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Centrale PSI 2021 Physique-Chimie 2 Conception technique d’une éolienne 

I. Enjeux énergétiques 

 

 

 

 

 

 

 

 

 

 

 

 

Q1 Soit 𝑁𝑒 le nombre de véhicules électriques supplémentaires qu’il y aurait si tous les véhicules thermiques 

étaient remplacés. D’après le doc.1, 𝑁𝑒 = 12,7.10
6 + 19,8.106 = 32,5.106. 

Le doc. 4 donne la puissance électrique ℘𝑒 consommée en fonction du temps dans une journée pour 

recharger 𝑁0 = 10
6 véhicules électriques. Donc pour 1 journée moyenne (durée 𝑡𝑗 = 24h), l’énergie 

correspondant à la recharge est, pour 1 véhicule : ℇ1,1 =
1

𝑁0
∫ ℘𝑒
𝑡𝑗
0

 𝑑𝑡. 

Et pour une durée d’un an (𝑛𝑗 = 365) , avec 𝑡𝑎𝑛 = 𝑛𝑗 × 𝑡𝑗 , ℇ𝑎𝑛,1 =
1

𝑁0
∫ ℘𝑒
𝑡𝑎𝑛
0

 𝑑𝑡 =
𝑛𝑗

𝑁0
∫ ℘𝑒
𝑡𝑗
0

 𝑑𝑡.  

Donc pour les 𝑵𝒆 véhicules électriques supplémentaires, l’énergie annuelle nécessaire est  

ℇ𝑎𝑛,𝑁𝑒 = 𝑁𝑒
𝑛𝑗

𝑁0
∫ ℘𝑒
𝑡𝑗
0

 𝑑𝑡 = 𝑁𝑒𝑛𝑗ℇ1,1 . 

Il reste à évaluer l’intégrale ∫ ℘𝑒
𝑡𝑗
0

 𝑑𝑡, c’est-à-dire l’aire sous la courbe du document 3. Et comme il y a 3 

courbes, il faut raisonner sur une sorte de courbe moyenne. 

 

La droite rouge ci-dessus, passant par l’origine, semble donner une tendance moyenne raisonnable, c’est-à-

dire que l’aire sous la droite rouge semble assez proche de l’aire sous la courbe grise moyenne. Et comme la 

surface d’un triangle rectangle est la moitié de la surface du rectangle, on obtient  

∫ ℘𝑒
𝑡𝑗
0

 𝑑𝑡 ≃ 300 × 24 = 7,2.103MWh.  

Il vient ℇ𝑎𝑛,𝑁𝑒 = 𝑁𝑒
𝑛𝑗

𝑁0
∫ ℘𝑒
𝑡𝑗
0

 𝑑𝑡 = 32,5 × 365 × 7,2.103MWh≃ 85 TWh .  

 

La production électrique annuelle totale utile (pertes déduites) étant de l’ordre de 525 TWh, il faudrait 

donc l’augmenter de 16%.  

Cela nécessiterait certainement de nouveaux équipements. 

Q2 La puissance crête est évaluée à l’aide du pic le plus élevé 𝒫max,N0 = 860 MW  de la courbe « scénario 

Forte » du document 3, qui concerne 𝑁0 = 1 million de véhicules électriques.  

Donc pour 𝑁𝑒 =32,5 millions de véhicule, on obtient : 

𝒫max,Ne =
𝑁𝑒

𝑁0
𝒫max,N0 = 860. 10

6 × 32,5 ≈ 28 GW . 
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 Soit 𝑆 la surface du parc éolien recherchée. Puisqu’il n’existe pas encore, on peut imaginer le créer avec des 

éoliennes modernes et performantes : Future Offshore du doc. 5, pour lequel la puissance nominale est  

𝒫N = 20 MW. 

Le nombre 𝑁𝑒𝑜𝑙 de ces éoliennes qui serait nécessaire est donné par 𝑁𝑒𝑜𝑙 =
𝒫max,Ne
𝒫N

. 

Et si leur diamètre est 𝐷, la distance entre 2 éoliennes doit être au moins de 𝑑 = 15𝐷. 

La surface nécessaire pour en installer 𝑁𝑒𝑜𝑙 est donc : 𝑆 =
𝒫max,Ne
𝒫N

𝑑2 =
𝒫max,Ne
𝒫N

× 152𝐷2. 

