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Q1. La fonction k ∶ t↦ 1 − cos(t)
t2

est continue sur ]0,+∞[.

Elle est prolongeable par continuité en zéro par la valeur
1

2
car 1 − cos(t) ∼

t→0

t2

2
donc ∫

1

0 k(t)dt
converge.

Elle vérifie ∀t ∈ R∗
+
, 0 ⩽ k(t) ⩽ 2

t2
et l’intégrale de Riemann ∫

+∞

1

dt

t2
converge donc par comparaison,

l’intégrale ∫
+∞

1 k(t)dt converge.
On conclut que :

l’intégrale K = ∫
+∞

0

1 − cos(t)
t2

dt converge.

Notons que comme k est positive, cela revient à affirmer que k est intégrable sur R∗
+
.

Q2. Soit A > 0. La fonction sinus cardinal t ↦ sin(t)
t

est continue sur ]0,A] et est prolongeable par
continuité en zéro par la valeur 1 car sin(t) ∼

t→0
t.

Ainsi :

l’intégrale D(A) = ∫
A

0

sin(t)
t

dt converge.

Q3. Soit A et ε deux nombres réels tels que 0 < ε < A. On réalise l’intégration par parties sur le
segment [ε,A] où les fonctions u ∶ t↦ 1 − cos(t) et v ∶ t↦ 1

t sont de classe C1 :

∫
A

ε

sin(t)
t

dt = ∫
A

ε
u′(t)v(t)dt = [1 − cos(t)

t
]
A

ε

− ∫
A

ε

1 − cos(t)
t2

dt

= 1 − cos(A)
A

− 1 − cos(ε)
ε

+ ∫
A

ε

1 − cos(t)
t2

dt.

L’équivalent 1 − cos(ε) ∼
t→0

ε2

2
montre que lim

t→0

1 − cos(ε)
ε

= 0 et la majoration ∣1−cos(A)A ∣ ⩽ 2
A montre que

lim
A→+∞

1 − cos(A)
A

= 0.
On en déduit d’abord (en faisant tendre ε vers zéro) que

D(A) = 1 − cos(A)
A

+ ∫
A

0

1 − cos(t)
t2

dt

et ensuite (en faisant tendre A vers l’infini) que

lim
A→+∞

D(A) =K.

Donc :

l’intégrale ∫
+∞

0

sin(t)
t

dt converge et K = ∫
+∞

0

sin(t)
t

dt = lim
A→+∞

D(A).

Q4. On pose

ℓ ∶ (x, t) ∈ R+ ×R∗+ ↦
1 − cos(t)

t2
e−tx.

On vérifie les hypothèses du théorème de continuité des intégrales à paramètre (qui assure en même
temps la définition) :
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1 Pour tout t ∈ R∗
+
, l’application x↦ ℓ(x, t) est continue sur R+.

2 On a la domination ∀(x, t) ∈ R+ × R∗+, ∣ℓ(x, t)∣ ⩽ k(t), où la fonction k, définie à la première
question, est intégrable sur R∗

+
(elle est bien indépendante de x).

Notons qu’on a bien également (même si la vérification de cette hypothèse n’est pas exigée par le
programme) pour tout x ∈ R+, la continuité par morceaux de l’application t↦ ℓ(x, t) sur ]0,+∞[.
On conclut alors que :

l’application L ∶ x↦ ∫
+∞

0

1 − cos(t)
t2

e−tx dt est définie et continue sur R+.

Q5. On vérifie les hypothèses du théorème de classe C 2 des intégrales à paramètres.
1 Pour tout t ∈ R∗

+
, la fonction x↦ ℓ(x, t) est de classe C2 sur ]0,+∞[ et on a :

∀x ∈ R∗
+
,
∂ℓ

∂x
(x, t) = −1 − cos(t)

t
e−tx et

∂2ℓ

∂x2
(x, t) = (1 − cos(t))e−tx.

2 Soit x ∈ R∗
+
.

La fonction t↦ ℓ(x, t) est intégrable sur R∗
+

(car continue par morceaux sur R∗
+

et on a vu que
pour tout t ∈ R∗

+
, ∣ℓ(x, t)∣ ⩽ k(t) avec k intégrable sur R∗

+
d’où le résultat par comparaison par

inégalité).

La fonction t↦ ∂ℓ

∂x
(x, t) est continue par morceaux sur ]0,+∞[ et prolongeable par continuité

en 0 (puisque 1 − cos(t) ∼
t→0

t2

2
).

On a de plus lim
t→+∞

t2 ∣ ∂ℓ
∂x
(x, t)∣ = lim

t→+∞
(1 − cos t)te−xt = 0 car t ↦ 1 − cos(t) est bornée et crois-

sances comparées (x > 0).
On a donc ∣ ∂ℓ

∂x
(x, t)∣ = o

t→+∞
( 1
t2
), pour tout t ∈ [1,+∞[, 1

t2
⩾ 0 et l’intégrale de Riemann

∫
+∞

1

1

t2
dt converge.

