un polynôme P de
degré r1 + · · ·+ rn admet les ai comme racine d’ordre ri (i = 1, . . . , n) si et seulement si

P = λ

nY

i=1

(X − ai)
ri, λ ∈ K∗.

4.4 Polynômes scindés

Définition 4.20 (Polynôme scindé)

Un polynôme P est scindé sur K s’il est non constant et s’il est produit de polynômes de degré 1.

Remarque.
Autrement dit, un polynôme est scindé s’il existe n ∈ N∗, x1, . . . , xn ∈ K et λ ∈ K∗ tels que

P = λ
nY

i=1

(X − xi).

Exemples.

1. X2 + 1 n’est pas scindé sur R mais est scindé sur C.

2. D’après le corollaire 4.19, un polynôme est scindé si et seulement s’il admet n racines comptées
avec leur multiplicité.

Proposition 4.21 (Divisibilité en termes de racines)

Soient A, B deux polynômes non nul, tel que A soit scindé. Soient a1, . . . , an les racines de A deux
à deux distinctes, et r1, . . . , rn ∈ N∗ leur ordre de multiplicité. Alors

A|B ⇐⇒ ∀ k = 1, . . . , n, ak est une racine de B d’ordre � rk.

Méthode 4.22
1. Soient A, B deux polynomes non nuls, tel que A soit scindé. Pour montrer que A|B, on peut
déterminer les racines de A ainsi que leur ordre de multiplicité. On vérifie qu’elles sont racines de B
avec un ordre supérieur ou égal.

2. Cas particulier des polynômes à coefficients complexes : ils sont tous scindés, donc on peut appli-
quer le 1.

3. Cas particulier des polynômes à coefficients réels : si A,B ∈ R[X ], on les considère comme des
polynômes à coefficients complexes. On appliques alors le 1 avec les racines (réelles et) complexes de
A.
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5 Étude de C[X ] et R[X ]

Théorème 5.1 (Théorème fondamental de l’algèbre)

Tout polynôme complexe non constant admet au moins une racine dans C.

Corollaire 5.2
Tout polynôme complexe non constant est scindé sur C.

Remarque.
FAUX pour les polynômes réels dans R : X2 + 1 n’est pas scindé sur R.

Méthode 5.3
On peut appliquer la méthode 4.22 pour montrer que A|B, puisque si A ∈ C[X ] est non constant, il
est scindé.

Méthode 5.4
Si A,B ∈ R[X ], pour montrer que A|B, on peut appliquer la méthode 4.22 en considérant les racines
complexes de A.

Définition 5.5 (Polynôme conjugué)

Soit P =

nX

k=0

akX
k ∈ C[X ]. On définit son polynôme conjugué par P =

nX

k=0

akX
k.

Proposition 5.6

Soit P ∈ C[X ] et z ∈ C. Alors P (z) = P (z).

Proposition 5.7

Soit P ∈ C[X ] et k ∈ N. Alors P (k) = P
(k)

.

Proposition 5.8

Si P ∈ C[X ], on a P ∈ R[X ] ⇐⇒ P = P .

Proposition 5.9

Soit P ∈ C[X ] et a ∈ C. Alors a est une racine d’ordre r de P si et seulement si a est une racine
d’ordre r de P .

Corollaire 5.10
Soit P ∈ R[X ] et a ∈ C. Alors a est une racine d’ordre r de P si et seulement si a est une racine
d’ordre r de P .

Proposition 5.11

Soit z ∈ C. Alors (X − z)(X − z) = X2 − 2Re(z)X + |z|2.

226



H. Thys, MP2I du lycée Victor Hugo de Besançon

Proposition 5.12 (Décomposition dans R[X)

Tout polynôme réel non constant est un produit de polynômes de degré 1 et de polynômes de degré
2 sans racine réelle.

Remarque.
Cela signifie donc qu’il existe a1, . . . , an ∈ R, r1, . . . , rn ∈ N∗, b1, . . . , bm, c1, . . . , cm ∈ R, s1, . . . , sm ∈
N∗ et λ ∈ R∗ tels que

P = λ

 
nY

i=1

(X − ai)
ri

! 
mY

i=1

(X2 + biX + ci)
si

!
,

où les X2 + biX + ci sont sans racine réelle.

Méthode 5.13 (Factorisation d’un polynôme à coefficients réels)

Soit P ∈ R[X ]. Pour le factoriser, on peut soit le factoriser dans R[X ] par des techniques "astu-
cieuses", puis déterminer ses racines complexes, soit déterminer d’abord toutes les racines complexes,
pour ensuite les regrouper avec leur conjugué, pour en déduire la factorisation dans R[X ]. Exemple
avec X6 − 1.

6 Fonctions symétriques élémentaires

Définition 6.1 (Fonctions symétriques élémentaires)

Soit

P =

nX

k=0

akX
k

un polynôme de degré n (donc an 6= 0). Pour i = 1, . . . , n, on définit les fonctions symétriques
élémentaires par

σi = (−1)i
an−i

an
∈ K.

Exemple.
Si P = 2X3 −X2 + 1, on a

σ1 = −−1

2
, σ2 =

0

2
, σ3 = −1

2
.

Proposition 6.2

Soit

P =

nX

k=0

akX
k

un polynôme de degré n scindé sur K, et x1, . . . , xn ses racines (non nécessairement distinctes). Alors
pour tout i = 1, . . . , n, on a

σi =
X

1�k1<···<ki�n

xk1 · · ·xki .
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Exemples.

1. Si
P = 4(X − 2)(X + 3)(X − 1) = 4X3 − 28X + 24,

on a

σ1 = −2+3−1 = 0 = −0

4
, σ2 = 2×(−3)+2×1+(−3)×1 = −7 =

−28

4
, σ3 = 2×(−3)×1 = −6 = −24

4
.

2. σ1 est la somme des racines et σn le produit des racines.

3. On a

an(X − x1)(X − x2)(X − x3) = an

X3 − (x1 + x2 + x3)X

2 + (x1x2 + x1x3 + x2x3)X − x1x2x3

�
.

7 Polynôme d’interpolation de Lagrange

Proposition 7.1

Soient n ∈ N∗, (x1, . . . , xn) ∈ Kn deux à deux distincts, et (y1, . . . , yn) ∈ Kn. Il existe un unique
polynôme P de degré � n− 1 tel que

∀ k = 1, . . . , n, P (xk) = yk.

C’est le polynôme d’interpolation de Lagrange associé aux familles (xk)1�k�n et (yk)1�k�n.

Définition 7.2
Soit f est une fonction définie sur une partie de K, (xk)1�k�n une famille de scalaires deux à deux
distincts dans le domaine de définition de f , et yk = f(xk) pour k = 1, . . . , n. Le polynôme de la
proposition 7.1 est le polynôme d’interpolation de Lagrange de f associé à la famille (xk)1�k�n.

Proposition 7.3

Soient n ∈ N∗, (x1, . . . , xn) ∈ Kn deux à deux distincts, et (y1, . . . , yn) ∈ Kn. Soit P0 le polynôme
d’interpolation de Lagrange associé aux familles (xk)1�k�n et (yk)1�k�n. Les polynômes A ∈ K[X]
tels que

∀ k = 1, . . . , n, A(xk) = yk

sont les polynômes P0 +

 
nY

k=1

(X − xk)

!
Q, où Q ∈ K[X].
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