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Corrigé

PrROBLEME 1 Extrait CCP PSI 2013

1 —cos(t)

Q1. La fonction k : t — ” est continue sur ]0, +oo|.

1 t?
Elle est prolongeable par continuité en zéro par la valeur 5 car 1 _Cos(t)tNo§ donc fol k(t)dt

converge.

+00
Elle vérifie Vt e R*, 0< k(t) < = et I'intégrale de Riemann f = converge donc par comparaison,
1
intégrale [ k:(t) dt converge.
On conclut que :
+00 1 _ t
I'intégrale K = f C—(;S() dt converge.

Notons que comme k est positive, cela revient a affirmer que k est intégrable sur R*.

sin(t)

Q2. Soit A > 0. La fonction sinus cardinal ¢ — est continue sur |0, A] et est prolongeable par

continuité en zéro par la valeur 1 car sin(t) b
—

Ainsi :

A sin(t)

dt converge.

I'intégrale D(A) = f
0

Q3. Soit A et ¢ deux nombres réels tels que 0 < € < A. On réalise I'intégration par parties sur le
segment [e, A] ou les fonctions w: ¢ — 1 —cos(t) et v: ¢+ 1 sont de classe C! :

faA smt(t) dt = faAu'(t)v(t) U [1_+()S(t)]j ) lA 1—(;—25(15) N
1-cos(A4) 1-cos(e) N [A Los(t)dt.
12

A
g2 1 - cos(e
L’équivalent 1 - cos(¢) s montre que PH& —() =0 et la majoration |1LS(A)| < £ montre que
1-cos(A
tim 226
A—+o00

On en déduit d’abord (en faisant tendre e vers zéro) que
1 -cos(A) A1 —cos(t)
D(A)= ———= [ ——=dt
(“4) A " Jo t2

et ensuite (en faisant tendre A vers l'infini) que

A DA =
Donc :
I'intégrale ‘/Om sint(t) dt converge et K = [+oo sin(t) dt = AI_I,IPOOD(A)
Q4. On pose
0:(x,t) R, xR: o> 1_(;—28(75)6*

On vérifie les hypothéses du théoréme de continuité des intégrales & paramétre (qui assure en méme
temps la définition) :



Pour tout ¢ € R*, application x — ¢(x,t) est continue sur R,.
On a la domination V(z,t) € Ry x R, |¢(x,t)| < k(t), on la fonction k, définie & la premiére
question, est intégrable sur R* (elle est bien indépendante de x).
Notons qu’on a bien également (méme si la vérification de cette hypothése n’est pas exigée par le
programme) pour tout z € R, la continuité par morceaux de l'application t — ¢(x,t) sur ]0,+oo].
On conclut alors que :

- cos(t)e

+00 1
I’application L : z / 2 ~* dt est définie et continue sur R,.
0

Q5. On vérifie les hypothéses du théoréme de classe €2 des intégrales a parameétres.
Pour tout ¢ € R*, la fonction x — ¢(z,t) est de classe C? sur ]0,+o0[ et on a :

1- t
cos(t) i,

)
VZEER_H %(Qf,t)—— 7

2
et ﬂ(m,t) = (1 -cos(t))e™.
Ox?

Soit z € R*.

La fonction ¢ — ((z,t) est intégrable sur R% (car continue par morceaux sur R* et on a vu que
pour tout t € R*, |{(x,t)| < k(t) avec k intégrable sur R* d’ou le résultat par comparaison par
inégalité).
La fonction t ~ a—(x, t) est continue par morceaux sur ]0,+oo[ et prolongeable par continuité
x
12
en 0 (puisque 1 - cos(t) o —).

ol
On a de plus tlim t2 p (x,t)‘ = tlirn (1-cost)te™ =0 car t = 1 - cos(t) est bornée et crois-
—>+00 r —+00

sances comparées (x> 0).
ol (2.1)
—(z
o™’

t_th converge.

On a donc

1 1
= 0 (t_z)’ pour tout t € [1,+oo], 2 > 0 et l'intégrale de Riemann

t—+o0

1
ol
Ainsi, la fonction t — 8—(x, t) est intégrable sur 0, +oo.
x
Pour tout a €]0, +oo[, on dispose la domination :

0%(

V(x,t) € [a,+oo[ xR} @(x,t) <th(t) :=2e7,

et la fonction 1, est continue par morceaux et intégrable sur R* d’aprés le cours (intégrale de
référence avec a > 0) (et bien indépendante de x).
On conclut que L est de classe C? sur U'intervalle [a,+oo[, et qu’on a les formules suivantes, valables

pour tout z € [a,+oo] :
reo 1 — cos(t
L'(z)=- / %()em de,
0

L(x) = fo (1= cos(t))e " dt.