Ainsi, la fonction t↦ ∂ℓ

∂x
(x, t) est intégrable sur ]0,+∞[.

3 Pour tout a ∈]0,+∞[, on dispose la domination :

∀(x, t) ∈ [a,+∞[×R∗
+
↦ ∣ ∂

2ℓ

∂x2
(x, t)∣ ⩽ ψa(t) ∶= 2e−ta,

et la fonction ψa est continue par morceaux et intégrable sur R∗
+

d’après le cours (intégrale de
référence avec a > 0) (et bien indépendante de x).

On conclut que L est de classe C2 sur l’intervalle [a,+∞[, et qu’on a les formules suivantes, valables
pour tout x ∈ [a,+∞[ :

L′(x) = −∫
+∞

0

1 − cos(t)
t

e−tx dt,

L′′(x) = ∫
+∞

0
(1 − cos(t))e−tx dt.

L’appartenance à la classe C2 étant une propriété locale et ceci étant vrai pour tout a > 0, on en
déduit que :

l’application L est de classe C2 sur l’intervalle ]0,+∞[ et les formules sont valables pour tout x ∈ ]0,+∞[.

Q6. Vérifions les hypothèses du théorème de convergence dominée à paramètre continu.

1 Soit t ∈]0,+∞[. On a lim
x→+∞

e−tx = 0 donc par produit avec une constante, lim
x→+∞

ℓ(x, t) = 0.
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2 On a la domination ∀(x, t) ∈ R+ × R∗+, ∣ℓ(x, t)∣ ⩽ k(t), où la fonction k, définie à la première
question, est intégrable sur R∗

+
(elle est bien indépendante de x).

On en déduit que
lim

x→+∞
L(x) = 0.

1 Soit t ∈]0,+∞[. On a lim
x→+∞

e−tx = 0 donc par produit avec une constante, lim
x→+∞

∂ℓ

∂x
(x, t) = 0.

2 Notons que l’on peut utiliser le théorème avec [1,+∞[ comme intervalle pour x car +∞ est
bien une borne de cet intervalle.
On a la domination ∀(x, t) ∈ [1,+∞[×R∗

+
, ∣ ∂ℓ
∂x
(x, t)∣ = 1 − cos(t)

t
e−tx ⩽ 1 − cos(t)

t
e−t = ∣ ∂ℓ

∂x
(1, t)∣,

et t↦ ∂ℓ

∂x
(1, t) est intégrable sur R∗

+
(vu en Q5.) (elle est bien indépendante de x).

On en déduit que
lim

x→+∞
L′(x) = 0.

Q7. Pour tout réel x > 0, on a (la convergence de chacune des intégrales écrites ci-dessous justifie le
calcul, on a en effet ∣e(i−x)t∣ = e−xt d’où la convergence absolue) :

L′′(x) = ∫
+∞

0
e−tx dt −Re(∫

+∞

0
e(i−x)t dt)

= 1

x
−Re [ 1

−x + i
eite−xt]

+∞

0

= 1

x
+Re( 1

−x + i
) (t↦ eit est bornée donc lim

t→+∞

1

−x + i
eite−xt = 0)

= 1

x
+Re(−x − i

x2 + 1
) = 1

x
− x

x2 + 1
⋅

Pour tout x ∈]0,+∞[, L′′(x) = 1

x
− x

x2 + 1
.

Q8. D’après la formule ci-dessus, il existe une constante c′ ∈ R telle que

∀x ∈ ]0,+∞[, L′(x) = ln(x) − 1

2
ln(x2 + 1) + c′ = −1

2
ln(1 + 1

x2
) + c′.

Comme on sait que lim
x→+∞

L′(x) = 0, on en déduit que c′ = 0, donc que

∀x ∈ ]0,+∞[, L′(x) = −1
2
ln(1 + 1

x2
) ⋅

Notons h ∶ x↦ −x
2
ln(1 + 1

x2
) − arctan(x).

La fonction h est dérivable sur R∗
+

et on a pour tout x > 0 :

h′(x) = −1
2
ln(1 + 1

x2
) − x

2
(−2
x3
) x2

x2 + 1
− 1

x2 + 1
= −1

2
ln(1 + 1

x2
) = L′(x).

On en déduit qu’il existe une constante c ∈ R telle que

∀x ∈ ]0,+∞[, L(x) = −x
2
ln(1 + 1

x2
) − arctan(x) + c.

Comme −x
2
ln(1 + 1

x2
) ∼
x→+∞

−x
2

1

x2
= − 1

2x
, on en déduit que lim

x→+∞
L(x) = −π

2
+ c.

