Chapitre 20

Développements limités

On considére dans ce chapitre un entier n € N, un intervalle I, x( € I et une fonction f a valeurs
réelles définie sur I sauf peut-étre en zp € I. On note Dy son domaine de définition.

Remarques.

1. Rappel : k >n, on a (z — x0)* = o(x — x0)".
2. Au voisinage de 0, 2™ est négligeable devant 2™ si et seulement si n > m, et que

o(x") 4+ o(x™) = o(z™™™™))  g" x o(2™) = o(a"™), o(z") x o(z™) = o(x"t™).

En résumé, on garde "le plus petit des petits o".

1 Deéfinitions, premiéres propriétés

1.1 Développement limité en z,

| Définition 1.1 |
1. La fonction f admet un développement limité & 'ordre n en 0 (noté DL, (0)) s’il existe des réels
ag, . . ., a, tels que

n

Vx € Dy, f(x):Zaixi+ o (z").

z—0
=0

2. La fonction f admet un développement limité a l'ordre n en xy (noté DL,(xy)) s’il existe des
réels ao, . .., a, tels que

n

Vx € Dy, f(x):Zai(x—xo)i+ o (x—xo)".

T—I0
=0

Remarques.
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1. L’existence d'un DL,(0) est équivalente a 'existence de ay, ..., a, € R tels que
n
flx) — Z apx”
e(z) = A0 — 0,
x" z—0

2. On omettra l'indice zy en-dessous de o(x — xg)" pour alléger les notations. Il n’y a de tout fagon
pas d’ambiguité & partir du moment ou on a précisé "développement limité en zy".
3. On rappelle que o(x — xy)" est une notatition qui signifie que

o(x — xp)" = (x — x0)"e(2)

ou ¢ est une fonction tendant vers 0 en zy (donc continue en zg si zg € Dy avec e(zo) = 0) . 1l faut
toujours revenir a cette écriture dés que la moindre difficulté se présente. Il est vivement conseillé de
refaire les démonstrations avec cette écriture.
4. On rappelle que (z — x)"o(x — x9)™ = o(x — x¢)
5. Rapellons également que 'écriture f(z) = o(1) signifie f(z) — 0.
0

T—TQ

n+m

Exemples.

1. Un polynoéme de degré n admet un développement limité a 'ordre n en tout point : c’est une
conséquence de la formule de Taylor (ici, o(z — )" = 0!!).

2. Soit f la fonction définie sur | — 1, 1] par
flx) =2 —2* +22° + 2° In(1 + 2).
Elle admet un développement limité & I'ordre 3 en 0 puisque

lim In(1+2) =0 donc z°In(1 + ) = o(a?).

z—0

3. La fonction

x —
1—=x
définie sur | — 1, 1] admet un développement limité a tout ordre en 0. En effet, si x # 0, on a pour
tout entier n
1 _ 1 — xn—i—l

n+1 n
e 1. +1I_x:kz_;xk+o(x") car lim —

4. On démontrera plus tard les développements limités en 0 a tout ordre n € N :

n

N n $k . - .Z’k .
" = ZH +o(a"),  In(l+z) =) (1) 1? + o(z").
k=0 k=1
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Proposition 1.2 (Unicité d’un développement limité )

Si f admet un développement limité a l'ordre n en x(, celui-ci est unique, i.e. s’il existe des réels
ag, - - -, Ay, bo, ..., b, tels que pour tout x € I, on ait

n

flx) = Z ar(r — )" + o(x — o)™ = Z bi(x — 20)" + o(z — x)",

k=0 k=0
alors ay = by, pour tout k =0,...,n.
Remarque.
En particulier, on a
n
Zak(:p—mo)k—l—o(x—xo)" =o(x —x))" <= aq=---=a,=0.

k=0

Définition 1.3 (Partie réguliére)

Si f admet un développement limité & 'ordre n en xq

n

Ve Dy, f(x) 23w Z a;(x — x0)" + oz — )",
i=0

n
le polynome Z ar(X — 0¥ est la partie réguliere du développement limité .
k=0

Proposition 1.4 (Changement de variable)

Soit g la fonction définie sur {h € R | h 4+ xg € Dy} par g(h) = f(h+ o). Alors f admet un DL, (zo)
si et seulement si g admet un DL, (0), et de plus, on a

n n

vV heD, g(h) = Z a;h' +o(h") <= Yz €Dy, f(z) = Zai(x —x0)" + o(x — )"
=0 i=0

Remarque.
C’est pourquoi les énoncés concernant les développements limités sont souvent donnés uniquement
en 0. Un simple changement de variable donne le résultat partout.

