
Chapitre 19

Dérivation des fonctions d’une variable réelle

Dans tout ce chapitre, on fixe un intervalle I de R non trivial.

1 Dérivée en un point

1.1 Définitions

Définition 1.1 (Dérivée)

Soit f : I 7−→ R et a ∈ I.

1. La fonction f est dérivable en a (resp. dérivable à gauche, dérivable à droite en a) si le taux
d’accroissement de f en a

I \ {a} −→ R

x 7−→ f(x)−f(a)
x−a

admet une limite finie en a (resp. une limite finie à gauche, à droite en a). On note

f ′(a) (resp. f ′
g(a), f ′

d(a))

ces limites.

2. La fonction f est dérivable sur I si elle est dérivable en tout point de I. La dérivée de f est la
fonction

f ′ I −→ R

x 7−→ f ′(x).

Remarques.

1. On rappelle le vocabulaire de taux d’accroissement en a.
2. On a vu qu’une fonction à valeur complexe admet une limite en un point si et seulement si ses
parties réelle et imaginaire en admettent une, et que les parties réelle et imaginaire de la limite sont
les limites des parties réelle et imaginaire. On en déduit que f est dérivable si et seulement si ses
parties réelle et imaginaire le sont et

f ′ = (Re(f))′ + i (Im(f))′ .
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3. Si a est l’extrémité gauche (resp. droite) de I, il n’y a pas de notion de limite à gauche (resp. à
droite) en a, et les notions de dérivée et dérivée à droite (resp. dérivée et dérivée à gauche) coïncident.

4. La dérivation, étant un problème de limite, est une notion locale. Si f et g coïncident au voisinage
de a, alors f est dérivable en a si et seulement g l’est, et alors f ′(a) = g′(a).

5. Si f est dérivable en a, la droite passant par (a, f(a)) et (x, f(x)) a pour pente

f(x)− f(a)

x− a
,

et les cordes ont une droite limite de pente f ′(a). Cette droite a pour équation y = (x−a)f ′(a)+f(a).
6. On note D(I) l’ensemble des fonctions dérivables sur I, à valeurs dans R, et D(I, J) l’ensemble
des fonctions dérivables sur I, à valeurs dans un ensemble J (J = C, ou J ⊂ R,...).

Exemples.

1. Les fonctions affines x −→ αx+ β sont dérivables sur R et leur dérivée est constante égale à α.

2. La fonction x −→ √
x est dérivable sur R∗

+. En effet, si a > 0, on a
√
x−√

a

x− a
=

1√
x+

√
a
,

qui admet
1

2
√
a

comme limite en a.

3. La fonction x −→ x2 est dérivable sur R car si a ∈ R, on a

x2 − a2

x− a
= x+ a

qui admet 2a comme limite en a.

4. De même, tout monôme x −→ xn (n ∈ N) est dérivable sir R car

xn − an

x− a
= xn−1 + xn−2a + · · ·+ an−1

qui admet nan−1 comme limite en a.

5. La fonction définie pour x 6= 0 par x −→ x sin(1/x), et par 0 en 0, est continue mais pas dérivable
en 0. En effet, le taux d’accroissement en 0 vaut

x sin

1
x

�

x
= sin

�
1

x

�
,

qui n’admet pas de limite en 0.

Proposition 1.2

Soit f : I 7−→ R et a ∈ I qui n’est pas une borne de I. La fonction f est dérivable en a si et seulement
si elle est dérivable à gauche et à droite en a et si f ′

g(a) = f ′
d(a), et alors on a

f ′(a) = f ′
g(a) = f ′

d(a).
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Exemples.

1. La fonction f : x −→ |x| n’est pas dérivable en 0, puisqu’elle l’est à droite avec f ′
d(0) = 1, et à

gauche avec f ′
g(0) = −1.

2. Cette proposition est très utile pour l’étude des fonctions définies par plusieurs expressions. Par
exmple, la fonction

f : R −→ R

x 7−→
(
e−1/x si x > 0,

0 sinon.

est dérivable en 0 et f ′(0) = 0. En effet, f ′
g(0) = 0 clairement, et

lim
x→0+

e−1/x

x
= 0,

donc f ′
d(0) = 0.