L’appartenance a la classe C? étant une propriété locale et ceci étant vrai pour tout a > 0, on en
déduit que :

I'application L est de classe C? sur I'intervalle ]0,+oo[ et les formules sont valables pour tout z €0, +oo].

Q6. Vérifions les hypothéses du théoréme de convergence dominée a parameétre continu.

Soit t €]0,+oo[. On a lim e =0 donc par produit avec une constante, lir+n {(x,t) =0.

r—>+00

2



On a la domination V(z,t) € R, x R, |¢(x,t)| < k(t), on la fonction k, définie & la premiére
question, est intégrable sur R* (elle est bien indépendante de x).
On en déduit que

lim L(z) =0.

T—>+00

14
Soit t €]0,+oo[. On a hm e = () donc par produit avec une constante, hm g—(x t)=0.

Notons que 1'on peut utlhser le théoréme avec [1,+oo[ comme intervalle pour x car +oo est
bien une borne de cet intervalle.

- t 1- t
On a la domination V(x,t) € [1, +oo[xR*, COS( ) cos(t)

ol
- L P
= @wn=+ R

ol
et t — a—(l,t) est intégrable sur R* (vu en Q5.) (elle est bien indépendante de x).
x
On en déduit que

lim L'(x) =

T—>+00

Q7. Pour tout réel x> 0, on a (la convergence de chacune des intégrales écrites ci-dessous justifie le
calcul, on a en effet |e(=)t| = ¢=** d’ou la convergence absolue) :

+00 +oo
L'(x) = / e dt - Re (f eli-2)t dt)
0 0

1 1 . +0o0o
- — _ Re [ .eztext]

x T+ 0
1 1
=— +Re( ) (t = €" est bornée donc lim ——e'e ™" = ()
x —r+i to+oo — + 1§
1 -T -1 1 x
=—+R = — — .
x e(97:2+1) r 2?+1
Pour tout x €]0, +oo[ L”(w)zl— L
’ ’ r a?+1

Q8. D’aprés la formule ci-dessus, il existe une constante ¢’ € R telle que
1 1 1
Vre]0,+o00[, L'(x)=In(x)- 5111(1:2 +1)+c = —5111(1 + —2) +c.
x

Comme on sait que lir+n L'(z) =0, on en déduit que ¢’ =0, donc que
, 1 1
Va €0, +oo], L(x)=—§ln 1+ﬁ .

1
Notons & : 2 = —— In (1 + —) — arctan(x).
2 x?

La fonction h est dérivable sur R* et on a pour tout x >0 :

h’(x):—%ln(1+$)—£(_—2) vl :—%ln(1+$):[/(x).

2\23 ) 22+1 22+1

On en déduit qu’il existe une constante c € R telle que
T 1
Vre]0,+o00[, L(x)= -5 In (1 + —2) —arctan(x) + c.
x

1 1
Comme —— ln(l ) o~ i —-—, on en déduit que lim L(x) = e
a2 aoteo 272 2 z—>+oo 2

. . T
Comme on sait par ailleurs que lim L(z) =0, on conclut que ¢ = BL donc que :
T—>+00

Va €]0,+oo], L(m)———ln(1+i) arctan(x)+g

3



Comme la fonction L est continue en zéro, on obtient, en prenant la limite du membre de droite en
s
zéro, que L(0) = 7

En utilisant le définition de la fonction L, on trouve finalement que :

D A R A

t 2
In(u)

Q9. La fonction m : u — est continue par morceaux sur |0, 1[.

u
* On a |m(u)| ~0—ln(u).

1
Comme pour tout u €]0, 1[, —In(u) > 0 et 'intégrale f In(u)du converge (par le cours), on en déduit
0
par comparaison que m est intégrable en 0.
In(l1+u-1) u—l_l

-1 wely—-1
La fonction m est donc prolongeable par continuité en 1 donc elle est intégrable en 1.

Ainsi :

* On a |m(u)| =

1
la fonction u Lul) est intégrable sur ]0, 1[.
u —

Q10. Soit ke N.
La fonction my, : u — u*In(u) est continue par morceaux sur ]0,1]. On a par intégration par parties
(les fonctions en jeu sont bien de classe C!) pour tout € €]0,1] :

1 R+ 1n(u) ! 1 1 ehlin(e) 1-eh+l 1
k1 _|u _ f k3, — _ _
/5 w n(u) du [ kil ] I A e S S (V) CRS A S §

par croissances comparées.