Comme on sait par ailleurs que lim
x→+∞

L(x) = 0, on conclut que c = π
2
, donc que :

∀x ∈ ]0,+∞[, L(x) = −x
2
ln(1 + 1

x2
) − arctan(x) + π

2
⋅
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Comme la fonction L est continue en zéro, on obtient, en prenant la limite du membre de droite en
zéro, que L(0) = π

2
.

En utilisant le définition de la fonction L, on trouve finalement que :

L(0) = ∫
+∞

0

1 − cos(t)
t2

dt =K = ∫
+∞

0

sin(t)
t
= π
2
⋅

Q9. La fonction m ∶ u↦ ln(u)
u − 1

est continue par morceaux sur ]0,1[.
⋆ On a ∣m(u)∣ ∼

u→0
− ln(u).

Comme pour tout u ∈]0,1[, − ln(u) ⩾ 0 et l’intégrale ∫
1

0
ln(u)du converge (par le cours), on en déduit

par comparaison que m est intégrable en 0.

⋆ On a ∣m(u)∣ = ln(1 + u − 1)
u − 1

∼
u→1

u − 1
u − 1

= 1.
La fonction m est donc prolongeable par continuité en 1 donc elle est intégrable en 1.
Ainsi :

la fonction u↦ ln(u)
u − 1

est intégrable sur ]0,1[.

Q10. Soit k ∈ N.
La fonction mk ∶ u ↦ uk ln(u) est continue par morceaux sur ]0,1]. On a par intégration par parties
(les fonctions en jeu sont bien de classe C1) pour tout ε ∈ ]0,1] :

∫
1

ε
uk ln(u)du = [u

k+1 ln(u)
k + 1

]
1

ε

− 1

k + 1 ∫
1

ε
uk du = ε

k+1 ln(ε)
k + 1

− 1 − εk+1
(k + 1)2

Ð→
ε→0
− 1

(k + 1)2

par croissances comparées.
Ainsi :

l’intégrale ∫
1

0
uk ln(u)du converge et a pour valeur ∫

1

0
uk ln(u)du = − 1

(k + 1)2
.

Q11. La somme de la série géométrique ∀u ∈ ] − 1,1[, 1

1 − u
=
+∞

∑
k=0

uk permet d’écrire que

∀u ∈ ]0,1[, m(u) =
+∞

∑
k=0

mk(u), où mk(u) = uk ln(u).

Vérifions les hypothèses du théorème d’intégration terme à terme.
1 La série de fonctions ∑k⩾0mk converge simplement sur ]0,1[.
2 D’après la question précédente, pour tout k ∈ N, la fonction mk est intégrable sur ]0,1[ (puis-

qu’elle est de signe constant sur ]0,1[ donc son intégrale sur ]0,1[ est absolument convergente).

3 La série numérique de terme général ∫
1

0
∣mk(u)∣du converge puisqu’il s’agit de la série de

terme général
1

(k + 1)2
(série de Riemann avec 2 > 1 après glissement d’indice).

On en déduit que m est intégrable sur ]0,1[ (on le savait déjà) et on a l’égalité

∫
1

0

ln(u)
u − 1

du = ∫
1

0
(
+∞

∑
k=0

mk(u))du =
+∞

∑
k=0
∫

1

0
mk(u)du =

+∞

∑
k=0

1

(k + 1)2
⋅

Ainsi :

∫
1

0

ln(u)
u − 1

du =
+∞

∑
k=0

1

(k + 1)2
=
+∞

∑
k=1

1

(k)2
= π

2

6
.

Q12. Soit (fn) une suite de fonctions continues par morceaux, définies sur un intervalle I de R, à
valeurs dans le corps K des réels ou des complexes.
On suppose que :

4



1 La suite (fn) converge simplement sur I vers une fonction f (continue par morceaux sur I).
2 Il existe une fonction φ intégrable sur I telle que :

∀n ∈ N, ∀t ∈ I, ∣fn(t)∣ ⩽ φ(t).

Alors f et les fn sont intégrables sur I, la suite de terme général ∫I fn converge, et on a

lim
n→+∞

∫
I
fn = ∫

I
f.

Q13. On applique le théorème de convergence dominée à la suite de fonctions (fn) définies par
∀t ∈ [0,1[, fn(t) = f(tn).

1 Soit t ∈ [0,1[.
On a lim

n→+∞
tn = 0 et donc lim

n→+∞
f(tn) = f(0) par continuité de f en 0.

Ainsi, la suite (fn) converge simplement sur [0,1[ vers la fonction constante f ∶ t↦ f(0)
2 Comme f est continue sur le segment [0,1], elle y est bornée.