Numériquement, 𝑆 =
𝒫max,Ne
𝒫N

× 152𝐷2 = 20.103km2 , puisque 𝐷 = 250 m.  

Cela représente 3,6 % du territoire métropolitain terrestre. 

C’est donc une grande surface, qui plus est à prendre sur la mer, pas trop loin des côtes car il faut ramener 

l’énergie sur Terre. Et surtout, il y a peu de chances que les conditions de vent pour une production de 

puissance nominale soient réunies au moment où on a besoin du pic de production. Il faudrait donc une 

surface bien plus importante, et éventuellement un système de stockage de l’énergie, au moment où elle est 

fortement produite. 

 

II. Conversion d’énergie éolienne en énergie mécanique. Eolienne de type Darrieus. 

Q3 Le plus simple, pour répondre à cette question, est de commencer par répondre à la seconde partie de ce 

qui est demandé : la puissance moyenne produite par cette éolienne, qu’on notera 𝒫𝑚𝑜𝑦.  

Si on note 𝜏𝑖  le pourcentage du temps pendant lequel la puissance moyenne est 𝒫𝑖 (ligne 𝑖 du tableau), on 

peut écrire : 𝒫𝑚𝑜𝑦 = 𝜏1𝒫1 + 𝜏2𝒫2 + 𝜏3𝒫3 .  

Numériquement, 𝒫𝑚𝑜𝑦 = 0,37 × 867 + 0,54 × 5320 + 0,09 × 10236 = 4,1 kW . 

On s’est appuyé uniquement sur les données de 6 mois, mais on n’a pas les données pour les 6 autres mois, 

donc on ne peut que supposer que la moyenne serait identique sur l’autre moitié de l’année. 

L’énergie produite sur l’année est donc ℇé𝑜𝑙𝑖𝑒𝑛𝑛𝑒 = ∫ 𝒫𝑚𝑜𝑦
𝑡𝑎𝑛
0

 𝑑𝑡 = 36 MWh . 

 

Remarque : on aurait pu, également, calculer ℇé𝑜𝑙𝑖𝑒𝑛𝑛𝑒  de la façon suivante : sur 6 mois, il y a eu 22870 

mesures : cela correspond environ à une mesure tous les ∆𝑡 = 680 s. En prenant les différents points 𝒫𝑗  de 

la courbe de puissance, en les multipliant par le nombre de mesures 𝑁𝑗  (lu sur l’autre courbe) et par ∆𝑡, puis 

en les additionnant et en multipliant le résultat par 2, on obtient l’énergie moyenne produite sur 1 an : 

ℇé𝑜𝑙𝑖𝑒𝑛𝑛𝑒 = 2∑𝑁𝑗𝒫𝑗
𝑗

∆𝑡 

 On mesure sur la courbe ∑ 𝑁𝑗𝒫𝑗𝑗 ≈ 94 MW. Donc ℇé𝑜𝑙𝑖𝑒𝑛𝑛𝑒 ≈ 130 GJ ≈ 36 MWh 

 La puissance moyenne s’obtient simplement en calculant :  

〈𝒫〉 =
∑ 𝑁𝑖𝒫𝑖𝑖

∑ 𝑁𝑖𝑖
≈ 4,1 kW 

 Si on prend les valeurs du tableau de synthèse, en utilisant les puissances moyennes et les pourcentages du 

temps total, on obtient exactement les mêmes résultats (c’est beaucoup plus rapide). 
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Q4 Pour faire le tracé, on doit commencer par calculer les longueurs relatives des vecteurs 𝑣⃗0 et 𝑢⃗⃗, sachant que 

||𝑢⃗⃗|| = 𝑅𝜔 = 𝜆𝑣∞, et que ||𝑣0⃗⃗⃗⃗⃗|| = (1 − 𝑎)𝑣∞ on a 
||𝑢⃗⃗⃗||

||𝑣0⃗⃗⃗⃗⃗||
=

𝜆

1−𝑎
= 𝜆0 

Numériquement, 
||𝑢⃗⃗⃗||

||𝑣0⃗⃗⃗⃗⃗||
=

𝜆

1−𝑎
=

2,4

1−0,37
= 3,8  , d’où le dessin ci-dessous, à l’échelle, en utilisant la longueur de 

𝑣0⃗⃗⃗⃗⃗ qui apparait sur la figure de l’énoncé, pour en déduire celle de 𝑢⃗⃗.  