Ainsi :
1 1 1
'intégrale f u¥In(u) du converge et a pour valeur f uFIn(u) du = ————.
0 0 (k+1)2
1 +00
Q11. La somme de la série géométrique Vu €] —1,1], T 2" Z u¥ permet d’écrire que
I i

Vu €]0, 1], m(u):gmk(u), ot my(u) = uFn(u).

Vérifions les hypothéses du théoréme d’intégration terme a terme.
La série de fonctions Y ;5 ms converge simplement sur ]0, 1[.
D’aprés la question précédente, pour tout k € N, la fonction my, est intégrable sur ]0, 1[ (puis-
qu’elle est de signe constant sur ]0, 1] donc son intégrale sur ]0, 1] est absolument convergente).

1
La série numérique de terme général / |my(u)|du converge puisqu’il s’agit de la série de
0

terme général 5 (série de Riemann avec 2 > 1 aprés glissement d’indice).

b
(k+1

On en déduit que m est intégrable sur ]0,1[ (on le savait déja) et on a l'égalité

f01 1;(—u1) du = /01 (gmk(u))du - gfolmk(u) du = gﬁ

n(uw) ., & 1 &R 1 72
fo d“‘z(ml)?‘z(k)?‘ﬁ'

u—1 k=0 k=1

Ainsi :

Q12. Soit (f,,) une suite de fonctions continues par morceaux, définies sur un intervalle I de R, a
valeurs dans le corps K des réels ou des complexes.
On suppose que :



La suite (f,) converge simplement sur I vers une fonction f (continue par morceaux sur I).
Il existe une fonction ¢ intégrable sur I telle que :

VneN, Viel, |f.(t)<p(t).

Alors f et les f, sont intégrables sur I, la suite de terme général [, f, converge, et on a

Jm fih= [

Q13. On applique le théoréme de convergence dominée a la suite de fonctions (f,) définies par
Vi e [0, 1], fu(t) = f(t™).
Soit t € [0,1].
On a nl—i};—noo t" =0 et donc nl_1>r+noo f(t") = f(0) par continuité de f en 0.
Ainsi, la suite (f,) converge simplement sur [0, 1[ vers la fonction constante f: ¢+~ f(0)
Comme f est continue sur le segment [0, 1], elle y est bornée.
La fonction constante ¢ = | £l est continue par morceaux sur [0,1] et donc intégrable sur
[0,1] et elle vérifie :

VneN, Vi e [0, 1], |fu(t)] < p(t) (puisque ¢" € [0,1]).
On en déduit que :

n—+oo

lim 1, = folf(o)dtzf(o).

1
Q14. Soit n € N*. On pose le changement de variable ¢t = u!/* dans l'intégrale convergente / f@™)de
0

(car t — f(t") est continue sur le segment [0,1]). On obtient une nouvelle intégrale qui est aussi
convergente et de méme valeur.
On a alors :

1 1 1
_/ J(@r)de = L / f)u " du,  ou encore nl, = f @ul/n du.
0 0 0o u

f(w)

Pour tout n € N*, on pose g, : u = —=ul/™.
u
Vérifions les hypothéses du théoréme de convergence dominée.

Soit u €]0,1].

Comme u!/" = exp(@) tend vers 1 quand n — +oc0, on a lir+n gn(u) = M
n—+oo u
f(w)
-
On dispose de '’hypothése de domination Vn € N*, Vu €]0,1], |g,(u)| < |g(w)| car 0 < ut/™ < 1.

Or, |g| est intégrable sur 0, 1] par hypothése (puisque g l'est).

On conclut que :
1
lim nl, = f Mdu.
0

n—+oo U

Ainis, la suite (g,,) converge simplement sur ]0, 1] vers la fonction ¢ : u

Q15. La question précédente (applicable puisque le sinus est une fonction continue sur R, et que

Lo
f sin(u) du converge absolument) donne :
0

u
1 1 g
lim nf sin(t")dt:f Mdu.
0 0

n—+oo u

sin u

On remarque que u ~ est continue et positive, non identiquement nulle sur ]0,1] et donc son

U
intégrale est strictement positive donc n’est pas nulle.