La fonction constante φ = ∥f∥[0,1]∞ est continue par morceaux sur [0,1] et donc intégrable sur
[0,1[ et elle vérifie :

∀n ∈ N, ∀t ∈ [0,1[, ∣fn(t)∣ ⩽ φ(t) (puisque tn ∈ [0,1]).

On en déduit que :

lim
n→+∞

In = ∫
1

0
f(0)dt = f(0).

Q14. Soit n ∈ N∗. On pose le changement de variable t = u1/n dans l’intégrale convergente ∫
1

0
f(tn)dt

(car t ↦ f(tn) est continue sur le segment [0,1]). On obtient une nouvelle intégrale qui est aussi
convergente et de même valeur.
On a alors :

∫
1

0
f(tn)dt = 1

n ∫
1

0
f(u)u−1+1/n du, ou encore nIn = ∫

1

0

f(u)
u

u1/n du.

Pour tout n ∈ N∗, on pose gn ∶ u↦
f(u)
u

u1/n.
Vérifions les hypothèses du théorème de convergence dominée.

1 Soit u ∈]0,1].

Comme u1/n = exp( ln(u)n ) tend vers 1 quand n→ +∞, on a lim
n→+∞

gn(u) =
f(u)
u

.

Ainis, la suite (gn) converge simplement sur ]0,1] vers la fonction g ∶ u↦ f(u)
u

.

2 On dispose de l’hypothèse de domination ∀n ∈ N∗,∀u ∈]0,1], ∣gn(u)∣ ⩽ ∣g(u)∣ car 0 ⩽ u1/n ⩽ 1.
Or, ∣g∣ est intégrable sur ]0,1] par hypothèse (puisque g l’est).

On conclut que :

lim
n→+∞

nIn = ∫
1

0

f(u)
u

du.

Q15. La question précédente (applicable puisque le sinus est une fonction continue sur R+ et que

∫
1

0

sin(u)
u

du converge absolument) donne :

lim
n→+∞

n∫
1

0
sin(tn)dt = ∫

1

0

sin(u)
u

du.

On remarque que u ↦ sinu

u
est continue et positive, non identiquement nulle sur ]0,1] et donc son

intégrale est strictement positive donc n’est pas nulle.
Ainsi :

∫
1

0
sin(tn)dt ∼

n→+∞

1

n ∫
1

0

sin(u)
u

du.
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MINES Maths 1 PC 2024
Eléments de correction

1 Ź Soit f : R Ñ R, et P : R Ñ R une fonction polynômiale en |x|, telle que :

@x P R, |fpxq| ď |P pxq| avec P pxq “

d
ÿ

k“0

ak|x|k

Notons C “

d
ÿ

k“0

|ak|.

Pour tout x P R tel que |x| ď 1, par l’inégalité triangulaire : distinguer les cas |x| ď 1 et
|x| ą 1 est assez classique

|P pxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

k“0

ak|x|k

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d
ÿ

k“0

|ak||x|k ď

d
ÿ

k“0

|ak| “ C ď Cp1 ` |x|dq

et pour tout x P R, tel que |x| ą 1, si k P rr0, dss, |x|k ď |x|d ; donc par l’inégalité triangulaire :

|P pxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

k“0

ak|x|k

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d
ÿ

k“0

|ak||x|k ď

d
ÿ

k“0

|ak||x|d “ C|x|d ď Cp1 ` |x|dq

Par conséquent, pour tout x P R,

|fpxq| ď |P pxq| ď Cp1 ` |x|dq

Donc f est à croissance lente.

Autre rédaction possible : on a P pxq „
|x|Ñ`8

ad|x|d donc lim
|x|Ñ`8

|P pxq|

1 ` |x|d
“ |ad| : la fonction continue autre rédaction en étudiant

les limites en ˘8 à l’aide
de l’équivalent
P pxq „ ad|x|d

x ÞÑ
|P pxq|

1`|x|d
possède une limite finie en ˘8 donc elle bornée sur R.

Cette dernière propriété n’étant pas explicitement dans le programme officiel, il faudrait rédiger un
peu plus précisément :

lim
|x|Ñ`8

|P pxq|

1 ` |x|d
“ |ad| donc il existe A P R` tels que pour tout |x| ě A,

|P pxq|

1 ` |x|d
ď |ad| ` 1.

Et x ÞÑ
P pxq

1 ` |x|d
est continue sur le segment r´A,As, donc elle est bornée sur r´A,As : il existe

K ě 0 tel que pour tout |x| ď A,
|P pxq|

1 ` |x|d
ď K.

On a alors en posant C “ maxp|ad| ` 1,Kq, pour tout x P R, |P pxq| ď Cp1 ` |x|dq.

2 Ź Soit f P C0pRq X CLpRq.

La fonction φ étant continue, on a fφ P C0pRq par produit de fonctions continues.