Définition 1.5 (Forme normalisée)

Soit f une fonction admettant un développement limité a 'ordre n en zg

n

f(z) = Z ai(x — x0)" + oz — )",

=0
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de partie réguliére non nulle. Soit p le plus petit entier tel que a, # 0. La forme normalisée du
développement limité est

169 = o (e 7 ol 2

i=p

- (.CIZ' B xO)P (ap + Gerl(.%' - .1'0) +teet an<x - xo)nip + O(ZL' — l’o)nip) .

Le cas particulier x¢ = 0 s’écrit

f(z) =2 (Z a;z P + 0($"‘p)> = aP (ap + app1T 4 a4 o(x”_p)).

i=p

Proposition 1.6 (Troncature)

Si f admet un développement limité a 'ordre n en xq
n
fl@) = arle —o)* + oz — z0)",
k=0

elle en admet un a tout ordre p < n qui est
p
f(x) = Z ar(r — x0)" 4+ o(x — )"
k=0

(obtenu par troncature a 'ordre p).

Exemples.

1. La fonction polynomiale
P(x) =3+ 2" — 2° + af

admet un développement limité & tout ordre en 0 qui sont
P(x)=3+0(1)=3+o0(x) =3 +o0(2*) =3+ 2° +0(2®) =3 +2° + o(z*) =3 + 2% — 2° + o(z”)
=3+2° -2+ 2%+ 02 =3 +2° —2° + 2% + o(a™)
pour tout n > 6.

2. Un polynéme de degré n admet un développement limité a tout ordre. En effet, il existe des
a, € R tels que

P =2 ayz—w)" =) axle—w)*" + ol —xo)”

k=0

pour tout p > n (avec ar, = 0 si k > n) d’aprés la formule de Taylor en xy. Par troncature, on obtient
un développement limité a tout ordre.

3. Soit f la fonction définie sur | — 1, 1] par

flx)=2—2* +22° + 2*In(1 + 2).
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On a vu qu’elle admet un développement limité a l'ordre 3 en 0 qui est
f(z) =2 — 2* +22° + o(z?).
Elle admet donc un développement limité a ’ordre 0,1 et 2 en 0 qui sont

f(z) =0(1) =z +o(z) = x — 2> + o(2?).

Proposition 1.7 (Développement limité et équivalent)

Si f admet un développement limité & 'ordre n en xq

n

flx) = Z a(r — xo)k + o(x — zp)"

k=p

avec a, # 0 (p < n), alors on a f(z) ~ a,(z — zo)P. De plus, le signe de f au voisinage de x( est
xo

donné par le signe de a,(x — zo)P.

| Méthode 1.8]
On utilise les développements limités pour déterminer un équivalent quand les techniques usuelles
sur les équivalents ne fonctionnnent pas. C’est tres fréquent pour le cas des sommes. Mais en général,
on utilise les développements limités en dernier ressort, et que dans le facteur qui pose probléme.

Exemple.
z(1 + cos(z)) — 2 tan(x)
sin(z?)(sin(x) + x2)

Equivalent en 0 de

1.2 Développement limités & ’ordre 0 et 1

Proposition 1.9 (Développement limité a I’ordre 0 et limite/continuité)

1. La fonction f admet un développement limité & 'ordre 0 en xo qui est f(x) = ag+ o(1l) si et
T—xT0

seulement si f(x) — ay.
T—xQ

2. Si f est définie en x, elle admet un développement limité a 'ordre 0 en z¢ f(z) = ag+o(1) si et
seulement si elle est continue en xg et f(zg) = ao.

‘ Corollaire 1.10 ‘

Si f admet un développement limité en x(, alors f est soit continue en z(, soit prolongeable par
continuité en x.

Remarque.
Cette proposition nous permet de ne considérer que des fonctions définies et continues en z
(quitte & les prolonger par continuité). On aura donc Dy = I dans toute la suite du chapitre.
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Proposition 1.11 (Développement limité a I’ordre 1 et dérivabilité)

La fonction f admet un DL;(zo) qui est f(x) = ag+ a1(z — o) + o(x — x¢) si et seulement si elle est
dérivable en xg, ag = f(zo) et a1 = f'(zo).

Proposition 1.12 (DL et continuité/déribabilité)

Si f admet un développement limité & l'ordre n > 1 en xg qui est f(z) = Z ap(x —20)F + oz —x0)",

alors f est continue et dérivable en xg, ag = f(zo) et a3 = f'(z0).

Remarques.

