
Chapitre 20

Développements limités

On considère dans ce chapitre un entier n ∈ N, un intervalle I, x0 ∈ I et une fonction f à valeurs
réelles définie sur I sauf peut-être en x0 ∈ I. On note Df son domaine de définition.

Remarques.

1. Rappel : k > n, on a (x− x0)
k = o(x− x0)

n.
2. Au voisinage de 0, xn est négligeable devant xm si et seulement si n > m, et que

o(xn) + o(xm) = o(xmin(n,m)), xn × o(xm) = o(xn+m), o(xn)× o(xm) = o(xn+m).

En résumé, on garde "le plus petit des petits o".

1 Définitions, premières propriétés

1.1 Développement limité en x0

Définition 1.1
1. La fonction f admet un développement limité à l’ordre n en 0 (noté DLn(0)) s’il existe des réels
a0, . . . , an tels que

∀ x ∈ Df , f(x) =
nX

i=0

aix
i + o

x→0
(xn).

2. La fonction f admet un développement limité à l’ordre n en x0 (noté DLn(x0)) s’il existe des
réels a0, . . . , an tels que

∀ x ∈ Df , f(x) =
nX

i=0

ai(x− x0)
i + o

x→x0

(x− x0)
n.

Remarques.
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1. L’existence d’un DLn(0) est équivalente à l’existence de a0, . . . , an ∈ R tels que

ε(x) =

f(x)−
nX

k=0

akx
k

xn
−→
x→0

0,

2. On omettra l’indice x0 en-dessous de o(x− x0)
n pour alléger les notations. Il n’y a de tout façon

pas d’ambiguïté à partir du moment où on a précisé "développement limité en x0".
3. On rappelle que o(x− x0)

n est une notatition qui signifie que

o(x− x0)
n = (x− x0)

nε(x)

où ε est une fonction tendant vers 0 en x0 (donc continue en x0 si x0 ∈ Df avec ε(x0) = 0) . Il faut
toujours revenir à cette écriture dès que la moindre difficulté se présente. Il est vivement conseillé de
refaire les démonstrations avec cette écriture.

4. On rappelle que (x− x0)
no(x− x0)

m = o(x− x0)
n+m.

5. Rapellons également que l’écriture f(x) =
x→x0

o(1) signifie f(x) −→
x→x0

0.

Exemples.

1. Un polynôme de degré n admet un développement limité à l’ordre n en tout point : c’est une
conséquence de la formule de Taylor (ici, o(x− x0)

n = 0 ! !).

2. Soit f la fonction définie sur ]− 1, 1[ par

f(x) = x− x2 + 2x3 + x3 ln(1 + x).

Elle admet un développement limité à l’ordre 3 en 0 puisque

lim
x→0

ln(1 + x) = 0 donc x3 ln(1 + x) = o(x3).

3. La fonction

x 7−→ 1

1− x

définie sur ] − 1, 1[ admet un développement limité à tout ordre en 0. En effet, si x 6= 0, on a pour
tout entier n

1

1− x
=

1− xn+1

1− x
+

xn+1

1− x
=

nX

k=0

xk + o(xn) car lim
x→0

1

xn

xn+1

1− x
= 0.

4. On démontrera plus tard les développements limités en 0 à tout ordre n ∈ N :

ex =

nX

k=0

xk

k!
+ o(xn), ln(1 + x) =

nX

k=1

(−1)k−1x
k

k
+ o(xn).
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Proposition 1.2 (Unicité d’un développement limité )

Si f admet un développement limité à l’ordre n en x0, celui-ci est unique, i.e. s’il existe des réels
a0, . . . , an, b0, . . . , bn tels que pour tout x ∈ I, on ait

f(x) =
nX

k=0

ak(x− x0)
k + o(x− x0)

n =
nX

k=0

bk(x− x0)
k + o(x− x0)

n,

alors ak = bk pour tout k = 0, . . . , n.