Ainsi :
1 1 rlsi
/ sin(¢")dt  ~ —/ wdu.
0 n—+eo 1 Jo u
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Eléments de correction

Soit f: R — R, et P: R — R une fonction polynomiale en |z|, telle que :

d
VeeR, |f(x)]<|P(z)| avec P(x)= Z ay)z|*
k=0
d
Notons C' = Z la|.
k=0
Pour tout « € R tel que |z| < 1, par l'inégalité triangulaire :
d d d
1P(2)| = | 3] arlzl*| < Y laxllzl* < ) Ja| = C < O(1 + |a|*)
k=0 k=0 k=0

et pour tout = € R, tel que |x| > 1, si k € [[0,d]], |z|* < |z|?; donc par I'inégalité triangulaire :

d

> aglzf*

k=0

|P(z)| =

d d
< ) lawllal® < Y] laxllel? = Cla|* < O(1 + |a|?)
k=0 k=0

Par conséquent, pour tout x € R,
[f(2)] < [P(z)| < O+ |z|)

Donc f est a croissance lente.

L P@)

= : la foncti ti
o] >+oo 1+ |z]d |ag| : la fonction continue

Autre rédaction possible : on a P(z) ~  aglz|* donc

|z|—+400
|P ()]

1+[z[?
Cette derniére propriété n’étant pas explicitement dans le programme officiel, il faudrait rédiger un

T — posséde une limite finie en +00 donc elle bornée sur R.

peu plus précisément :

|P()] — |[P(x)]

L4l done il existe A € R, tel tout 2] = A, L < Jaul + 1.
BRI |ag| donc il existe + tels que pour tout |z 15 [ |ag]

P(x) . . _
Et z — [P est continue sur le segment [—A, A], donc elle est bornée sur [—A, A] : il existe
|P(z)]

K >0 tel tout <A —— <

el que pour tout |z| R

On a alors en posant C' = max(|ag| + 1, K), pour tout = € R, |P(z)| < C(1 + |z|?).
Soit f € C°(R) n CL(R).

La fonction ¢ étant continue, on a fi € C°(R) par produit de fonctions continues.
Soit C' e R, et k € N tel que pour tout z € R, |f(z)] < C(1 + |z|*).

Alors pour tout x € R,
[f(@)e(x)] < O+ |a|*)p()

lim z2e /2 = 0 et

|/c+26—a:2/2
|z|—+00

On a par croissance comparée lim |z

" = 0; par conséquent,
x|—+00

lim  Ca(1+]2[*)p(x) =0 done C(1+]a|*)p(x) =o (1) dou fla)ele) =o (1)

|| —+00 lz|—>+o0 \ 22 lz|—o0 \ 22

Or la fonction z — ;—2 est intégrable en +00 et en —oo (intégrale de Riemann) donc fp est intégrable

en +o0 et en —oo d’ot fy est intégrable sur R c’est & dire :
feLl)

e la fonction nulle appartient clairement & CL(R).

e Soit f, g deux fonctions appartenant & CL(R) et a € R.

distinguer les cas |z| < 1 et

|z| > 1 est assez classique

autre rédaction en étudiant
les limites en +o0 & l’aide
de ’équivalent
P(z) ~ agla|?

comparaison

f@e) o ()

classique

les résultats des questions
1 et 2 vont étre trés
utiles dans les questions
qui suivent pour justifier
Pintégrabilité de certaines

fonctions



Soit Cy,Cy e Ry et ky, kg € N tel que :
VeeR, |f(z)<Cf (1 + |w|kf) et |g(z)| <, (1 + |x|k9)
Alors
Ve eR, |af(z)+g(2)] < laf(@) +|g(@)] < |alCp (L + |2[*) + Cq (L + |z[*)

Donc af + g est majorée en valeur absolue par une fonction polynomiale en |z| donc d’aprés
la question 1, af + g € CL(R).
CL(R) est donc stable par combinaison linéaire, et contient la fonction nulle; CL(R) est donc un

sous-espace vectoriel de I'espace vectoriel F(R,R).

o Stabilité de CL(R) pour le produit. Soit f,g € CL(R). On garde les notations précédentes,
Cp,CyeRy et ky,ky e N,

Ona:
VeeR, |f(z)g(x)| <CrCy (1 + |x|kf) (1 + |x|k9)

Donc fg est majorée en valeur absolue par une fonction polynomiale en || d’on d’apreés la question
1, fg € CL(R).

4 > Soit f € C°(R) n CL(R). Soit € R. Notons g, : y — f (e_tx +4/1— e—2ty). Montrons que
9. € L'(p).
On a g, € C°(R) par composée de fonctions continues, f étant continue.