1. Cette proposition nous permet de ne considérer que des fonctions définies et continues en z
(quitte & les prolonger par continuité). On aura donc D; = I dans toute la suite du chapitre, et le
premier terme ag d’'un développement limité en xq est

Qg = f(x(])a

et qu’en cas de DLy, le coefficient a; devant z — xo n’est autre que f'(zo).
2. Attention, a partir de l'ordre 2, rien ne va plus. Par exemple, la fonction

3 | ( 1 )
T—— T s | —
xr2

admet un développement limité a I'ordre 2 en 0 puisque

Mais pour = # 0, sa dérivée vaut

1 1
2 .
3x~ sin (;) — 2cos (;) ,

qui n’admet pas de limite en 0, donc n’est pas continue en 0, donc n’est pas dérivable en 0, i.e. f
n’est pas deux fois dérivable en 0.

2 Propriétés : somme, produit, parité

Proposition 2.1 (Parité)

Si f est paire (resp. impaire) et admet un développement limité en 0, sa partie réguliére est paire
(resp. impaire).

Exemples.

1. On verra les cas de sinus, cosinus, tangente.
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2. La réciproque est fausse. Si f est la fonction définie sur R par f(z) = e V" siz > 0, et f(x) =0
sinon, on a pour tout n € N, f(z) = o(z") au voisinage de 0.

Remarque.
Si f est une fonction paire, le développement limité de f en 0 a 'ordre 2n donne immédiatement

celui & l'ordre 2n+ 1, puisque le coefficient devant 22"*! est nul. De méme pour les fonctions impaires
et le passage de 2n — 1 a 2n.

Proposition 2.2 (Somme)

Soient f et g définies sur I admettant chacune un DL, ()

n n

f(z) = Z ap(r — 20)F +o(x —z)" et g(x) = Z bi(x — o) + oz — zo)".

k=0 k=0

La fonction f + g admet un développement limité a 'ordre n en xy qui est

n

f(z)+g(x) = Z(&k + b)) (2 — 20)* + o(x — )"

k=0

Proposition 2.3 (Produit de DL)

Soient f et g définies sur I admettant chacune un DL, ()

n

f(z) = Z ap(r — 20)* +o(x — 20)" et g(x) = Z (7 — 20)" + oz — )"

k=0 k=0
La fonction fg admet un DL, (zo) qui est
n k
f(z)g(z) = Z (Z aibk—z’) (z — 20)" + o(x — x0)",
k=0 \i=0

i.e. c’est le produit des parties réguliéres des développements limités de f et g tronqué a l'ordre n.

Proposition 2.4 (Puissance de DL)
Soit f définie sur / admettant un DL,,(zo)

n

f(z) = Z ap(r — 20)* + oz — zo)"™.

k=0

Si s € N*, la fonction x — (f(x))® admet un DL, (z¢) qui est

(Z ag(x — xo)k> + o(x — )",

ou on tronque la puissance s-éme de la partie réguliére a l'ordre n.
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Remarques.

1. On tronque toujours un produit au fur et & mesure.

2. Notez bien que si f admet un développement limité d’ordre n et g un développement limité
d’ordre m, la somme n’admet qu’un développement limité d’ordre min(n,m), et on tronque toujours
les DL avant de faire la somme. Par exemple, la somme de 1+ —2%/3+ 623+ o(2?) et de 22 + o(z*)
donne un DL & l'ordre 3 seulement.

3. Pour le produit la situation est différente en utilisant la forme normalisée, cf. les exemples et la
méthode 2.5.

Exemples.

1. La fonction
xr—>em+ln(1+x)

admet un développement limité en 0 & l'ordre 3 qui est

2 1'3 2 .1’3 3

x x x
(14+z+ "+ +o@®) +(r— =+ % +o0(z*) = 1422+ = + o(z?).
2 6 2 3 2
2. La fonction .
T —— €
11—z

admet un développement limité & l'ordre 3 en 0 qui est

2 3 5 8
(14+z+ 5 + %+0(x3))(1+x+x2+x3+0(x3)) = 1+2x+§x2—|—§x3+0(x3).
3. La fonction
In(1+ )
11—z

admet un développement limité & l'ordre 3 en 0 qui est

2

(x—§+€§+dﬁ0(L+mﬂ#+dﬁnzx<1—g+%ﬁﬂwa)@+x+ﬁ+ﬁ@%)

D 2 5
x <1+g+6x2+0(x2)) :x+% + 6x3+0(x3).