Remarque.
En particulier, on a

nX

k=0

ak(x− x0)
k + o(x− x0)

n = o(x− x0)
n ⇐⇒ a0 = · · · = an = 0.

Définition 1.3 (Partie régulière)

Si f admet un développement limité à l’ordre n en x0

∀ x ∈ Df , f(x) =
x→x0

nX

i=0

ai(x− x0)
i + o(x− x0)

n,

le polynôme
nX

k=0

ak(X − x0)
k est la partie régulière du développement limité .

Proposition 1.4 (Changement de variable)

Soit g la fonction définie sur {h ∈ R | h+ x0 ∈ Df} par g(h) = f(h+x0). Alors f admet un DLn(x0)
si et seulement si g admet un DLn(0), et de plus, on a

∀ h ∈ Dg, g(h) =
h→0

nX

i=0

aih
i + o(hn) ⇐⇒ ∀ x ∈ Df , f(x) =

x→x0

nX

i=0

ai(x− x0)
i + o(x− x0)

n.

Remarque.
C’est pourquoi les énoncés concernant les développements limités sont souvent donnés uniquement
en 0. Un simple changement de variable donne le résultat partout.

Définition 1.5 (Forme normalisée)

Soit f une fonction admettant un développement limité à l’ordre n en x0

f(x) =

nX

i=0

ai(x− x0)
i + o(x− x0)

n,
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de partie régulière non nulle. Soit p le plus petit entier tel que ap 6= 0. La forme normalisée du
développement limité est

f(x) = (x− x0)
p

 
nX

i=p

ai(x− x0)
i−p + o(x− x0)

n−p

!

= (x− x0)
p
�
ap + ap+1(x− x0) + · · ·+ an(x− x0)

n−p + o(x− x0)
n−p

�
.

Le cas particulier x0 = 0 s’écrit

f(x) = xp

 
nX

i=p

aix
i−p + o(xn−p)

!
= xp

�
ap + ap+1x+ · · ·+ anx

n−p + o(xn−p)
�
.

Proposition 1.6 (Troncature)

Si f admet un développement limité à l’ordre n en x0

f(x) =
nX

k=0

ak(x− x0)
k + o(x− x0)

n,

elle en admet un à tout ordre p � n qui est

f(x) =

pX

k=0

ak(x− x0)
k + o(x− x0)

p

(obtenu par troncature à l’ordre p).

Exemples.

1. La fonction polynomiale
P (x) = 3 + x3 − x5 + x6

admet un développement limité à tout ordre en 0 qui sont

P (x) = 3 + o(1) = 3 + o(x) = 3 + o(x2) = 3 + x3 + o(x3) = 3 + x3 + o(x4) = 3 + x3 − x5 + o(x5)

= 3 + x3 − x5 + x6 + o(x6) = 3 + x3 − x5 + x6 + o(xn)

pour tout n � 6.

2. Un polynôme de degré n admet un développement limité à tout ordre. En effet, il existe des
ak ∈ R tels que

P =

pX

k=0

ak(x− x0)
k =

pX

k=0

ak(x− x0)
k + o(x− x0)

p

pour tout p � n (avec ak = 0 si k > n) d’après la formule de Taylor en x0. Par troncature, on obtient
un développement limité à tout ordre.

3. Soit f la fonction définie sur ]− 1, 1[ par

f(x) = x− x2 + 2x3 + x3 ln(1 + x).
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On a vu qu’elle admet un développement limité à l’ordre 3 en 0 qui est

f(x) = x− x2 + 2x3 + o(x3).

Elle admet donc un développement limité à l’ordre 0,1 et 2 en 0 qui sont

f(x) = o(1) = x+ o(x) = x− x2 + o(x2).