 

Q5 Le vecteur 𝑤⃗⃗⃗ dans la base des coordonnées cartésiennes :  

𝑤⃗⃗⃗ = 𝑣0𝑒𝑥 − 𝑅𝜔 (−sin 𝜃 𝑒𝑥 + cos 𝜃 𝑒𝑦)⏟              
𝑒𝜃

 

 On en déduit :  

𝑤2 = (𝑣0 + 𝑅𝜔 sin 𝜃)
2 + 𝑅2𝜔2 cos2 𝜃 = 𝑣0

2 + 𝑅2𝜔2 + 2𝑅𝜔𝑣0 sin 𝜃 

 Or, 
𝑅𝜔

𝑣0
=

𝑅𝜔

(1−𝑎)𝑣∞
=

𝜆

1−𝑎
= 𝜆0. On retrouve bien :  

𝑤 = 𝑣0√1 + 2𝜆0 sin 𝜃 + 𝜆0
2 

Q6 Ecrivons le vecteur 𝑤⃗⃗⃗ dans la base des coordonnées polaires :  

𝑤⃗⃗⃗ = 𝑣0 (cos 𝜃 𝑒𝑟 − sin 𝜃 𝑒𝜃)⏟            
𝑒𝑥

− 𝑅𝜔𝑒𝜃 = 𝑣0(cos 𝜃 𝑒𝑟 − (sin 𝜃 + 𝜆0)𝑒𝜃) 

Or, par définition de l’angle d’attaque 𝛼, et d’après la figure 4, 

𝑤⃗⃗⃗ = 𝑤(sin 𝛼 𝑒𝑟 − cos𝛼 𝑒𝜃) 

Par conséquent : {
𝑤 sin 𝛼 = 𝑣0 cos 𝜃

𝑤 cos 𝛼 = 𝑣0(sin 𝜃 + 𝜆0)
. D’où le résultat fourni : tan 𝛼 =

cos𝜃

sin𝜃+𝜆0
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Q7 Qualitativement, d’après la figure tracée en Q4, 𝛼 s’annule pour 𝜃 =
𝜋

2
 et 𝜃 =

3𝜋

2
, et est  

positif pour 𝜃 ∈ ] −
𝜋

2
,
𝜋

2
 [, puis négatif pour 𝜃 ∈]

𝜋

2
, 3

𝜋

2
 [. Ceci permet de tracer une allure de la courbe 

représentant 𝛼 en fonction de 𝜃. 

Mais puisqu’on nous demande de déterminer numériquement l’intervalle des variations de 𝛼, faisons une 

rapide étude de fonction :  

𝛼 restant dans le domaine ] −
𝜋

2
,
𝜋

2
 [ d’après la figure de Q4, la tan 𝛼 est fonction croissant de 𝛼, donc 𝛼 est 

max (resp. min) quand tan 𝛼 est max (resp. min). 

Et 
𝑑(tan𝛼 )

𝑑𝜃
=
−(sin𝜃+𝜆0) sin𝜃−cos𝜃 cos𝜃

(sin𝜃+𝜆0)2
, le dénominateur ne pouvant s’annuler puisque 𝜆0 = 3,8. 

Donc 
𝑑(tan𝛼 )

𝑑𝜃
=
−𝜆0 sin𝜃−1

(sin𝜃+𝜆0)2
. Ainsi, 𝛼 est fonction croissante de 𝜃 pour sin 𝜃 <

−1

𝜆0
,  

puis décroissante pour sin 𝜃 >
−1

𝜆0
.  

Donc 𝛼 est maximale pour 𝜃𝑀 ≡ arcsin (−
1

𝜆0
) [2𝜋], c’est-à-dire 𝜃𝑀 ≡ −arcsin (

1

3,8
) [2𝜋],  

ou encore 𝜃𝑀 ≡ −0,27 rad[2𝜋], c’est-à-dire 𝜃𝑀 ≡ −15°[360°] . 

Et pour cette valeur, 𝛼𝑀 = 15° . 

Puis 𝛼 est minimale pour 𝜃𝑚 ≡ 𝜋 − arcsin (−
1

𝜆0
) [2𝜋], c’est-à-dire 𝜃𝑀 ≡ 𝜋 − arcsin (

1

3,8
) [2𝜋],  

ou encore 𝜃𝑚 ≡ 3,4 rad[2𝜋], c’est-à-dire 𝜃𝑚 ≡ +195°[360°] . 