4. La fonction
z — (In(1 4 z))”

admet un développement limité & l'ordre 4 en 0 qui est

ﬁ+£+(%2 21I+I—2+(2)2 21 +EQ+(% 2 %E%M
xr — o\xr = — = o\xr = — X o\xr = Tr —X xr o\x
2 '3 2 "3 12 12

5. La fonction
z — (In(1 + z))° (x—2*+22° + 2’ In(1 + 2))
admet un développement limité & I'ordre 3 en 0 qui est

(2”7 + o(2?)) (x4 o(z)) = 2° (1 + o(1)) (1 + o(1)) = 2*(1 + o(1)) = 2° + o(z?).
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Méthode 2.5 (Optimisation des calculs pour le produit)

On a vu dans les exemples précédents qu’il est plus efficace d’utiliser la forme normalisée des déve-
loppements limités. Regardons les trois cas suivants :
— Un produit du type (1 + 4 0(m4)) (3 +F 0(x3)) donne un développement limité a I'ordre
3 seulement. Par exemple (2 — z + 2% + 22 + o(z?)) (=1 + 22 + 2 + o(2?))
— Un produit du type (z+---+o0(z*)) (34 -+ 0(z*)) donne un développement limité a I'ordre
4. Par exemple (—x + 2 + 221 + o(2)) (=1 + 2% + 2% + o(x?)).
— Un produit du type

(2m3+-~-—|—0(m8))(—m4+---+0(x10)) = 7(2+---+0(x5))(—1—|—---—|—0(x6))
donne un développement limité & 'ordre 7+5=12 (plutdt que 8 en multipliant simplement).

Pour résumer, on met les développements limités sous forme normalisée, et on multiplie entre eux
les développements limités qui restent grace a la proposition 2.3.

Remarque.
Cette méthode est particulierement adaptée au développement limité de (f(x))*® si la valuation de la
partie réguliére est > 0.

3 Composée et quotients de développements limités

‘ Proposition 3.1 |

Soient f et g deux fonctions admettant un DL, (0) (n € N) et telles que ¢g(0) = 0. Alors f o g admet
un DL, (0) obtenu en composant les parties réguliéres des DL,,(0) de f et g en tranquant a I'ordre n.

Exemples.

1. On considére la fonction f définie sur R par
f(.fE) _ esin(a:)'

On cherche un développement limité a l'ordre 3 en 0 de f sachant que

3 .
sin(z) = — - + o(z?)
au voisinage de 0. Or, au voisinage de 0, on a
2 3
e =14yt T+ T yie(y),

(¢ nulle et continue en 0) donc

@ =1 41— ‘%3 + o(x®) + % (x - g + o(;v?’))2 - é (x - %3 + o(x3))3 + (sin(z))3e(sin(z))
= 1+x—%3+0(x3)+% (x—%3+0(x3)>2+é (x—%g+0(x3))3+0(x3)
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puisqu’au voisinage de 0

donc

e =141 — % +o(2”) +

T
=l4+z——+=(x)

sachant que

On a au voisinage de 0

et de méme

2zt
—In(1-" 42—
9(@) n( 6 120
_ (. + v +
N 6 120
Or,

donc

3

3

6

(sin(z))e(sin(x)) ~ 2’ (sin(z)) = o(z?),
% (x 5 + o(xg)) + é (x - % + 0(x3)) + o(z%)
; 2+%(2€)3+0(m3) = 1+x+%+0(9€3)

On cherche un développement limité a 'ordre 4 en 0 de la fonction g définie par

sin(z)
=1
g(x) =1In ( - ) :
3t .5
sin(x) =z — % 1x70 + o(z”)
sin(z) 2 at A
c 1T Tz o)
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Proposition 3.2 (Cas particulier de composition)

Si f(0) =0 et f admet un développement limité a 'ordre n en 0

n

Z arz® + o(z™),

k=1

la fonction .

1- f(z)

admet un développement limité & l'ordre n en 0 qui est

S (S o

T —

j=1 \k=1
n n 2 n n
=1+ (Z akxk> + (Z akxk> +e (Z akxk> + o(z™)
k=1 k=1 k=1
nfn—j+l J
=1+ Z ( Z akxk> + o(x™)
j=1 \ k=1

=1+ (alaj + oo+ (lnl'n) + (alx + 4 an_ll‘n_l)Q + o+ (a/lx + a2x2)n_l + (alx)n + O(xn),

ou les puissances de x sont tronquées a 'ordre n.

Exemples.
1. Soit f la fonction définie par
f(x) =2 —2°+22° + 2° In(1 + z).
On a bien f(0) =0 et
flx) =2 — 2 +22° + o(2%),
donc

1

1_—f($):1~|—(x—3: +22°) + (x —2°)* + ()" + o(z”) = 1 + (x — z° + 22°)+

(% —22%) +2° + o(z®) = 1 + 2 + 2° + o(z?)
ou on a développé chaque produit en tronquant au fur et & mesure a 'ordre 3.