Proposition 1.7 (Développement limité et équivalent)

Si f admet un développement limité à l’ordre n en x0

f(x) =
nX

k=p

ak(x− x0)
k + o(x− x0)

n

avec ap 6= 0 (p � n), alors on a f(x) ∼
x0

ap(x − x0)
p. De plus, le signe de f au voisinage de x0 est

donné par le signe de ap(x− x0)
p.

Méthode 1.8
On utilise les développements limités pour déterminer un équivalent quand les techniques usuelles
sur les équivalents ne fonctionnnent pas. C’est très fréquent pour le cas des sommes. Mais en général,
on utilise les développements limités en dernier ressort, et que dans le facteur qui pose problème.

Exemple.

Équivalent en 0 de
x(1 + cos(x)) − 2 tan(x)

sin(x2)(sin(x) + x2)
.

1.2 Développement limités à l’ordre 0 et 1

Proposition 1.9 (Développement limité à l’ordre 0 et limite/continuité)

1. La fonction f admet un développement limité à l’ordre 0 en x0 qui est f(x) =
x→x0

a0 + o(1) si et

seulement si f(x) −→
x→x0

a0.

2. Si f est définie en x0, elle admet un développement limité à l’ordre 0 en x0 f(x) = a0 + o(1) si et
seulement si elle est continue en x0 et f(x0) = a0.

Corollaire 1.10
Si f admet un développement limité en x0, alors f est soit continue en x0, soit prolongeable par
continuité en x0.

Remarque.
Cette proposition nous permet de ne considérer que des fonctions définies et continues en x0

(quitte à les prolonger par continuité). On aura donc Df = I dans toute la suite du chapitre.
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Proposition 1.11 (Développement limité à l’ordre 1 et dérivabilité)

La fonction f admet un DL1(x0) qui est f(x) = a0 + a1(x− x0) + o(x− x0) si et seulement si elle est
dérivable en x0, a0 = f(x0) et a1 = f ′(x0).

Proposition 1.12 (DL et continuité/déribabilité)

Si f admet un développement limité à l’ordre n � 1 en x0 qui est f(x) =
nX

k=0

ak(x−x0)
k+o(x−x0)

n,

alors f est continue et dérivable en x0, a0 = f(x0) et a1 = f ′(x0).

Remarques.

1. Cette proposition nous permet de ne considérer que des fonctions définies et continues en x0

(quitte à les prolonger par continuité). On aura donc Df = I dans toute la suite du chapitre, et le
premier terme a0 d’un développement limité en x0 est

a0 = f(x0),

et qu’en cas de DL1, le coefficient a1 devant x− x0 n’est autre que f ′(x0).
2. Attention, à partir de l’ordre 2, rien ne va plus. Par exemple, la fonction

x 7−→ x3 sin

�
1

x2

�

admet un développement limité à l’ordre 2 en 0 puisque

x3 sin

�
1

x2

�
= o(x2).

Mais pour x 6= 0, sa dérivée vaut

3x2 sin

�
1

x2

�
− 2 cos

�
1

x2

�
,

qui n’admet pas de limite en 0, donc n’est pas continue en 0, donc n’est pas dérivable en 0, i.e. f
n’est pas deux fois dérivable en 0.

2 Propriétés : somme, produit, parité

Proposition 2.1 (Parité)

Si f est paire (resp. impaire) et admet un développement limité en 0, sa partie régulière est paire
(resp. impaire).

Exemples.

1. On verra les cas de sinus, cosinus, tangente.
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2. La réciproque est fausse. Si f est la fonction définie sur R par f(x) = e−1/x2
si x > 0, et f(x) = 0

sinon, on a pour tout n ∈ N, f(x) = o(xn) au voisinage de 0.

Remarque.
Si f est une fonction paire, le développement limité de f en 0 à l’ordre 2n donne immédiatement
celui à l’ordre 2n+1, puisque le coefficient devant x2n+1 est nul. De même pour les fonctions impaires
et le passage de 2n− 1 à 2n.