De plus, f appartenant CL(R), il existe C' € R, et k € N tel que :

k) <C (1 + (e*t|x| + mm)k)

Vy e R, |gx(y)|<C’<1+‘etx+ 1—e 2ty

Donc g, est majorée par une fonction polyndmiale en |y| donc g, est a croissante lente d’aprés la
question 1.

Donc g, € C° n CL(R) donc g, € L' () d’apreés la question 2.
+o0
Par conséquent, I'intégrale J f (e_tx +v1- e*Qty) ©(y) dy est convergente, ce qui montre que
—0o0

P(f)(x) est bien définie pour tout = € R.

e Linéarité de P;. Soit f,ge C°(R) n CL(R) et a € R.

Par linéarité de 'intégrale :

Py(af +9) = f: (af +9) (¢ + V1= e72y) ply) dy
= aftj / (e*t:c +41- G*Qty) o(y) dy + ft:) g (eftx +4/1— e*Zty> o(y) dy

= aP(f) + Pi(g)

5 > Soit fe COR)n CL(R). Soit = € R.
Soit C' = 0 et k € N, tel que pour tout z € R, |f(z)| < C (1 + |z|*).
On vérifie les hypothéses du théoréme de convergence dominée & paramétre continu :
e soit y € R. Par continuité de f en y, tEIJPoo f (eftx +4/1— e*%y) = f(y) donc

lim f (e*tx +4/1— e*”y) oy) = fy)ely)

t—+00

la stabilité par combinai-
son linéaire s’obtenait as-
sez facilement en utilisant

la question 1

I'utilisation de la question

1 était encore utile ici



e pourtout te Ry et y e R,

‘f (e‘t:v +4/1— e‘”?J) @(y)’ <C (1 + ‘e_tx + my‘k) o(y)
<C (1 + (e_t|x\ + mlyl)k> (y)
<C (14 (lal + ") ov)

Et la fonction y — C <1 + (x| + |y|)k) ©(y) est intégrable car P :y+— C <1 + (x| + |y|)k) est

polynoémiale en |y| donc & croissance lente d’aprés 1 et continue donc P € L'(p) d’aprés 2.

Par conséquent, d’aprés le théoréme de convergence dominée a paramétre continu :

+00 .
. _ . — _ =2t
-t [
+0o0
_ _ =2t
fL)C tgmoof( l1—e y) o(y) dy
+a0

= () ely) dy

6 > Soit f e C°(R) n CL(R). Montrons que P;(f) € C°(R) par le théoréme de continuité des intégrales

a parametres.

o Pour tout y € R, z— f (e~ + /1 — e~ ?y) (y) est continue sur R par continuité de f.

e Hypothése de domination locale : pour tout a > 0, pour tout x € [—a, a], et pour tout y € R,

‘f (e‘t:c +4/1— e*%y) so(y)] <C (1 + (e‘th\ +V1- 62tlyl)k> e(y)

<C(1+ @+ ") o)

Et la fonction (indépendante de z), y — C (1 + (a+ |y|)k) p(y) est intégrable car P : y —

C (1 + (a+ |y|)k> est polynomiale en |y| et continue donc P € L'(yp) d’aprés 1 et 2 (méme

argument qu’a la question précédente).
+o0
Donc l'application P(f) : ¢ — J f (eft:n +41— e*Qty> ©(y) dy est continue sur R.
—o0

De plus, pour tout x € R,

i< |

‘f e tr+4/1— e—Qty) ’ »(y) dy (ineg. triangulaire)

8

+00 S
JOO c(1+ (el +10)") ¢(0) dy car feCL®) et § < =0
+0
CJ L+ \Z/|k Tz | ¢(y) dy (bindme de Newton)
0
+00 k’ +00 ] ‘
Cf y) dy +C 2 [( ) J ly* I o(y) dy] |z]?  linéarité
[o9) =0 J —o0

k +00 )
<c ajw avee a; = ( j) [ ket ay
—©

Donc P;(f) est majorée en valeur absolue par une fonction polynémiale en |z|, indépendante de t.
Donc d’apreés la question 1, P;(f) € CL(R).

De plus, P;(f) € C°(R) d’aprés la premiére partie de la question, donc P;(f) € C°(R) n CL(R) donc
d’aprés la question 2, Pi(f) € L(yp).