2. Ona ) . .
¥ oz
ml+z)=2— - +2 % 4 ozt
n(l4+z)==x 5371 o(z")

(cf. la formule de Taylor-Young au théoréme 4.3), donc

lhlex)lJr(xg;:Jrz ) <x % %) ( %)3+(:c)4+o(x4)
:1+(x—%+% ) <x (g—l—i) ) <x3—gm4>+o(x4)

1 1
—1+x+2x —|—3x + x +ox
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Remarques.

1. Il ne faut jamais faire les calculs complétement, mais bien penser a tronquer a ’ordre n au fur et
a mesure.

2. On peut remplacer dans ’énoncé la phrase "Si f(0) = 0 et f admet un développement limité a
l'ordre n en 0" par "Si f(z9) = 0 et f admet un développement limité a 'ordre n en xy" et alors au
voisinage de x( on a

1 n
W

j=1 \k=1

(Z ap(z — xo)k> + o(x — o)™

Méthode 3.3 (Quotient)

Si f admet un développement limité a ’'ordre n en 0 et si f(0) # 0, alors 1/ f admet un développement
limité & 'ordre n en 0 qui est obtenu a ’aide du calcul

1 1 1 1 1

T TO T 0 - (- £a)

[

En posant h(z) =1 — %, on a h(0) =0, et on est ramené a la proposition 3.2.

Par produit, si un fonction g admet un développement limité a 'ordre n en 0, la fonction g/ f
également.

Exemple.
La fonction
z— e +1

vaut 2 en 0. Or, pour = € R,

1 1
er+1 21— (1- <)
et )
Lt x+x2+x3+x4+x5 + o)
- =—|(+=>=+=4+—+-—]+o(x
2 2 4 12 48 240 ’
et donc

1 _1 1 x+x2+x3+x4+x5 n x+x2+x3+x4 2
er+1 2 2 4 12 48 240 2 4 12 48

T SN S O
24 T2 T a8 T 240
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4 Intégration des DL et formule de Taylor-Young

4.1 Intégration d’un développement limité

’Théoréme 4.1 ‘
Si f est continue sur I et admet un développement limité & l'ordre n en xq

n

f@) =3 anlw —20)! + oz — a0)"

k=0

toute primitive F' de f admet un développement limité limité a ’ordre n 4+ 1 en x
——— + o(x — )"

obtenu par intégration de la partie réguliére du développement limité de f.

Remarque.
Attention, la réciproque est fausse. Si une fonction f est dérivable et admet un développement limité
a l'ordre n+ 1 en xg, sa dérivée n’admet pas nécessairement de développement limité . Par exemple,

la fonction
1
x —> 22 sin ( )
22

admet un développement limité a I'ordre 2 en 0 puisque

Cette fonction est dérivable sur R* évidemment, mais également en 0 puisque le taux d’accroissement
en 0 vaut x?sin(1/2?) qui tend vers 0. Or, pour x # 0, sa dérivée vaut

1 1
322 sin <x2) — 2cos (;) ,

qui n’est pas continue en 0, donc f’ n’admet méme pas de développement limité & I’odre 0 (proposition
1.9).

| Méthode 4.2 ]

Si f est une fonction de classe C'! dont la dérivée f’ admet un développement limité d’ordre n en x,
par intégration, f en admet un a l'ordre n + 1 en xy.

Exemple.
1
Puisque 7—— =1~z -+’ + -+ (~1)'s" + o(a"), on
x
2 n+1
In(1+ x) _x—%+...+(_1)n7f+1 + (a1
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4.2 Formule de Taylor-Young

Théoréme 4.3 (Formule de Taylor-Young)

Soient n € N* et f une fonction de n-fois dérivable sur un intervalle I et xy € I. Alors f admet un
développement limité a I'ordre n en xy qui est

n (k) Zo N .
fz) = Z fT(')(x — x9)" + o(x — xo)".
k=0

Remarque.
Cette proposition est peu utilisée en pratique. On s’en sert pour déterminer les développements
limités des fonctions usuelles, puis on utilise plutot les résultats sur les sommes, produits, quotients
et composées de développements limités pour les calculs effectifs, cf. les exercices.

4.3 Développements limités des fonctions usuelles

Voici les développements limités usuels qu’il faut connaitre ou savoir retrouver. On les obtient &
I’aide de la proposition 4.1 ou du théoréme 4.3. Ils sont tous en 0. Ils sont classés par "origine". Ceux
a connaitre sans réfléchir sont signalés par une étoile *.
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