Proposition 2.2 (Somme)

Soient f et g définies sur I admettant chacune un DLn(x0)

f(x) =
nX

k=0

ak(x− x0)
k + o(x− x0)

n et g(x) =
nX

k=0

bk(x− x0)
k + o(x− x0)

n.

La fonction f + g admet un développement limité à l’ordre n en x0 qui est

f(x) + g(x) =

nX

k=0

(ak + bk)(x− x0)
k + o(x− x0)

n.

Proposition 2.3 (Produit de DL)

Soient f et g définies sur I admettant chacune un DLn(x0)

f(x) =
nX

k=0

ak(x− x0)
k + o(x− x0)

n et g(x) =
nX

k=0

bk(x− x0)
k + o(x− x0)

n.

La fonction fg admet un DLn(x0) qui est

f(x)g(x) =
nX

k=0

 
kX

i=0

aibk−i

!
(x− x0)

k + o(x− x0)
n,

i.e. c’est le produit des parties régulières des développements limités de f et g tronqué à l’ordre n.

Proposition 2.4 (Puissance de DL)

Soit f définie sur I admettant un DLn(x0)

f(x) =
nX

k=0

ak(x− x0)
k + o(x− x0)

n.

Si s ∈ N∗, la fonction x 7−→ (f(x))s admet un DLn(x0) qui est
 

nX

k=0

ak(x− x0)
k

!s

+ o(x− x0)
n,

où on tronque la puissance s-ème de la partie régulière à l’ordre n.
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Remarques.

1. On tronque toujours un produit au fur et à mesure.
2. Notez bien que si f admet un développement limité d’ordre n et g un développement limité
d’ordre m, la somme n’admet qu’un développement limité d’ordre min(n,m), et on tronque toujours
les DL avant de faire la somme. Par exemple, la somme de 1+x−x2/3+6x3+ o(x3) et de x2+ o(x4)
donne un DL à l’ordre 3 seulement.

3. Pour le produit la situation est différente en utilisant la forme normalisée, cf. les exemples et la
méthode 2.5.

Exemples.

1. La fonction
x 7−→ ex + ln(1 + x)

admet un développement limité en 0 à l’ordre 3 qui est

(1 + x+
x2

2
+

x3

6
+ o(x3)) + (x− x2

2
+

x3

3
+ o(x3)) = 1 + 2x+

x3

2
+ o(x3).

2. La fonction
x 7−→ ex

1− x

admet un développement limité à l’ordre 3 en 0 qui est

(1 + x+
x2

2
+

x3

6
+ o(x3))(1 + x+ x2 + x3 + o(x3)) = 1 + 2x+

5

2
x2 +

8

3
x3 + o(x3).

3. La fonction

x 7−→ ln(1 + x)

1− x

admet un développement limité à l’ordre 3 en 0 qui est
�
x− x2

2
+

x3

3
+ o(x3)

�
1 + x+ x2 + o(x2)

�
= x

�
1− x

2
+

x2

3
+ o(x2)

�
1 + x+ x2 + o(x2)

�

= x

�
1 +

x

2
+

5

6
x2 + o(x2)

�
= x+

x2

2
+

5

6
x3 + o(x3).

4. La fonction
x 7−→ (ln(1 + x))2

admet un développement limité à l’ordre 4 en 0 qui est
�
x− x2

2
+

x3

3
+ o(x3)

�2

= x2

�
1− x

2
+

x2

3
+ o(x2)

�2

= x2

�
1− x+

11

12
x2 + o(x2)

�
= x2−x3+

11

12
x4+o(x

5. La fonction
x 7−→ (ln(1 + x))2


x− x2 + 2x3 + x3 ln(1 + x)

�

admet un développement limité à l’ordre 3 en 0 qui est

x2 + o(x2)

�
(x+ o(x)) = x3 (1 + o(1)) (1 + o(1)) = x3(1 + o(1)) = x3 + o(x3).
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Méthode 2.5 (Optimisation des calculs pour le produit)