1.2 Premières propriétés

Proposition 1.3 (Continuité des fonctions dérivables)

Soit f : I 7−→ R et a ∈ I. Si f et dérivable en a (resp. dérivable à gauche, à droite en a), alors f est
continue en a (resp. continue à gauche, à droite en a).

Remarques.

1. Attention, la réciproque est fausse, comme le prouve l’exemple de la fonction valeur absolue en
0 : elle et continue en 0, mais pas dérivable en 0.

2. Ne pas confondre l’implication "f est dérivable =⇒ f est continue", et "f ′ est continue". En effet,
une fonction peut être dérivable sans que sa dérivée soit continue, comme le prouve l’exemple de la
fonction

x 7−→ x2 sin

�
1

x

�

pour x 6= 0, et 0 en 0. Son taux d’accroissement en 0 vaut

x sin

�
1

x

�

qui tend vers 0 en 0, donc cette fonction est dérivable en 0 et sa dérivée en 0 vaut 0. Par contre, pour
x 6= 0, la dérivée vaut

2x sin

�
1

x

�
− cos

�
1

x

�
,

qui n’admet pas de limite en 0, donc la dérivée n’est pas continue en 0.

Proposition 1.4 (Somme de fonctions dérivables)

Soient λ, µ ∈ R, et f, g : I 7−→ R.
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1. Si f et g sot dérivables en a ∈ I, alors λf+µg est dérivable en a et (λf + µg)′ (a) = λf ′(a)+µg′(a).

2. Si f et g sont dérivables sur I, alors λf + µg est dérivable sur I et (λf + µg)′ = λf ′ + µg′.

Proposition 1.5 (Produit de fonctions dérivables)

Soient f, g : I 7−→ R.

1. Si f et g sont dérivables en a ∈ I, le produit fg est dérivable en a et on a (fg)′(a) =
f ′(a)g(a) + f(a)g′(a).

2. Si f et g sont dérivables sur I, le produit fg est dérivable sur I et on a (fg)′ = f ′g + fg′.

deux fonctions dérivables en a ∈ I. En particulier, si f et g sont dérivable sur I, on a

(fg)′ = f ′g + fg′.

2 Dérivées d’ordre supérieur

Définition 2.1 (Dérivée n-ème)

On définit par récurrence sur n, si elle existe, la dérivée nième de f par

f (0) = f et f (n) =

f (n−1)

�′
,

et on dira que la fonction f est n-fois dérivable si f (n) existe.

Définition 2.2 (Fonctions de classe Cn)

1. La fonction f est de classe Cn sur I si elle est n-fois dérivable sur I, et si f (n) est continue sur I.

2. On note Cn(I) l’ensemble des fonctions de classe Cn sur I.

3. La fonction f est de classe C∞ sur I si elle est dérivable à tout ordre.

4. On note C∞(I) l’ensemble des fonctions dérivables à tout ordre sur I.

Remarques.

1. Plus généralement, si J est un sous-ensemble de R ou C (souvent un intervalle de R), on note
Cn(I, J) l’ensemble des fonctions I 7−→ J n-fois dérivables, à dérivée n-ème continue.

2. Rappelons que, par convention, C0(I) est l’ensemble des fonctions continues sur I.
3. C1(I) est donc l’ensemble des fonctions dérivables à dérivée continue sur I.
4. Attention : on peut être de classe Cn sans être de classe Cn+1.
5. Ne confondez pas "de classe Cn" et "n-fois dérivable".

Exemples.

1. La fonction x 7−→
(
x2 si x � 0

−x2 sinon
est de classe C1 sur R, mais pas deux-fois dérivable.
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2. La fonction x 7−→
(
x2 sin(1/x) si x 6= 0

0 sinon
est dérivable sur R, mais pas de classe C1.

Proposition 2.3

Soient n, p ∈ N avec p � n. Alors Cn(I) ⊂ Cp(I).

Proposition 2.4

Soient n ∈ N∗ et f une fonction n-fois dérivable sur I. Alors f ∈ Cp(I) pour tout p < n.

Proposition 2.5

On a C∞(I) =
\

n∈N
Cn(I).

Proposition 2.6

Soient n ∈ N∗ et f une fonction dérivable sur I. Alors

f ∈ Cn(I) ⇐⇒ f ′ ∈ Cn−1(I).