Et pour cette valeur, 𝛼𝑚 = −15° . 

Avec python, on peut faire un tracé rigoureux (non demandé) de la fonction 𝛼(𝜃) : 

 

Q8 Commençons par évaluer le nombre de Reynolds Re =
𝜌air𝑤ℓ

𝜂air
.  

D’après le dessin fait en question Q4, la norme du vent relatif a pour valeur maximale  

𝑤𝑚𝑎𝑥 = 𝑣0 + 𝑢 = (1 − 𝑎 + 𝜆)𝑣∞ = 18,2 m. s−1, et pour valeur minimale  

𝑤𝑚𝑖𝑛 = −𝑣0 + 𝑢 = (−1 + 𝑎 + 𝜆)𝑣∞ = 10,6 m. s−1. 

Donc le nombre de Reynolds est compris entre 3,2. 105 et 5,4. 105 . 

Pour cette fourchette de Re, on peut estimer sur la courbe 𝐶L(𝛼) que dans le domaine [−15 °, +15 °], 𝐶L(𝛼) 

varie sensiblement linéairement avec l’angle 𝛼 : 𝐶L(𝛼) ≈ 𝑘𝛼. Grossièrement, on mesure 

𝑘 ≈
1

8
= 0,12 𝑑𝑒𝑔𝑟é−1  si 𝛼 est exprimé en degrés (𝑘 ≈ 7,2 si 𝛼 est exprimé en radians). 

 °

 °
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D’autre part, 𝐶L(𝛼) varie typiquement entre −1,2 et +1,2.  

Dans le même intervalle, 𝐶D(𝛼) reste inférieur à 0,05. On peut donc bien raisonnablement dire (sauf au 

voisinage de 𝛼 = 0) que 𝐶D ≪ |𝐶L|. 

Q9 La force subie par la pale n°1 s’écrit : 

𝐹⃗1 = 𝐹⃗L + 𝐹⃗D =
1

2
𝜌air𝑆𝑤

2(𝐶𝐿 𝑛⃗⃗ + 𝐶𝐷𝑡) =
1

2
𝜌air𝑆𝑤

2(𝐶𝐿(cos 𝛼 𝑒𝑟 + sin 𝛼 𝑒𝜃) + 𝐶𝐷(sin𝛼 𝑒𝑟 − cos𝛼 𝑒𝜃)). 

𝐹⃗1 =
1

2
𝜌air𝑆𝑤

2[(𝐶𝐿 cos 𝛼 + 𝐶𝐷 sin 𝛼)𝑒𝑟 + (𝐶𝐿 sin 𝛼 − 𝐶𝐷 cos 𝛼)𝑒𝜃)]. 

Si on néglige l’influence de 𝐶𝐷 (puisque 𝐶D ≪ |𝐶L|) , et si on pose 𝐶𝐿 = 𝑘𝛼, il vient : 

𝐹⃗1 ≃
1

2
𝑘𝛼𝜌air𝑆𝑤

2𝑛⃗⃗ =
1

2
𝑘𝛼𝜌air𝑆𝑤

2(cos 𝛼 𝑒𝑟 + sin 𝛼 𝑒𝜃)  

La composante radiale de cette force tend à écarter la pale de l’axe de rotation quel que soit 𝛼, puisque cos 𝛼 

reste toujours positif. Mais l’armature de l’éolienne empêche cet écartement.  

La composante orthoradiale de la force tend à accélérer la pale aussi bien pour 𝛼 > 0, que pour 𝛼 < 0. En 

effet, le produit 𝛼 sin 𝛼 est une fonction paire de 𝛼. 

Q10 La composante radiale est une force centrale, donc a un moment nul.  

Le bras de levier de la composante orthoradiale vaut 𝑅. Par conséquent :  

ℳ𝑧,1 =
𝑅𝑘𝜌air𝑆

2
𝛼𝑤2 sin 𝛼 

 Or,    𝛼 sin 𝛼 ≈ tan2 𝛼 = (
cos𝜃

sin𝜃+𝜆0
)
2

et 𝑤2 = 𝑣0
2(1 + 2𝜆0 sin 𝜃 + 𝜆0

2). Par conséquent :  

ℳ𝑧,1 =
𝑅𝑘𝜌air𝑆𝑣0

2

2
(1 + 2𝜆0 sin 𝜃 + 𝜆0

2) (
cos 𝜃

sin 𝜃 + 𝜆0
)
2

= 𝜅𝑓(𝜃) 