On a vu dans les exemples précédents qu’il est plus efficace d’utiliser la forme normalisée des déve-
loppements limités. Regardons les trois cas suivants :

— Un produit du type

1+ · · ·+ o(x4)

�
3+ · · ·+ o(x3)

�
donne un développement limité à l’ordre

3 seulement. Par exemple (2− x+ x3 + 2x4 + o(x4))(−1 + x2 + x2 + o(x3))
— Un produit du type


x+ · · ·+ o(x4)

�
3+ · · ·+ o(x3)

�
donne un développement limité à l’ordre

4. Par exemple (−x+ x3 + 2x4 + o(x4))(−1 + x2 + x2 + o(x3)).
— Un produit du type


2x3 + · · ·+ o(x8)

�
− x4 + · · ·+ o(x10)

�
= x7


2 + · · ·+ o(x5)

�
− 1 + · · ·+ o(x6)

�

donne un développement limité à l’ordre 7+5=12 (plutôt que 8 en multipliant simplement).

Pour résumer, on met les développements limités sous forme normalisée, et on multiplie entre eux
les développements limités qui restent grâce à la proposition 2.3.

Remarque.
Cette méthode est particulièrement adaptée au développement limité de (f(x))s si la valuation de la
partie régulière est > 0.

3 Composée et quotients de développements limités

Proposition 3.1

Soient f et g deux fonctions admettant un DLn(0) (n ∈ N) et telles que g(0) = 0. Alors f ◦ g admet
un DLn(0) obtenu en composant les parties régulières des DLn(0) de f et g en tranquant à l’ordre n.

Exemples.

1. On considère la fonction f définie sur R par

f(x) = esin(x).

On cherche un développement limité à l’ordre 3 en 0 de f sachant que

sin(x) = x− x3

6
+ o(x3)

au voisinage de 0. Or, au voisinage de 0, on a

ey = 1 + y +
y2

2
+

y3

6
+ y3ε(y),

(ε nulle et continue en 0) donc

esin(x) = 1 + x− x3

6
+ o(x3) +

1

2

�
x− x3

6
+ o(x3)

�2

+
1

6

�
x− x3

6
+ o(x3)

�3

+ (sin(x))3ε(sin(x))

= 1 + x− x3

6
+ o(x3) +

1

2

�
x− x3

6
+ o(x3)

�2

+
1

6

�
x− x3

6
+ o(x3)

�3

+ o(x3)
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puisqu’au voisinage de 0
(sin(x))3ε(sin(x)) ∼ x3ε(sin(x)) = o(x3),

donc

esin(x) = 1 + x− x3

6
+ o(x3) +

1

2

�
x− x3

6
+ o(x3)

�2

+
1

6

�
x− x3

6
+ o(x3)

�3

+ o(x3)

= 1 + x− x3

6
+

1

2
(x)2 +

1

6
(x)3 + o(x3) = 1 + x+

x2

2
+ o(x3).

2. On cherche un développement limité à l’ordre 4 en 0 de la fonction g définie par

g(x) = ln

�
sin(x)

x

�
,

sachant que

sin(x) = x− x3

6

+
x5

120
+ o(x5).

On a au voisinage de 0
sin(x)

x
= 1− x2

6
+

x4

120
+ o(x4)

et de même

ln(1 + y) = y − y2

2
+ y2ε(y)

(où ε est nulle et continue en 0). On a donc

g(x) = ln

�
1− x2

6
+

x4

120
+ o(x4)

�

=

�
−x2

6
+

x4

120
+ o(x4)

�
− 1

2

�
−x2

6
+

x4

120
+ o(x4)

�2

+

�
−x2

6
+

x4

120
+ o(x4)

�2

ε

�
−x2

6
+

x4

120
+ o(x

Or,

�
−x2

6
+

x4

120
+ o(x4)

�2

ε

�
−x2

6
+

x4

120
+ o(x4)