Soit C P R` et k P N tel que pour tout x P R, |fpxq| ď Cp1 ` |x|kq.

Alors pour tout x P R,
|fpxqφpxq| ď Cp1 ` |x|kqφpxq

On a par croissance comparée lim
|x|Ñ`8

x2e´x2
{2 “ 0 et lim

|x|Ñ`8
|x|k`2e´x2

{2 “ 0 ; par conséquent, comparaison classique

fpxqφpxq “ o
|x|Ñ`8

ˆ

1

x2

˙

lim
|x|Ñ`8

Cx2p1`|x|kqφpxq “ 0 donc Cp1`|x|kqφpxq “ o
|x|Ñ`8

ˆ

1

x2

˙

d’où fpxqφpxq “ o
|x|Ñ8

ˆ

1

x2

˙

Or la fonction x ÞÑ 1
x2 est intégrable en `8 et en ´8 (intégrale de Riemann) donc fφ est intégrable

en `8 et en ´8 d’où fφ est intégrable sur R c’est à dire : les résultats des questions
1 et 2 vont être très
utiles dans les questions
qui suivent pour justifier
l’intégrabilité de certaines
fonctions

f P L1pφq

3 Ź ‚ la fonction nulle appartient clairement à CLpRq.

‚ Soit f, g deux fonctions appartenant à CLpRq et α P R.
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Soit Cf , Cg P R` et kf , kg P N tel que :

@x P R, |fpxq| ď Cf

`

1 ` |x|kf
˘

et |gpxq| ď Cg

`

1 ` |x|kg
˘

Alors

@x P R, |αfpxq ` gpxq| ď |αfpxq| ` |gpxq| ď |α|Cf

`

1 ` |x|kf
˘

` Cg

`

1 ` |x|kg
˘

Donc αf ` g est majorée en valeur absolue par une fonction polynômiale en |x| donc d’après la stabilité par combinai-
son linéaire s’obtenait as-
sez facilement en utilisant
la question 1

la question 1, αf ` g P CLpRq.

CLpRq est donc stable par combinaison linéaire, et contient la fonction nulle ; CLpRq est donc un
sous-espace vectoriel de l’espace vectoriel FpR,Rq.

‚ Stabilité de CLpRq pour le produit. Soit f, g P CLpRq. On garde les notations précédentes,
Cf , Cg P R` et kf , kg P N.

On a :

@x P R, |fpxqgpxq| ď CfCg

`

1 ` |x|kf
˘ `

1 ` |x|kg
˘

Donc fg est majorée en valeur absolue par une fonction polynômiale en |x| d’où d’après la question l’utilisation de la question
1 était encore utile ici1, fg P CLpRq.

4 Ź Soit f P C0pRq X CLpRq. Soit x P R. Notons gx : y ÞÑ f
´

e´tx `
a

1 ´ e´2ty
¯

. Montrons que

gx P L1pφq.

On a gx P C0pRq par composée de fonctions continues, f étant continue.

De plus, f appartenant CLpRq, il existe C P R` et k P N tel que :

@y P R, |gxpyq| ď C

ˆ

1 `

ˇ

ˇ

ˇ
e´tx `

a

1 ´ e´2ty
ˇ

ˇ

ˇ

k
˙

ď C

ˆ

1 `

´

e´t|x| `
a

1 ´ e´2t|y|

¯k
˙

Donc gx est majorée par une fonction polynômiale en |y| donc gx est à croissante lente d’après la
question 1.

Donc gx P C0 X CLpRq donc gx P L1pφq d’après la question 2.

Par conséquent, l’intégrale
ż `8

´8

f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy est convergente, ce qui montre que

Ptpfqpxq est bien définie pour tout x P R.

‚ Linéarité de Pt. Soit f, g P C0pRq X CLpRq et α P R.

Par linéarité de l’intégrale :

Pt pαf ` gq “

ż `8

´8

pαf ` gq

´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

“ α

ż `8

´8

f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy `

ż `8

´8

g
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

“ αPtpfq ` Ptpgq

5 Ź Soit f P C0pRq X CLpRq. Soit x P R.

Soit C ě 0 et k P N, tel que pour tout x P R, |fpxq| ď C
`

1 ` |x|k
˘

.