 Cette expression est bien conforme à l’énoncé, avec : 𝜅 =
𝑅𝑘𝜌air𝑆𝑣0

2

2
 

Q11 La pale n°2 est repérée par l’angle 𝜃 +
2𝜋

3
 et la pale n°3 est repérée par l’angle 𝜃 +

4𝜋

3
. Par conséquent :  

Γ𝑧 = 𝜅 (𝑓(𝜃) + 𝑓 (𝜃 +
2𝜋

3
) + 𝑓 (𝜃 +

4𝜋

3
)) = 𝜅𝐹(𝜃) 

Q12 On lit sur la courbe en trait plein (puisqu’ici 𝜆0 = 3,8) : 〈𝐹(𝜃)〉 ≈ 1,58 . Par conséquent, 〈Γ𝑧〉 = 1,58 𝜅 . 

Donc :  

𝒫 ≈ 1,58 𝜅𝜔 = 0,79 𝑅𝑘𝜌air𝑆𝑣0
2𝜔 = 0,79 𝑘𝜌air𝐿ℓ𝜆0(1 − 𝑎)

3𝑣∞
3  

Numériquement, on trouve (avec la valeur de 𝑘 donnée ici, différente de celle trouvée en Q8) : 

𝒫 ≈ 4,4 kW . 

Une telle puissance correspond à l’ordre de grandeur de ce que consomme en même temps un aspirateur, 

un grille-pain et un four à micro-ondes par exemple. 

Q13 Considérons la surface rectangulaire 𝑆𝑒𝑜𝑙 = 𝐿 × 2𝑅 perpendiculaire à l’écoulement, MAIS en l’absence 

d’éolienne. L’énergie cinétique traversant cette surface, du fait du vent, entre les instants 𝑡 et 𝑡 + d𝑡 vaut 

𝛿𝐸c =
𝜌air𝑣∞

2

2
× 𝑆𝑒𝑜𝑙𝑣∞d𝑡.  

Par conséquent, le débit d’énergie cinétique, c’est-à-dire l’énergie cinétique passant par seconde à 
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travers la surface 𝑆𝑒𝑜𝑙  vaut 𝐷𝐸c =
𝜌air𝑆𝑒𝑜𝑙𝑣∞

3

2
= 𝑅𝐿𝜌air𝑣∞

3  .  

Cela correspond à la puissance du vent incident disponible sur la surface balayée par l’éolienne. 

Q14 Le rendement 𝜂 est le rapport de la puissance moyenne délivrée par l’éolienne à la puissance incidente 

du vent : 𝜂 =
𝒫

𝐷𝐸c
= 0,79 𝑘𝜆0(1 − 𝑎)

3 ℓ

𝑅
= 0,79 𝑘𝜆(1 − 𝑎)2

ℓ

𝑅
= 53 %  

Q15 On voit sur la courbe que 𝐹(𝜃) est 
2𝜋

3
 périodique (période 120°). Or, 𝜃 = 𝜔𝑡 donc la fréquence 

fondamentale du développement en série de Fourier du couple est donnée par  

𝑓1 =
1

𝑇1
=

1

2𝜋
3𝜔

=
3𝜔

2𝜋
=
3𝜆𝑣∞
2𝜋𝑅

 

 Le signal de la figure 7 est quasi-sinusoïdal. Cependant, il ne l’est pas tout à fait. On aura donc des 

harmoniques de fréquences 𝑓𝑛 = 𝑛
3𝜆𝑣∞

2𝜋𝑅
 . 

 Numériquement, 𝑓1 varie de 𝑓1 = 0 Hz à 𝑓1 = 4,6 Hz quand 𝑣∞ varie de 0 à 16 m. s−1. 

Q16 La force de traînée (cf Q9) subie par la pale n°1 s’écrit : 𝐹⃗D1 =
1

2
𝐶D𝜌air𝑆𝑤

2(sin 𝛼 𝑒𝑟 − cos𝛼 𝑒𝜃).  