�
∼ x4ε

�
−x2

6
+

x4

120
+ o(x4)

�
= o(x4),

donc

g(x) =

�
−x2

6
+

x4

120
+ o(x4)

�
− 1

2

�
−x2

6
+

x4

120
+ o(x4)

�2

+ o(x4)

=

�
−x2

6
+

x4

120

�
− 1

2

�
−x2

6

�2

+ o(x4)

= −x2

6
− x4

180
+ o(x4).
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Proposition 3.2 (Cas particulier de composition)

Si f(0) = 0 et f admet un développement limité à l’ordre n en 0

nX

k=1

akx
k + o(xn),

la fonction
x 7−→ 1

1− f(x)

admet un développement limité à l’ordre n en 0 qui est

1

1− f(x)
= 1 +

nX

j=1

 
nX

k=1

akx
k

!j

+ o(xn)

= 1 +

 
nX

k=1

akx
k

!
+

 
nX

k=1

akx
k

!2

+ · · ·+
 

nX

k=1

akx
k

!n

+ o(xn)

= 1 +
nX

j=1

 
n−j+1X

k=1

akx
k

!j

+ o(xn)

= 1 + (a1x+ · · ·+ anx
n) +


a1x+ · · ·+ an−1x

n−1
�2

+ · · ·+

a1x+ a2x

2
�n−1

+ (a1x)
n + o(xn),

où les puissances de x sont tronquées à l’ordre n.

Exemples.

1. Soit f la fonction définie par

f(x) = x− x2 + 2x3 + x3 ln(1 + x).

On a bien f(0) = 0 et
f(x) = x− x2 + 2x3 + o(x3),

donc

1

1− f(x)
= 1 + (x− x2 + 2x3) + (x− x2)2 + (x)3 + o(x3) = 1 + (x− x2 + 2x3)+

(x2 − 2x3) + x3 + o(x3) = 1 + x+ x3 + o(x3)

où on a développé chaque produit en tronquant au fur et à mesure à l’ordre 3.

2. On a

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ o(x4)

(cf. la formule de Taylor-Young au théorème 4.3), donc

1

1− ln(1 + x)
= 1 +

�
x− x2

2
+

x3

3
− x4

4

�
+

�
x− x2

2
+

x3

3

�2

+

�
x− x2

2

�3

+ (x)4 + o(x4)

= 1 +

�
x− x2

2
+

x3

3
− x4

4

�
+

�
x2 − x3 +

�
2

3
+

1

4

�
x4

�
+

�
x3 − 3

2
x4

�
+ o(x4)

= 1 + x+
1

2
x2 +

1

3
x3 +

1

6
x4 + o(x4).
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Remarques.

1. Il ne faut jamais faire les calculs complètement, mais bien penser à tronquer à l’ordre n au fur et
à mesure.

2. On peut remplacer dans l’énoncé la phrase "Si f(0) = 0 et f admet un développement limité à
l’ordre n en 0" par "Si f(x0) = 0 et f admet un développement limité à l’ordre n en x0" et alors au
voisinage de x0 on a

1

1− f(x)
= 1 +

nX

j=1

 
nX

k=1

ak(x− x0)
k

!j

+ o(x− x0)
n.

Méthode 3.3 (Quotient)

Si f admet un développement limité à l’ordre n en 0 et si f(0) 6= 0, alors 1/f admet un développement
limité à l’ordre n en 0 qui est obtenu à l’aide du calcul

1

f(x)
=

1

f(0)

1
f(x)
f(0)

=
1

f(0)

1

1−
�
1− f(x)

f(0)

� .

En posant h(x) = 1− f(x)
f(0)

, on a h(0) = 0, et on est ramené à la proposition 3.2.

Par produit, si un fonction g admet un développement limité à l’ordre n en 0, la fonction g/f
également.