On vérifie les hypothèses du théorème de convergence dominée à paramètre continu :

‚ soit y P R. Par continuité de f en y, lim
tÑ`8

f
´

e´tx `
a

1 ´ e´2ty
¯

“ fpyq donc

lim
tÑ`8

f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq “ fpyqφpyq

2



‚ pour tout t P R` et y P R, application du théorème
de convergence dominée, il
faut majorer indépendam-
ment de t en utilisant :
e´t ď 1 et

?
1 ´ e´2t ď 1

ˇ

ˇ

ˇ
f

´

e´tx `
a

1 ´ e´2ty
¯

φpyq

ˇ

ˇ

ˇ
ď C

ˆ

1 `

ˇ

ˇ

ˇ
e´tx `

a

1 ´ e´2ty
ˇ

ˇ

ˇ

k
˙

φpyq

ď C

ˆ

1 `

´

e´t|x| `
a

1 ´ e´2t|y|

¯k
˙

φpyq

ď C
´

1 ` p|x| ` |y|q
k
¯

φpyq

Et la fonction y ÞÑ C
´

1 ` p|x| ` |y|q
k
¯

φpyq est intégrable car P : y ÞÑ C
´

1 ` p|x| ` |y|q
k
¯

est
polynômiale en |y| donc à croissance lente d’après 1 et continue donc P P L1pφq d’après 2.

Par conséquent, d’après le théorème de convergence dominée à paramètre continu :

lim
tÑ`8

Ptpfqpxq “ lim
tÑ`8

ż `8

´8

f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

“

ż `8

´8

lim
tÑ`8

f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

“

ż `8

´8

f pyqφpyq dy

6 Ź Soit f P C0pRq X CLpRq. Montrons que Ptpfq P C0pRq par le théorème de continuité des intégrales
à paramètres.

‚ Pour tout y P R, x ÞÑ f
`

e´tx `
?
1 ´ e´2ty

˘

φpyq est continue sur R par continuité de f .

‚ Hypothèse de domination locale : pour tout a ą 0, pour tout x P r´a, as, et pour tout y P R, théorème de continuité des
intégrales à paramètres, il
faut majorer ici indépen-
damment de x

ˇ

ˇ

ˇ
f

´

e´tx `
a

1 ´ e´2ty
¯

φpyq

ˇ

ˇ

ˇ
ď C

ˆ

1 `

´

e´t|x| `
a

1 ´ e´2t|y|

¯k
˙

φpyq

ď C
´

1 ` pa ` |y|q
k
¯

φpyq

Et la fonction (indépendante de x), y ÞÑ C
´

1 ` pa ` |y|q
k
¯

φpyq est intégrable car P : y ÞÑ

C
´

1 ` pa ` |y|q
k
¯

est polynômiale en |y| et continue donc P P L1pφq d’après 1 et 2 (même
argument qu’à la question précédente).

Donc l’application Ptpfq : x ÞÑ

ż `8

´8

f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy est continue sur R.

De plus, pour tout x P R,

|Ptpfqpxq| ď

ż `8

´8

ˇ

ˇ

ˇ
f

´

e´tx `
a

1 ´ e´2ty
¯

ˇ

ˇ

ˇ
φpyq dy (ineg. triangulaire)

ď

ż `8

´8

C
´

1 ` p|x| ` |y|q
k
¯

φpyq dy car f P CLpRq et

#

e´t ď 1
?
1 ´ e2t ď 1

ď C

ż `8

´8

˜

1 `

k
ÿ

j“0

ˆ

k

j

˙

|y|k´j |x|j

¸

φpyq dy (binôme de Newton)

ď C

ż `8

´8

φpyq dy ` C
k

ÿ

j“0

„ˆ

k

j

˙
ż `8

´8

|y|k´jφpyq dy

ȷ

|x|j linéarité

ď C

˜

1 `

k
ÿ

j“0

aj |x|j

¸

avec aj “

ˆ

k

j

˙
ż `8

´8

|y|k´jφpyq dy

Donc Ptpfq est majorée en valeur absolue par une fonction polynômiale en |x|, indépendante de t.

Donc d’après la question 1, Ptpfq P CLpRq.

De plus, Ptpfq P C0pRq d’après la première partie de la question, donc Ptpfq P C0pRq XCLpRq donc
d’après la question 2, Ptpfq P L1pφq.

7 Ź Commençons par justifier la convergence de l’intégrale
ż `8

´8

f 1pxqg1pxqφpxq dx.
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f 1 et g1 sont continues et à croissante lente donc d’après la question 3, f 1g1 est à croissance lente
(et continue par produit de fonctions continues) : f 1g1 P C0pRq XCLpRq donc d’après la question 2,

f 1g1 P L1pφq d’où la convergence de l’intégrale
ż `8

´8

f 1pxqg1pxqφpxq dx.

On va effectuer une intégration par parties en remarquant que pf 1φq
1

“ Lpfqφ. attention à bien justifier la
convergence de l’une des
deux intégrales, et étudier
le crochet pour pouvoir
effectuer l’intégration par
parties

On a lim
|x|Ñ`8

f 1pxqφpxqgpxq “ 0 par croissance comparée car f 1g P CLpRq par produit de fonctions

à croissance lente.