Dans le référentiel terrestre, la puissance de la force de traînée subie par la pale n°1 est donnée par : 

𝒫D1 = 𝐹⃗D1. 𝑅𝜔𝑒𝜃 =
1

2
𝐶D𝜌air𝑆𝑤

2(sin 𝛼 𝑒𝑟 − cos 𝛼 𝑒𝜃). 𝑅𝜔𝑒𝜃 = −
1

2
𝐶D𝜌air𝑆𝑅𝜔𝑤

2 cos 𝛼 

En faisant pour cos 𝛼 un développement limité, à nouveau à l’ordre 1, on obtient : 

𝒫D1 = −
1

2
𝐶D𝜌air𝐿ℓ𝑅𝜔𝑣0

2(1 + 2𝜆0 sin 𝜃 + 𝜆0
2) 

 𝒫D1 est négative quel que soit 𝜃 puisque 0 ≤ (1 − 𝜆0)
2 ≤ (1 + 2𝜆0 sin 𝜃 + 𝜆0

2) ≤ (1 + 𝜆0)
2.  

Par conséquent, la valeur moyenne de cette puissance sur un tour, définie par 〈𝒫D1〉 =
1

2𝜋
∫ 𝒫D1
2𝜋

0
d𝜃 est 

négative aussi. Il en est bien sûr de même pour les deux autres pales. Par conséquent, la puissance 

moyenne de la force de traînée sur un tour est bien négative. 

 La puissance dissipée par la traînée étant proportionnelle à 𝐶D, on a intérêt à le minimiser pour optimiser 

la puissance moyenne délivrée par l’éolienne. 

 

PROBLEME 2 : CONCOURS CENTRALE•SUPÉLEC Physique-chimie 1 PSI 2023 

I) Influence de l'électrolyte  
5

2
O2( g) + C3H4O3(l) ⟶ 3CO2( g) + 2H2O(g) 

Q 1. L'enthalpie standard de formation de O2( g) est nulle, car il s’agit d’un corps simple, dans son état standard 

de référence. 
 

Q 2. L'enthalpie standard de réaction se calcule grâce à la loi de Hess : 

Δ𝑟𝐻
0 = −Δ𝑓𝐻

0(C3H4O3(l)) + 3Δ𝑓𝐻
0(CO2( g)) + 2Δ𝑓𝐻

0(H2O(g)) .  

Numériquement, Δ𝑟𝐻
0 = +1165,30 − 3 × 393,5 − 2 × 241,8 = −498,80 kJ ⋅ mol−1  

Puisque son signe est négatif, la réaction est exothermique. 
 

Q 3. Compte tenu de l'évolution de la température (figure 4), le calorimètre n’est pas parfaitement calorifugé. En 

effet, on constate qu’après être montée de façon quasi-instantanée, la température décroît, pour revenir à la 

température ambiante. Il y a donc clairement des fuites thermiques. 
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Q 4. Le temps caractéristique de retour à la température ambiante est de l’ordre de 370-140 = 230 minutes 

(figure 4). Si on comprend « temps caractéristique » comme la constante de temps d’une loi en exponentielle 

décroissante, alors la constante de temps est environ le tiers de (300 – 140), soit environ 50 minutes. 

La durée de l’explosion est en revanche inférieure à la minute (figure 4), donc les échanges thermiques avec 

l’extérieur n’ont pas le temps de se produire, donc la transformation peut bien être considérée adiabatique. 
 

Q 5. Attention, on n’est pas ici en présence d’une transformation isobare. Mais on va s’appuyer sur les 

approximations proposées par l’énoncé, à savoir, que l'énergie libérée lors de l'explosion correspond en bonne 

approximation à l'échange thermique isotherme à pression constante associé à la réaction (I.3).  

On considère le système formé des 𝑛 moles d'acide pyruvique mise en jeu lors de l'explosion, des 
5

2
𝑛 moles de 

dioxygène nécessaires à la réaction (et fournies comme on nous le dit par une décomposition interne de 

l'accumulateur). 

La « chaleur de réaction », dégagée par la réaction entre ces deux constituants, est, pour un avancement final  

𝜉𝑓 = 𝑛,  𝑄𝑟 = −Δ𝑟𝐻
0 × 𝑛. Et cette énergie thermique est utilisée par l’accumulateur, de masse 𝑚, pour faire 

monter sa température (on néglige devant 𝑚, comme on nous le propose, la masse des gaz enfermés dans 

l’enceinte). On applique le premier principe de la thermodynamique à l’accumulateur : 

𝑚𝑐𝑝(𝑇𝑚𝑎𝑥 − 𝑇𝑖𝑛𝑖𝑡) = 𝑄𝑟 , d’où 𝑛 =
𝑚𝑐𝑝(𝑇𝑚𝑎𝑥−𝑇𝑖𝑛𝑖𝑡)

−Δ𝑟𝐻0
. Numériquement, 𝑛 =

45,5×0,73×(900−129)

498,80⋅103
= 0,051 mol . 