+00
7 = Commencons par justifier la convergence de l'intégrale fl(x)g (x)p(z) da.

application du théoréme
de convergence dominée, il
faut majorer indépendam-

ment de ¢t en utilisant :

“t<let/1—e 2t <1

théoréme de continuité des
intégrales a paramétres, il
faut majorer ici indépen-

damment de



/' et ¢’ sont continues et & croissante lente donc d’aprés la question 3, f'¢g’ est a croissance lente

(et continue par produit de fonctions continues) : f’g’ € C°(R) n CL(R) donc d’aprés la question 2,
+o0

f'g’ € L*(p) d’ou la convergence de I'intégrale f(@)d (z)p(z) du.
0

On va effectuer une intégration par parties en remarquant que (f'¢)" = L(f)e.

Ona lim f'(x)p(x)g(z) = 0 par croissance comparée car f’g € CL(R) par produit de fonctions
a Croiéz;zgo lente.

Par conséquent, par le théoréme d’intégration par parties, les intégrales sz( f'e)g et St:j g’

sont de méme nature (convergente) et :

+00 +o0
J L(f)(x)g(z)p(x) dz =J (f'¢) (2)g(x) du

- - +00
= [ @e@e@)] '~ | f@)e) (@) dx
=0 -
+00
== | I@¢ @) de

8 > Soit f e CH(R) n CL(R) telle que f’ € CL(R). Soit = € R.
Notons pour (t,y) e R¥ xR, F(t,y) = f (e_t:v +41-— e*zty) o(y).
Ona:
e pour tout t > 0, y — f (eftx + my) ©(y) est intégrable sur R (déja vu a la question
4).
e pour tout y € R, t — F(t,y) est de classe C' sur R¥ car f € C*(R) et exp € C*(R), et
t— /1 — e 2 de classe C! sur R%.
e hypothése de domination : soit a > 0, pour tout (¢,y) € [a, +o0[xR :
f' € CL(R) donc il existe ¢’ = 0 et k' € N, tels que pour tout u € R, f'(u) < C'(1 + |ul*")

d’ou :
OF _ -2t s
S| = e ] e V=)t

1+ ‘e*tx +4/1—e 2ty

< (efx| N k/) oly) car f'e CL(R)

o2t )
) o (
1 /
<C <|x| + m|y|> (1 + (Jz] + [y))* ) ©(y) (inégalité triangulaire)

Et I'application y — C’ (|x| + \/ﬁhﬂ) (1 + (|z| + |y\)k/) ©(y) est indépendante de t, inté-
grable sur R, car y — C’ (\x| + \/ﬁ\yo (1 + (x| + |y|)k/) est une application polyndmiale
en |y| et continue donc appartient a L'(¢p) d’apreés 1 et 2.

Les hypothéses du théoréme de dérivation des intégrales a paramétres sont vérifiées, donc t —
Py(f)(z) est de classe C* sur tout intervalle [a, +o0[<]0, +00[, donc sur R¥ et :

OP(f)(x) +o —t e 2t i —t
A CAVA ol A _ _ o2t
vVt e RY, pn J_OO xe '+ e _e_zty f <e r++V1—e y) o(y) dy

9 > On applique & nouveau le théoréme de dérivation des intégrales & paramétres (cas C?).
Ici, t € Ry est fixé.
On note pour (x,y) € R?, G(x,y) = f (e_tx +1- e—Qty) o(y).

e pour tout y € R, z — G(x,y) est de classe C2 sur R par composée de fonctions C? sur R, f

étant supposée de classe C?.
G

=
ox

e pour tout = € R, les applications y — G(z,y) et y —

(z,y) sont intégrables sur R ; en effet :

— y— G(x,y) est intégrable sur R (cf question 4)

attention & bien justifier la
convergence de l'une des
deux intégrales, et étudier
le crochet pour pouvoir
effectuer l'intégration par

parties

on applique le théoréme de
dérivation d’une intégrale a

parameétre

théoréme de dérivation des
intégrales & paramétres
(cas C?)