Proposition 2.7 (Somme de fonctions n-fois dérivables)

Soient f et g deux fonctions n-fois dérivables (resp. de classe Cn) sur I. Les combinaisons linéaires
de f et g sont n-fois dérivables (resp. de classe Cn) sur I, et on a (pour λ, µ ∈ R),

(λf + µg)(n) = λf (n) + µg(n).

Proposition 2.8 (Produit de fonctions n-fois dérivables et formule de Leibniz)

Soient f et g deux fonctions n-fois dérivables (resp. de classe Cn) sur I. Le produit de f et g est
n-fois dérivables (resp. de classe Cn) sur I, et on a

(fg)(n) =

nX

k=0

�
n

k

�
f (k)g(n−k) (Formule de Leibniz).

Remarque.
L’ensemble Cn(I) est donc un sous-anneau de (RI ,+,×).

Proposition 2.9

Soient n, p ∈ N.

1. La fonction x 7−→ xp est de classe C∞ et
dn[xp]

dxn
=

(
p!

(p−n)!
xp−n si n � p

0 sinon.

2. La fonction x 7−→ 1
x

est de classe C∞ sur R∗ et sa dérivée d’ordre n est

x 7−→ (−1)n
n!

xn+1
.
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3 Quotient, composée, fonction réciproque

3.1 Quotient

Proposition 3.1

Soit f : I 7−→ R. Si f ne s’annule pas sur I et est dérivable en a ∈ I, alors 1/f est dérivable en a et
�
1

f

�′
(a) = − f ′(a)

(f(a))2
.

Corollaire 3.2 (Dérivée de l’inverse)

Soit f : I 7−→ R.

1. Si f ne s’annule pas sur I et est dérivable sur I, alors 1/f est dérivable sur I et
�
1

f

�′
= − f ′

f 2
.

2. Si f est de classe Cn sur I et ne s’annule pas sur I, alors 1/f est de classe Cn sur I.

Exemple.
Les fonctions homographiques

x 7−→ ax+ b

cx+ d
sont dérivables, et ont pour dérivée

x 7−→ ac− bd

(cx + d)2
.

Corollaire 3.3
Soient f et g deux fonctions dérivables sur I (resp. de classe Cn sur I), telles que g ne s’annule pas
sur I. Alors f/g est dérivable sur I (resp. est de classe Cn sur I), et

�
f

g

�′
=

f ′g − fg′

g2
.

3.2 Composée

Proposition 3.4

Soient I, J des intervalles de R, f : I −→ R, g : J −→ R, telle que f(I) ⊂ J

1. Si f est dérivable en a ∈ I et g est dérivable en f(a), alors g ◦ f est dérivable en a et

(g ◦ f)′(a) = g′(f(a))f ′(a).

2. Si f est dérivable sur I et g sur J , alors g ◦ f est dérivable sur I et

(g ◦ f)′ = (g′ ◦ f)× f ′.

Proposition 3.5

En gardant les notations de la proposition 3.4, si f ∈ Cn(I) et g ∈ Cn(J), alors g ◦ f est de classe Cn

sur I.
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3.3 Fonction réciproque

Proposition 3.6

Soientt I, J des intervalles de R, f : I −→ J continue et bijective.

1. Si f est dérivable en a ∈ I, et f ′(a) 6= 0, alors f−1 est dérivable en f(a) et on a


f−1

�′
(f(a)) =

1

f ′(a)
.

2. Si f et dérivable sur I et si f ′ ne s’annule pas, alors f−1 est dérivable sur J et


f−1

�′
=

1

f ′ ◦ f−1
.

Remarque.
On en déduit que f−1 est dérivable en tout y ∈ J \ {f(x) | x ∈ I et f ′(x) = 0}.

Exemples.

1. Si n ∈ N∗, la fonction
x 7−→ xn

est une bijection strictement croissante de R∗
+ sur R∗

+, dont la dérivée ne s’annule pas. Sa fonction
réciproque

y 7−→ n
√
y

est donc dérivable sur R∗
+ et sa dérivée a pour expression

1

n( n
√
y)n−1

,

i.e. on a
dx1/n

dx
=

1

n
x

1
n
−1.