 

Q 6. Une quantité de matière d'acide pyruvique 𝑛C3H4O3,lim  conduit à la formation, nette, de  

(3 + 2 −
5

2
) 𝑛C3H4O3,lim  moles de gaz. En utilisant l’équation d’état des gaz parfaits, et en négligeant les autres 

gaz, on peut écrire : 𝑝𝑙𝑖𝑚𝑉0 = 2,5𝑛C3H4O3,lim  𝑅𝑇𝑚𝑎𝑥 , d’où 𝑛C3H4O3,lim =
𝑝𝑙𝑖𝑚𝑉0

2,5 𝑅𝑇𝑚𝑎𝑥
= 0,046 mol . 

On peut vérifier que la quantité nette de gaz produits (2,5𝑛C3H4O3,lim = 0,12 mol) est nettement plus importante 

que la quantité de gaz initialement présente dans l’enceinte, qui était égale à 
𝑝𝑖𝑉0

𝑅𝑇𝑎𝑚𝑏
= 0,0061 mol  

 

Q 7. Puisque Q5 et Q6 montrent qu’il y a un peu plus d’acide pyruvique que ce qui amènerait à une pression de 

75 bar, il y a un risque de dépassement de cette pression limite, d’où la nécessité de la vanne de sécurité 

schématisée sur la figure 3. 

II. - Emballement thermique 

Q 8. La loi de vitesse donnant la vitesse de disparition de l'acide pyruvique en fonction de 𝛼diss (𝑡), 𝑛0, 𝑉 et la 

constante de vitesse 𝑘 est : 𝑟 = 𝑘[C3H4O3] = 𝑘
𝑛0(1−𝛼𝑑𝑖𝑠𝑠)

𝑉
. 

 

Q 9. La loi d'Arrhénius est 𝑘 = 𝐴 exp (−
𝐸𝑎

𝑅𝑇
) . Et puisque l’énergie d’activation 𝐸𝑎 est positive, et le facteur pré-

exponentiel, 𝐴 aussi, 𝑘 est une fonction croissante de la température, donc la vitesse 𝑣 aussi.  
 

Q 10. On considère le système formé de la batterie de capacité thermique 𝐶, siège de la réaction (I.3) de 

combustion de l'électrolyte.  

La décomposition proposée permet d’écrire, la transformation étant adiabatique et isobare : 𝑑𝐻 = 0, c’est-à-dire 

Δ𝑟𝐻
0𝑑𝜉 + 𝐶 𝑑𝑇 = 0.  

Or, la vitesse est 𝑟 =
1

𝑉

𝑑𝜉

𝑑𝑡
, donc Δ𝑟𝐻

0𝑟 𝑉𝑑𝑡 + 𝐶 𝑑𝑇 = 0, puis Δ𝑟𝐻
0𝐴exp (−

𝐸𝑎

𝑅𝑇
) 𝑛0(1 − 𝛼𝑑𝑖𝑠𝑠)𝑑𝑡 + 𝐶 𝑑𝑇 = 0. On 

en déduit : 
d𝑇

 d𝑡
= 𝛽(1 − 𝛼diss) exp (−

𝐸𝑎

𝑅𝑇
), avec 𝛽 = −

Δ𝑟𝐻
0𝐴 𝑛0

𝐶
  

 

Q 11. Lorsque l'avancement de la réaction est faible (𝛼diss ≪ 1), un développement limité à l’ordre 0 en 𝛼𝑑𝑖𝑠𝑠 

dans l’équation différentielle, donne : 
d𝑇

 d𝑡
≃ 𝛽exp (−

𝐸𝑎

𝑅𝑇
), donc 

𝑑𝑇

𝑑𝑡
 augmente avec 𝑇, ce qui explique qu’on parle 

d'emballement thermique.  



LVH 25-26 DS4* jeudi 15 janvier 2026 PSI 

8 
 

 

 

Figure 5 Tracé de ln (d𝑇/d𝑡) en fonction de 1000/T pour 

une batterie Li-ion déchargée 

 pendant son explosion 

 
 

Q 12. La figure 5 montre que ln (
𝑑𝑇

𝑑𝑡
) est une fonction affine 

décroissante de 1/T, ce qui est bien conforme à ce qui a été 

trouvé dans la question Q11 : ln (
𝑑𝑇

𝑑𝑡
) ≃ ln(𝛽) −

𝐸𝑎

𝑅𝑇
. 