Exemple.
La fonction

x 7−→ ex + 1

vaut 2 en 0. Or, pour x ∈ R,
1

ex + 1
=

1

2

1

1−

1− ex+1

2

�

et

1− ex + 1

2
= −

�
x

2
+

x2

4
+

x3

12
+

x4

48
+

x5

240

�
+ o(x5),

et donc

1

ex + 1
=

1

2

 
1−

�
x

2
+

x2

4
+

x3

12
+

x4

48
+

x5

240

�
+

�
x

2
+

x2

4
+

x3

12
+

x4

48

�2

−
�
x

2
+

x2

4
+

x3

12

�3

+

�
x

2
+

x2

4

�4

−
�x
2

�5
!

+ o(x5)

=
1

2

�
1−

�
x

2
+

x2

4
+

x3

12
+

x4

48
+

x5

240

�
+

�
x2

4
+

x3

4
+

7

48
x4 +

x5

16

�

−
�
x3

8
+

3

16
x4 +

5

32
x5

�
+

�
x4

16
+

x5

8

�
−

�
x5

32

��
+ o(x5)

=
1

2
− x

4
+

x3

48
− x5

480
+ o(x5).
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4 Intégration des DL et formule de Taylor-Young

4.1 Intégration d’un développement limité

Théorème 4.1
Si f est continue sur I et admet un développement limité à l’ordre n en x0

f(x) =

nX

k=0

ak(x− x0)
k + o(x− x0)

n,

toute primitive F de f admet un développement limité limité à l’ordre n + 1 en x0

F (x) = F (x0) +
nX

k=0

ak
(x− x0)

k+1

k + 1
+ o(x− x0)

n+1

obtenu par intégration de la partie régulière du développement limité de f .

Remarque.
Attention, la réciproque est fausse. Si une fonction f est dérivable et admet un développement limité
à l’ordre n+1 en x0, sa dérivée n’admet pas nécessairement de développement limité . Par exemple,
la fonction

x 7−→ x3 sin

�
1

x2

�

admet un développement limité à l’ordre 2 en 0 puisque

x3 sin

�
1

x2

�
= o(x2).

Cette fonction est dérivable sur R∗ évidemment, mais également en 0 puisque le taux d’accroissement
en 0 vaut x2 sin(1/x2) qui tend vers 0. Or, pour x 6= 0, sa dérivée vaut

3x2 sin

�
1

x2

�
− 2 cos

�
1

x2

�
,

qui n’est pas continue en 0, donc f ′ n’admet même pas de développement limité à l’odre 0 (proposition
1.9).

Méthode 4.2
Si f est une fonction de classe C1 dont la dérivée f ′ admet un développement limité d’ordre n en x0,
par intégration, f en admet un à l’ordre n + 1 en x0.

Exemple.

Puisque
1

1 + x
= 1− x+ x2 + · · ·+ (−1)nxn + o(xn), on a

ln(1 + x) = x− x2

2
+ · · ·+ (−1)n

xn+1

n + 1
+ o(xn+1).
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4.2 Formule de Taylor-Young

Théorème 4.3 (Formule de Taylor-Young)

Soient n ∈ N∗ et f une fonction de n-fois dérivable sur un intervalle I et x0 ∈ I. Alors f admet un
développement limité à l’ordre n en x0 qui est

f(x) =
nX

k=0

f (k)(x0)

k!
(x− x0)

k + o(x− x0)
n.

Remarque.
Cette proposition est peu utilisée en pratique. On s’en sert pour déterminer les développements
limités des fonctions usuelles, puis on utilise plutôt les résultats sur les sommes, produits, quotients
et composées de développements limités pour les calculs effectifs, cf. les exercices.

4.3 Développements limités des fonctions usuelles

Voici les développements limités usuels qu’il faut connaître ou savoir retrouver. On les obtient à
l’aide de la proposition 4.1 ou du théorème 4.3. Ils sont tous en 0. Ils sont classés par "origine". Ceux
à connaître sans réfléchir sont signalés par une étoile ⋆.
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