2. On retrouve les différentes dérivées des fonctions usuelles vues en début d’année.

Proposition 3.7

Soit f de classe Cn (n > 0) sur I dont la dérivée ne s’annule pas. Alors f : I −→ f(I) est bijective
et f−1 est de classe Cn sur f(I).

Remarque.
Une telle fonction s’appelle un Cn-difféomorphisme.
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Méthode 3.8
Pour montrer qu’une fonction est de classe Cn, on procède en général en invoquant les thorèmes
généraux (somme, produit, quotient dont le dénominateur ne s’annule pas, composée (vérifiez qu’elle
est définie), et éventuellement réciproque si la fonction est bijective et que sa dérivée ne s’annule pas.

Sinon, on peut procéder par récurrence.

Dans le cas C∞, on peut essayer de trouver une relation de récurrence entre la fonction et certaines
de ses dérivées.

4 Théorèmes des fonctions dérivables

Dans tout ce paragraphe, les fonctions seront à valeurs réelles. Les résultats de ce paragraphe
sont faux pour les fonctions à valeurs complexes.

4.1 Théorème de Rolle

Proposition 4.1

Soit f une fonction dérivable sur un intervalle I, et a ∈ I un point qui n’est pas une extrémité de I.
Si f admet un extremum en a, alors f ′(a) = 0.

Remarques.

1. Un tel point a est un point critique de la fonction f .
2. La réciproque est fausse, comme le prouve l’exemple de la fonction x 7−→ x3 en 0.
3. Le résultat est faux si a est une extrémité, comme le prouve l’exemple de la fonction x 7−→ x sur
l’intervalle [0, 1[, qui admet un minimum en 0.

4.

Méthode 4.2 (Recherche des extremums)

Pour déterminer les extremums d’une fonction dérivable sur un intervalle I, on détermine d’abord les
candidats : éventuellement les extrémités de I, ainsi que les points critiques. Il faut ensuite vérifier
lesquels des points critiques sont effectivement des extremums. On étudie la fonction, on dresse son
tableau de variation, et on constate que ce sont les points critiques où la dérivée change de signe.

Théorème 4.3 (Théorème de Rolle)

Soit f une fonction continue sur un segment [a, b], dérivable sur ]a, b[, telle que f(a) = f(b) (a < b ∈
R). Alors il existe c ∈ ]a, b[ tel que f ′(c) = 0.

Remarque.
Ce théorème est faux pour les fonctions à valeurs complexes. En effet, la fonction x 7−→ eix a même
valeur en 0 et en 2π, mais sa dérivée ne s’annule jamais. Ceci est dû au fait que dans C on peut
"tourner autout de 0". Physiquement, dans le plan, on peut faire revenir au point de départ sans que
la vitesse s’annule.
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Corollaire 4.4
1. Soit f dérivable sur [a, b] avec f(a) = f(b). Alors f ′ s’annule sur ]a, b[.

2. Soit f ∈ Cp([a, b]) (p ∈ N∗) avec f(a) = f(b). Alors f ′ s’annule sur ]a, b[.

Remarque.

4.2 Égalité des accroissements finis

Théorème 4.5 (Égalité des accroissements finis)

Soit f une fonction continue sur un segment [a, b], dérivable sur ]a, b[. Alors il existe c ∈]a, b[ tel que

f(b)− f(a) = f ′(c)(b− a) ou encore tel que
f(b)− f(a)

b− a
= f ′(c).

Définition 4.6
Une fonction f : I 7−→ R est lipschitzienne s’il existe k ∈ R tel que :

∀ (x, y) ∈ I2, |f(x)− f(y)| � k|x− y|.

Plus précisément, on dit que la fonction est k-lipschitzienne.

Exemples.

1. La fonction | · |.

2. Les fonctions sinus et cosinus.

3. La fonction carrée sur un segment.

4.
√· sur [a,+∞.

Proposition 4.7

Une fonction lipschitzienne est continue.

Corollaire 4.8 (Inégalité des accroissements finis)

Soit f une fonction continue sur un segment [a, b], dérivable sur ]a, b[, telle qu’il existe m,M ∈ R tels
que

∀ x ∈ ]a, b[, m � f ′(x) � M.