On peut ajouter sur le graphe une droite se rapprochant au mieux du nuage de points.  

Son équation est : 

ln (
𝑑𝑇

𝑑𝑡
) =

0,8−6
2,15−1,90

1000

×
1

𝑇
+ 𝐶𝑡𝑒 = −21 ⋅ 103 ×

1

𝑇
+ 𝐶𝑡𝑒. Son coefficient directeur correspond à −

𝐸𝑎

𝑅
  

On en déduit que 𝐸𝑎 = 0,17 ⋅ 10
6 J ⋅ mol−1 . 

 

Problème n°3 : CCINP PhCh PSI 2023 extrait (sans calculatrice) 

 

Q1- Réaction de combustion d’une mole de glucose : C6H12O6(s) + 6 O2(g) = 6 CO2(g) + 6 H2O (l) . 

 

La loi de Hess donne : Δ𝑟𝐻
0 = −Δ𝑓𝐻

0(C6H12O6(s))  − 6 Δ𝑓𝐻
0( O2(g)) +  6 Δ𝑓𝐻

0( CO2(g)) +  6 Δ𝑓𝐻
0(H2O (l)) , 

d’où Δ𝑟𝐻
0 = 1274 − 0 +  6 × (−393,5) +  6 × (−285,8) = 1274 − 6 × 679,3 = 1274 − 4075,8 

                     = −2801,8 kJ ⋅ mol−1  

Parmi les réponses proposées, la bonne est donc la première, Δ𝑟𝐻
0 = −2802 kJ ⋅ mol−1 . 

 

Q2- L’énergie mécanique dépensée par le cycliste est le produit de la puissance moyenne par la durée :  

ℰ𝑑𝑒𝑝 = 𝑃𝑚é𝑐𝑎 × Δ𝑡, donc l’énergie consommée par ses muscles est ℰ𝑐𝑜𝑛𝑠 =
𝑃𝑚é𝑐𝑎×Δ𝑡

𝜂
  

Et on veut visiblement nous faire écrire que l’énergie consommée par les muscles correspond à l’énergie thermique 

dégagée par la réaction de combustion du glucose, d’où ℰ𝑐𝑜𝑛𝑠 = −Δ𝑟𝐻
0𝜉𝑓.  

La masse de glucose consommée est 𝑚𝑔𝑙𝑢 = 𝑀𝑔𝑙𝑢𝜉𝑓, d’où ℰ𝑐𝑜𝑛𝑠 = −Δ𝑟𝐻
0 𝑚𝑔𝑙𝑢

𝑀𝑔𝑙𝑢
, puis 𝑚𝑔𝑙𝑢 = −

𝑃𝑚é𝑐𝑎×Δ𝑡×𝑀𝑔𝑙𝑢

𝜂×Δ𝑟𝐻0
. 

Numériquement, en grammes, 𝑚𝑔𝑙𝑢 =
180×4×3600×180

0,25×2802∗1000
=
16×1,8×3,6×18

2,8
≃
16×40×3,6

3
.  

Parmi les 3 valeurs proposées, on choisit donc 𝑚𝑔𝑙𝑢 = 670 g . 

 

Q3- Le nombre d’oxydation de l’iode est de 0 dans I2  , −I dans I−  , +V dans IO3
− . 

Puisque les espèces sont rangées de bas en haut par nombre d’oxydation croissant, on en déduit que : 

I2 ↔ 𝐼𝐼 ; I− ↔ 𝐼  et IO3
− ↔ 𝐼𝐼𝐼 . 

 

Q4- Pour trouver la pente, on commence par écrire la demi-réaction du couple associé : 

IO3
− + 6 𝑒− + 6H+ = I− + 3 H2O . 

La relation de Nernst s’écrit donc : 𝐸 = 𝐸0 +
0,06

6
log (

[H+]6[IO3
−]

[I−] 𝑐𝑟𝑒𝑓
6 ) = 𝐸0 + 0,06 log (

[H+]

𝑐𝑟𝑒𝑓
) +

0,06

6
log (

[IO3
−]

[I−]
),  

ce qui donne une pente de −0,06 𝑉/unité 𝑝𝐻 . 

 