Par conséquent, par le théorème d’intégration par parties, les intégrales
ş`8

´8
pf 1φq1g et

ş`8

´8
f 1φg1

sont de même nature (convergente) et :

ż `8

´8

Lpfqpxqgpxqφpxq dx “

ż `8

´8

`

f 1φ
˘1

pxqgpxq dx

“
“

f 1pxqφpxqgpxq
‰`8

´8
looooooooooomooooooooooon

“0

´

ż `8

´8

f 1pxqφpxqg1pxq dx

“ ´

ż `8

´8

f 1pxqg1pxqφpxq dx

8 Ź Soit f P C1pRq X CLpRq telle que f 1 P CLpRq. Soit x P R.

Notons pour pt, yq P R˚
` ˆ R, F pt, yq “ f

´

e´tx `
a

1 ´ e´2ty
¯

φpyq.

On a : on applique le théorème de
dérivation d’une intégrale à
paramètre

‚ pour tout t ą 0, y ÞÑ f
`

e´tx `
?
1 ´ e´2ty

˘

φpyq est intégrable sur R (déjà vu à la question
4).

‚ pour tout y P R, t ÞÑ F pt, yq est de classe C1 sur R˚
` car f P C1pRq et exp P C1pRq, et

t ÞÑ
?
1 ´ e´2t de classe C1 sur R˚

`.

‚ hypothèse de domination : soit a ą 0, pour tout pt, yq P ra,`8rˆR :

f 1 P CLpRq donc il existe C 1 ě 0 et k1 P N, tels que pour tout u P R, f 1puq ď C 1p1 ` |u|k
1

q

d’où :
ˇ

ˇ

ˇ

ˇ

BF

Bt
pt, yq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´e´tx `
e´2t

?
1 ´ e´2t

y

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ
f 1

´

e´tx `
a

1 ´ e´2ty
¯

ˇ

ˇ

ˇ
φpyq

ď

ˆ

e´t|x| `
e´2t

?
1 ´ e´2t

|y|

˙

C 1

ˆ

1 `

ˇ

ˇ

ˇ
e´tx `

a

1 ´ e´2ty
ˇ

ˇ

ˇ

k1 ˙

φpyq car f 1 P CLpRq

ď C 1

ˆ

|x| `
1

?
1 ´ e´2a

|y|

˙

´

1 ` p|x| ` |y|q
k1

¯

φpyq (inégalité triangulaire)

Et l’application y ÞÑ C 1

´

|x| ` 1?
1´e´2a

|y|

¯ ´

1 ` p|x| ` |y|q
k1

¯

φpyq est indépendante de t, inté-

grable sur R, car y ÞÑ C 1

´

|x| ` 1?
1´e´2a

|y|

¯ ´

1 ` p|x| ` |y|q
k1

¯

est une application polynômiale
en |y| et continue donc appartient à L1pφq d’après 1 et 2.

Les hypothèses du théorème de dérivation des intégrales à paramètres sont vérifiées, donc t ÞÑ

Ptpfqpxq est de classe C1 sur tout intervalle ra,`8rĂs0,`8r, donc sur R˚
` et :

@t P R˚
`,

BPtpfqpxq

Bt
“

ż `8

´8

ˆ

´xe´t `
e´2t

?
1 ´ e´2t

y

˙

f 1
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

9 Ź On applique à nouveau le théorème de dérivation des intégrales à paramètres (cas C2). théorème de dérivation des
intégrales à paramètres
(cas C2)

Ici, t P R` est fixé.

On note pour px, yq P R2, Gpx, yq “ f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq.

‚ pour tout y P R, x ÞÑ Gpx, yq est de classe C2 sur R par composée de fonctions C2 sur R, f
étant supposée de classe C2.

‚ pour tout x P R, les applications y ÞÑ Gpx, yq et y ÞÑ BG
Bx px, yq sont intégrables sur R ; en effet :

— y ÞÑ Gpx, yq est intégrable sur R (cf question 4)
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— pour tout y P R,
BG

Bx
px, yq “ e´tf 1

´

e´tx `
a

1 ´ e´2ty
¯

φpyq et f 1 P C0pRqXCLpRq, on en

déduit comme à la question 4 (en remplaçant f par f 1) que y ÞÑ f 1
´

e´tx `
a

1 ´ e´2ty
¯

φpyq

est intégrable sur R.