Alors
∀ x, y ∈ [a, b], x � y =⇒ m(y − x) � f(y)− f(x) � M(y − x).
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Corollaire 4.9 (Inégalité des accroissements finis)

Soit f une fonction continue sur un segment [a, b], dérivable sur ]a, b[, telle qu’il existe k ∈ R+ tels
que

∀ x ∈ ]a, b[, |f ′(x)| � k.

Alors
∀ x, y ∈ [a, b], |f(x)− f(y)| � k|x− y|,

i.e. f est k-lipschitzienne sur [a, b].

Proposition 4.10

Soit f une fonction dérivable et lipschitzienne sur un intervalle I. Alors f ′ est bornée.

Exemples.

1. Les fonctions sinus et cosinus, dont les dérivées sont bornées par 1.

2. La fonction valeur absolue est lipschitzienne mais non dérivable.

3. Rappelons que la fonction x 7−→ √
x est lipschitzienne sur tout intervalle [a,+∞[ où a > 0. En

effet, sur un tel intervalle, la fonction racine carrée est dérivable et sa dérivée est la fonction x 7−→ 1
2
√
x
,

qui est majorée par 1
2
√
a

: par l’inégalité des accroissements finis, la fonction est lipschitzienne.

Proposition 4.11

Une fonction de classe C1 sur un segment est lipschtizienne.

Méthode 4.12
Deux cas particuliers très important où on peut appliquer le théorème de Rolle, l’égalité et l’inégalité
des accroissements finis :

1. Si f est dérivable sur un intervalle I et si a, b ∈ I, alors f est continue sur l’intervalle [a, b] et
dérivable sur l’intérieur ]a, b[.

2. Si f est une fonction de classe C1 sur un intervalle I, elle est continue sur I et dérivable sur
l’intérieur de I, et en particulier, si a, b ∈ I, f est continue sur [a, b] et dérivable sur l’intérieur ]a, b[.

5 Applications des égalités et inégalités des accroissements finis

5.1 Dérivabilité et monotonie

Rappel : Soit I un intervalle d’extrémités a, b ∈ R avec a � b. L’intérieur de I est l’intervalle
]a, b[.

Proposition 5.1

Soit f une fonction continue sur un intervalle I et dérivable sur l’intérieur de I. Alors f est croissante
(resp. décroissante) sur I si et seulement si f ′ � 0 (resp. f ′ � 0) sur l’intérieur de I, et f est constante
sur I si et seulement si f ′ = 0 sur l’intérieur de I.
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Remarque.
Attention : ce résultat n’est valable que sur un intervalle. Rappelons que la fonction définie sur R∗

par x 7−→ |x|
x

est dérivable, a une dérivée nulle, mais n’est pas constante.

Proposition 5.2 (Fonctions strictement monotones, condition suffisante 1)

Soit f une fonction continue sur un intervalle I et dérivable sur l’intérieur de I. Si f ′ > 0 (resp.
f ′ < 0) sur l’intérieur de I, alors f est strictement croissante (resp. strictement décroissante) sur I.

Corollaire 5.3 (Fonctions strictement monotones, condition suffisante 2)

Soit f une fonction continue sur un intervalle I et dérivable sur l’intérieur de I. Si f ′ � 0 (resp.
f ′ � 0) sur l’intérieur de I, et que f ′ ne s’annule qu’un nombre fini de points, alors f est strictement
croissante (resp. strictement décroissante) sur I.

5.2 Théorème de la limite de la dérivée

Théorème 5.4 (Théorème de la limite de la dérivée)

Soit I un intervalle de R, c ∈ I, et f une fonction continue sur I, et dérivable sur I \ {c}.
1. Si f ′ admet une limite finie ℓ en c, alors f est dérivable en c avec f ′(c) = ℓ, et f ′ est continue en
c. En particulier, si f est aussi de classe C1 sur I \ {c}, alors elle l’est sur I.

2. Si f ′ admet une limite infinie en c, la courbe représentative de f admet une tangente verticale au
point d’abscisse c.

Remarques.

1. La réciproque est fausse : la fonction x 7−→ x2 sin(1/x) est dérivable en 0 mais sa dérivée n’admet
pas de limite en 0.

2. La continuité de f sur tout l’intervalle I est essentielle.
3. Ce théorème reste vrai pour les fonctions à valeurs complexes. En effet, il suffit de l’appliquer
séparément aux parties réelle et imaginaire.