—  pour tout y € R, Z—G(m,y) —e tf (e*tm +41-— e*zty) o(y) et f' € C°(R)NnCL(R), on en
x

déduit comme & la question 4 (en remplagant f par f/) quey — f’ (e_tx +v1- e—zty) o(y)

est intégrable sur R.

e hypothese de domination. Pour tout = € [—a, a], pour tout y € R,

%G _
M(ax,y)’ =e 2| f (e fr+/1— e‘Qtyﬂ«p(y)

k//
<e e <1 + (e fal + V1= e2]y)) > p(y) car f" e CL(R)

<0 (14 (el + )" ) o) < € (14 (@ )" ) o)

—2t

Et I'application y — C” (1 + (a+ |y\)k”) ©(y) est intégrable sur R pour les mémes raisons que

celles données pour 'intégrabilité du majorant trouvé a la question précédente.
+0
Par conséquent, Py(f) : z — G(x,y) dy est de classe C? sur R et ,

—00

+00
PAPY@) = | (et VI ey oty dy
Vo e R, —®

P(f)'(@) = e f:f” (7o + V1= e2y) wly) ay

10 = Soit f e C%(R) n CL(R) telle que f’ et f” soient & croissante lente.
Soit t e R* et x € R.
On a

©'(y) = —yoly) et d% (f’(e*t:v +4/1— e*”y)) =1 —e2tf" (e*tx +/1— e*zty)

et
lim f (e_tx +4/1— e—Qty> o(y) =0 car f' e CL(R)

ly|—+o0

Donc par intégration par parties :

o [ e s [ (e
= P (f)"(x)

Donc d’aprés les questions 8 et 9, et linéarité de l'intégrale :

ﬁPt €T o —t 672t / —t —
el ( *my)f (o V=) et dy

= —zP(f)' () + Bi(f)"(x) = L(P(f)) (x)

11 = Notons pour tout ¢ > 0, h(t) = tIn(¢). h est de classe C* sur R% | et pour tout ¢ > 0, 1/(t) = In(¢) + 1.
e

Onah'(t)=0<nt)=>-1lst=e et lim+ tIn(t) = 0 par croissance comparée.
t—0
D’ou le tableau de variations :

t 0 e 1 +00

0 oo
h(t) \ /

Donc h est prolongeable par continuité en 0, en posant h(0) = 0. On notera encore h la fonction

ainsi prolongée sur [0, +0].

technique
identique

précédentes

de majoration

aux questions



" gla)ple)dr = 1.

L’application = — h (g(x)) p(z) est continue sur R par continuité de g, h, ¢ et g(z) > 0.

12 = Soit g € C°(R) n CL(R) & valeurs strictement positives telle que J

—00

D’aprés la question précédente, pour tout t €]0,1], |h(t)| < e7! et h est croissante et positive sur

[1,400[ :
oem SO ST (gl = ko) < B (C (1)
Cosigle) <1 [h(g(@) <e!
Donc
VeeR, |h(g(x))|<e '+h[C(1+|z")]

<e 0 (1+]af) (n(C) + I (1+ [2f*))
<e 4 O (14 [2l*) (1n(C) + Jf")

en supposant C > 0

car In(1 + |z|*) < |z|*

Donc la fonction continue h o g est majorée en valeur absolue par une fonction polynoémiale en |z,
elle appartient donc (question 1) & C°(R) n CL(R) donc d’aprés la question 2, ho ge L(p) :
par conséquent z — In (g(z)) g(z)¢(z) est intégrable sur R donc Ent,(g) est bien définie.

13 > Soitte R,.

e D’aprés les questions 1 et 6, P,(f) € C°(R) n CL(R).

e DPi(f) est a valeurs strictement positives , car définie par I'intégrale d’une fonction continue a
valeurs strictement positives : pour tout y € R, f (e_tx + my) ©(y) > 0 car f a valeurs
strictement positives.

e Et d’aprés le résultat admis aprés la question 6 :

+oo +o0
| @@ = [ fayetae =1
—o0 —0
Donc P;(f) vérifie les hypothéses de la question précédente, par conséquent S(t) = Ent,, (P;(f)) est
bien définie.
14 = On suit indication. Soit 2 € R. on note F(t,y) = f (e_tx + my) o(y) pour t e Ry et y € R.

Ona:
e pour tout y € R, t — F(t,y) est continue sur R, ;

e pourtout te Ry et y e R,
F(ty)] = |f (e 7o+ V1= e2y) o) < (1+ (a2l + 1y)*) o)

Ety— C (1 + (|z| + |y\)k) ©(y) est intégrable sur R (cf question 5).

Donc d’apreés le théoréme de continuité des intégrales a paramétre, ¢t — P;(f) est continue sur R, .

