
5.4 Equations de Maxwell-Exercice 2 

 

__________________________________________________________________________________________ 

Les armatures d’un condensateur plan, constituées de deux disques conducteurs de rayon a, de surface S, de 

même axe Oz et séparés  d’une distance e sont reliées à un générateur de f.e.m V0 par une  résistance R.   

Initialement le condensateur est déchargé. A un instant quelconque où  la tension à ses bornes vaut V(t), ses 

armatures portent respectivement les charges q(t) = CV(t) et -q(t) où C = ε0 S/e est la capacité du  condensateur. 

On néglige les effets de bords. 

 En coordonnées cylindriques, le champ électromagnétique dans le condensateur est en  première 

 approximation de la forme : 
r r
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r r
E = 0 à l’extérieur du condensateur. 

 

a-Déterminer V(t) et l’énergie Uc du condensateur dans l’état final. 

 

b-A un instant quelconque, déterminer E(t) et B(r,t). 

 

c-En déduire la puissance électromagnétique P reçue par l’intérieur du condensateur, puis l’énergie       

  électromagnétique Uem emmagasinée par le condensateur au cours de sa charge. Conclure. 

 

d-Retrouver Uem à l’aide de la densité volumique d’énergie électromagnétique. 

 

__________________________________________________________________________________________ 
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a-Loi des mailles : Ri)t(VV0 += avec 
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 Pour t >> τ : V(t) = V0 

 L’énergie emmagasinée est alors : 
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b-Théorème de Gauss pour le cylindre de section S entourant 

l’armature de charge q :  
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    (le flux à travers le couvercle inférieur est nul car le champ 

électrique est nul à l’extérieur) 
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est orthoradial   =>  on applique le théorème d’Ampère généralisé sur le cercle (C) de rayon r 
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       (i = 0 dans le volume vide intérieur au condensateur) 
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 Dans l’état final 
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