4. On peut évidemment obtenir un résultat similaire pour les dérivées à gauche et à droite en c, en
restreigant la fonction à I∩]−∞, c] ou à I ∩ [c,+∞[.

Exemple.
La fonction f définie sur I = [−1, 1] par x 7−→ arcsin(1 − x4) est continue sur I, dérivable sauf
peut-être en 0. Or, si x 6= 0, on a

f ′(x) = − 4x√
2− x4

,

donc f ′ tend vers 0 en 0, ce qui prouve que f est dérivable en 0 et que f ′(0) = 0.

5.3 Application aux suites récurrentes d’ordre 1

On considère dans ce § une fonction dérivable f : I −→ I où I est un intervalle fermé de R, (i.e.
un segment ou un intervalle du type [a,+∞[ ou ]−∞, a]), et une suite (un)n∈N définie par u0 ∈ I et
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un+1 = f(un) pour tout n ∈ N.

Rappelons que dans le chapitre 12, §7, on a déjà étudié ce type de suite. On a en particulier
montré que si f est croissante, la suite (un) est monotone, si f est décroissante, les suites extraites
(u2n) et (u2n+1) sont monotones, et que si (un) converge, sa limite ℓ est un point fixe de f , i.e.

f(ℓ) = ℓ.

Rappelons également que si I est majoré ou minoré, il en est de même de la suite (un).

Proposition 5.5

Soi ℓ un point fixe de f .

1. S’il existe k < 1 tel que
∀ x ∈ I, |f(x)− ℓ| � k|x− ℓ|,

la suite (un) est convergente vers ℓ.

2. Si la fonction f est k-lipschitzienne sur I avec k < 1, la suite (un) converge vers ℓ.

3. Si la fonction f admet une dérivée majorée en valeur absolue sur I par k < 1, la suite (un)
converge vers ℓ.

Remarque.
Dans la situation de la proposition précédente, si f admet un point fixe, celui-ci est unique, car si
ℓ1, ℓ2 sont des points fixes de f , on a

|ℓ1 − ℓ2| = |f(ℓ1)− ℓ2| � k|ℓ1 − ℓ2|,

et comme 0 < k < 1, on a ℓ1 = ℓ2.

Exemples.

1. On considère la fonction
f : R+ −→ R+

x 7−→ 2x+2
2+x

.

Elle est dérivable et on a pour tout x � 0

f ′(x) =
2

(2 + x)2
�

1

2
.

De plus, l’équation
f(x) = x

admet
√
2 comme unique solution sur R+. La suite (un) définie par u0 = 0 et un+1 = f(un) est

donc convergente vers
√
2. Comme elle est à termes rationnels, on a exhibé une suite de rationnels

convergente vers
√
2.
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2. Étudiez la suite définie par

un+1 =
3

4
cos(un).

On trouve que

|f ′(x)| � 3

4
,

d
dx

(f(x)− x) < 0, f(0)− 0 =
3

4
, f

�π
2

�
− π

2
= −π

2
,

ce qui prouve que x 7−→ f(x)−x est strictement monotone, donc injective, et comme elle est continue,
par le TVI, elle s’annule sur [0, π/2], et une seule fois par injectivité, donc f admet un unique point
fixe sur [0, π/2]. On en déduit que la suite (un) converge vers ce point fixe.

Bien entendu, il faut d’abord montrer que l’intervalle [0, π/2] est stable par f , ce qui découle de
3
4
< 1 < π

2
.

6 Fonctions convexes

Dans tout ce §, I désigne un intervalle de R non réduit à un point, et f une fonction I −→ R.

Définition 6.1 (Fonction convexe)

1. La fonction f est convexe sur I si

∀ x, y ∈ I, ∀ λ ∈ [0, 1], f(λx+ (1− λ)y) � λf(x) + (1− λ)f(y),

ce qui est équivalent à

∀ x, y ∈ I, ∀ λ, µ ∈ R+, λ+ µ = 1, f(λx+ µy) � λf(x) + µf(y).

2. La fonction f est concave si −f est convexe, i.e.

∀ x, y ∈ I, ∀ λ ∈ [0, 1], f(λx+ (1− λ)y) � λf(x) + (1− λ)f(y),

ce qui est équivalent à

∀ x, y ∈ I, ∀ λ, µ ∈ R+, λ+ µ = 1, f(λx+ µy) � λf(x) + µf(y).