Montrons maintenant que S : t — Ent,, (P;(f)) est continue.
Notons H(t,x) = In (P (f)(x)) P.(f)(x)p(x) = h (P(f)(2)) o (2).
e pour tout x € R, t — H(t, ) est continue par continuité de ¢t — P;(f)(x) (& valeurs strictement
positives), continuité de h et de .
o hypothese de domination : pour tout t € Ry, pour tout x € R,

en utilisant que P;(f) est majorée par une fonction polynodmiale en |z|, indépendante de ¢
d’aprés la question 6, on peut alors majorer d’apres la question 1, |P,(f)(z)| < C (1 + |z|¥) et

par la majoration déja vue a la question 12 :
| (Pi(f)(2)] < e '+ h[C(L+|z[f)]
Et par conséquent,

[H(t,2)| = |h (P(f) (@) p(z) < (7 + h[C (1 +]2]°)]) o(@)

inégalité In(1+wu) < u pour
tout u > —1

toujours l'utilisation des
questions 1 et 2 pour jus-
tifier I'intégrabilité

on applique la question
précédente en vérifiant que
Py(f) vérifie bien toutes les
hypotheéses

cette hypothése n’a pas ser-
vie a la question précédente
mais ’entropie n’est défi-
nie dans ’énoncé que pour
des fonctions vérifiant cette

égalité

Putilisation du résultat de
la question 6 permettait
de majorer simplement
P:(f)(x) indépendamment

det



15 >

Et on a déja justifié a la question 12 que 'application z — (6_1 +h [C (1 + |x|k)]) p(z) est

intégrable sur R.

On en déduit par le théoréme de continuité d’une intégrale a paramétre, S est continue sur R .

Pour tout z € R,

+00

5(0) = f i (Po(f)(x)) Po(f)(@)p(x)dz = J In (f(2)) f(z)p(r)dr = Enty(f)

—0 —0

Pour montrer que thT S(t) = 0, on applique le théoréme de convergence dominée a paramétre
— 40

continu :

+00

pour tout x € R, d’aprés la question 5, . hrfoo P(f)(x) = fW)e(y)dy = 1 donc
- 0

lim In (P (f)(2)) Pi(f)(@)e(z) =0

t——+00

pour tout t € R¥, pour tout x € R, en utilisant la méme majoration qu’a la question 14

I (P(f)(2)) Pr(f)(@)e()] < (e + h[C (14 ]2]")]) p(x)

Et 2 (e7' + h[C (1 + |z|")]) ¢(z) est intégrable sur R (cf question 12).

Donc d’aprés le théoréme de convergence dominée a paramétre continu :

+o0
tim S0 = [ lim Wn(R)E) AU @) =0

t—+0 .

16 = Conséquence immédiate de 1’égalité de la question 10.

17 = Soit t € R*. On utilise la question précédente et la question 7 comme indiqué dans I’énoncé :

~§'(0) =~ [ L@ 1+ @) ple) do

+0

= P(f)(z)(1+1n OPt(f))’ (x)p(x) de  d’aprés q7

18 = Soit ¢ € R%.

D’aprés I'inégalité de Cauchy-Schwarz appliqué dans I'espace euclidien C1(R) n C'L(R) muni du

+o0

produit scalaire (f|g) = FWg(y)e(y), pour tout z € R :
a0

P(f')*(x)

(fm f (e‘tw +V1- e‘%y) o(y) dy) 2

o]

2
) (Fao \/f <e,tx+ 1_672@) o) f (\6/]::;:;/1 eliti)iycj(y) dy

< (J_m f (e‘tx +v1 - e*%y) o(y) dy) (FOC f; (e‘tx +V1 - e*%y) o(y) dy)

o0 —0o0

e (L) @

/
!
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. P (@) 1 , : . ,
Or P,(f)(z) >0 dou —>——= < P, [ = | (z); donc par croissance de U'intégrale et la question
Py(f)(x) f

précédente :

+00 ()2 +o0 2
—5'(t) = e 2 . m@(x) de <e ™ J_OC P, <ff> (x)p(x) da

12
D’aprés le résultat admis entre la question 6 et 7, appliqué a la fonction f? e C°(R) n CL(R)

(hypotheése faite dans cette partie) :

Vte R, f: P (f;> (@)p(z) do = f: f}ig)@(x) da

Donc d’aprés la question précédente,

VteR,, —S'(t)<e? JHO ") o(z) dz

—o [flx)

On a d’aprés la question 15 et continuité de S en O :

f w —S'(t) dt = S(0) — lim S(t) = Ent,(f)

0 t—+00

+0

1
Et J e 2t dt = 3 donc d’aprés la question précédente et par croissance de l'intégrale en notant
0 +00 f/2 T

) @) o
K=), T o de:

o o . 1 [ f2(x)
L =S5'(t) dt < KL e ?tdt ie. Enty(f) < 5‘[700 o) o(z) dz