Exemple.
La valeur absolue est convexe, puisque l’inégalité triangulaire donne pour λ, µ ∈ R+

|λx+ µy| � λ|x|+ µ|y|.

Proposition 6.2 (Inégalité de Jensen)

La fonction f est convexe si et seulement si pour tout p ∈ N∗ et tous λ1, . . . ,λp ∈ R+ tels que
pX

i=1

λi = 1, on a

x1, . . . , xp ∈ I =⇒ f

 
pX

i=1

λixi

!
�

pX

i=1

λif(xi).
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Proposition 6.3 (Criossance des pentes)

Une fonction f est convexe sur un intervalle I si et seulement si

∀ x, a, y ∈ I, x < a < y =⇒ f(x)− f(a)

x− a
�

f(y)− f(a)

y − a
.

Proposition 6.4 (Fonctions convexes et dérivation)

Si I = (a, b) et f est continue sur I et dérivable sur ]a, b[, alors f est convexe sur I si et seulement
si f ′ est croissante sur ]a, b[.

Proposition 6.5

Si I = (a, b) et f est continue sur I et dérivable sur ]a, b[, f est convexe si et seulement si elle est
au-dessus de ses tangentes, i.e.

∀ x ∈ I, x0 ∈]a, b[, f(x) � f(x0) + (x− x0)f
′(x0).

Corollaire 6.6 (Dérivée seconde des fonctions convexes)

Soit f continue sur I = (a, b) et deux fois dérivables sur ]a, b[. Alors f est convexe sur I si et seulement
si f ′′ � 0.

Exemple.
La fonction arcsin est concave sur [−1, 0] et convexe sur [0, 1]. En effet, sa dérivée

x 7−→ 1√
1− x2

a pour dérivée sur ]− 1, 1[

x 7−→ x

(1− x2)
3
2

,

qui est positive sur [0, 1[ et négative sur ]− 1, 0].

7 Fonctions à valeurs complexes

On considère dans ce paragraphe des fonctions I 7−→ C. Les définitions sont les mêmes que pour
les fonctions à valeurs réelles. Il s’agit juste de remplacer la valeur absolue par le module. Voici
quelques particularités :

— Le théorème de Rolle, donc le théorème des accroissements finis, ne sont plus valables. Dans
un plan, on peut en effet revenir à son point de départ sans annuler sa vitesse, ce qui n’est
pas possible sur une droite.

— L’inégalité des accroissements finis est valable pour les fonctions de classer C1 (cf. ci-dessous).
— Le théorème de la limite de la dérivée reste valable.

Définition 7.1 (Dérivée)

Soit f : I 7−→ C et a ∈ I.
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1. La fonction f est dérivable en a (resp. dérivable à gauche, dérivable à droite en a) si le taux
d’accroissement de f en a

I \ {a} −→ C

x 7−→ f(x)−f(a)
x−a

admet une limite finie en a (resp. une limite finie à gauche, à droite en a). On note

f ′(a) (resp. f ′
g(a), f ′

d(a))

ces limites.

2. La fonction f est dérivable sur I si elle est dérivable en tout point de I. La dérivée de f est la
fonction

f ′ I −→ C

x 7−→ f ′(x).

Proposition 7.2

Soit f : I 7−→ C. Alors f est dérivable sur I si et seulement si ses parties réelles et imaginaires le
sont, et alors

f ′ =

Re(f)

�′
+ i


Im(f)

�′
.

La définition d’une fonction de classe Cn est la même, et comme dans R, les sommes, produits,
composées de fonctions dérivables (resp. de classe Cn sont dérivables (resp. de classe Cn. La formule
de Leibniz reste valable. La règle pour les inverses et les quotients est la même.

Théorème 7.3
Soit f : I 7−→ C une fonction de classe C1 telle que |f ′| soit majorée par M > 0. Alors,

∀ (x, y) ∈ I2, |f(x)− f(y)| � M |x− y|.

Remarque.
Cas particulier important : si I est un segment, la fonction |f ′| est une fonction à valeurs réelles
continue sur le segment I, donc bornée.
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