‚ hypothèse de domination. Pour tout x P r´a, as, pour tout y P R, technique de majoration
identique aux questions
précédentes

ˇ

ˇ

ˇ

ˇ

B2G

Bx2
px, yq

ˇ

ˇ

ˇ

ˇ

“ e´2t
ˇ

ˇ

ˇ
f2

´

e´tx `
a

1 ´ e´2ty
¯

ˇ

ˇ

ˇ
φpyq

ď e´2tC2

ˆ

1 `

´

e´t|x| `
a

1 ´ e´2t|y|

¯k2 ˙

φpyq car f2 P CLpRq

ď C2
´

1 ` p|x| ` |y|q
k2

¯

φpyq ď C2
´

1 ` pa ` |y|q
k2

¯

φpyq

Et l’application y ÞÑ C2
´

1 ` pa ` |y|q
k2

¯

φpyq est intégrable sur R pour les mêmes raisons que
celles données pour l’intégrabilité du majorant trouvé à la question précédente.

Par conséquent, Ptpfq : x ÞÑ

ż `8

´8

Gpx, yq dy est de classe C2 sur R et ,

@x P R,

$

’

’

’

&

’

’

’

%

Ptpfq1pxq “ e´t

ż `8

´8

f 1
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

Ptpfq2pxq “ e´2t

ż `8

´8

f2
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

10 Ź Soit f P C2pRq X CLpRq telle que f 1 et f2 soient à croissante lente.

Soit t P R˚
` et x P R.

On a

φ1pyq “ ´yφpyq et
d

dy

´

f 1pe´tx `
a

1 ´ e´2tyq

¯

“
a

1 ´ e´2tf2
´

e´tx `
a

1 ´ e´2ty
¯

et
lim

|y|Ñ`8
f 1

´

e´tx `
a

1 ´ e´2ty
¯

φpyq “ 0 car f 1 P CLpRq

Donc par intégration par parties :

e´2t

?
1 ´ e´2t

ż `8

´8

yf 1
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy “ e´2t

ż `8

´8

f2
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

“ Ptpfq2pxq

Donc d’après les questions 8 et 9, et linéarité de l’intégrale :

BPtpfqpxq

Bt
“

ż `8

´8

ˆ

´xe´t `
e´2t

?
1 ´ e´2t

y

˙

f 1
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

“ ´xPtpfq1pxq ` Ptpfq2pxq “ L pPtpfqq pxq

11 Ź Notons pour tout t ą 0, hptq “ t lnptq. h est de classe C1 sur R˚
`, et pour tout t ą 0, h1ptq “ lnptq`1.

On a h1ptq ě 0 ô lnptq ě ´1 ô t ě e´1 et lim
tÑ0`

t lnptq “ 0 par croissance comparée.

D’où le tableau de variations :

t

hptq

0 e´1 `8

00

´e´1´e´1

`8`8

Donc h est prolongeable par continuité en 0, en posant hp0q “ 0. On notera encore h la fonction
ainsi prolongée sur r0,`8r.

5



12 Ź Soit g P C0pRq X CLpRq à valeurs strictement positives telle que
ż `8

´8

gpxqφpxqdx “ 1.

L’application x ÞÑ h pgpxqqφpxq est continue sur R par continuité de g, h, φ et gpxq ą 0.

D’après la question précédente, pour tout t Ps0, 1s, |hptq| ď e´1 et h est croissante et positive sur
r1,`8r :

@x P R,
si gpxq ě 1 |h pgpxqq| “ h pgpxqq ď h

`

C
`

1 ` |x|k
˘˘

si gpxq ă 1 |hpgpxqq| ď e´1

Donc inégalité lnp1`uq ď u pour
tout u ą ´1

@x P R, |h pgpxqq| ď e´1 ` h
“

C
`

1 ` |x|k
˘‰

ď e´1 ` C
`

1 ` |x|k
˘ `

lnpCq ` ln
`

1 ` |x|k
˘˘

en supposant C ą 0

ď e´1 ` C
`

1 ` |x|k
˘ `

lnpCq ` |x|k
˘

car lnp1 ` |x|kq ď |x|k

Donc la fonction continue h ˝ g est majorée en valeur absolue par une fonction polynômiale en |x|, toujours l’utilisation des
questions 1 et 2 pour jus-
tifier l’intégrabilité

elle appartient donc (question 1) à C0pRq X CLpRq donc d’après la question 2, h ˝ g P L1pφq :

par conséquent x ÞÑ ln pgpxqq gpxqφpxq est intégrable sur R donc Entφpgq est bien définie.

13 Ź Soit t P R`. on applique la question
précédente en vérifiant que
Ptpfq vérifie bien toutes les
hypothèses

‚ D’après les questions 1 et 6, Ptpfq P C0pRq X CLpRq.

‚ Ptpfq est à valeurs strictement positives , car définie par l’intégrale d’une fonction continue à
valeurs strictement positives : pour tout y P R, f

`

e´tx `
?
1 ´ e´2ty

˘

φpyq ą 0 car f à valeurs
strictement positives.

‚ Et d’après le résultat admis après la question 6 : cette hypothèse n’a pas ser-
vie à la question précédente
mais l’entropie n’est défi-
nie dans l’énoncé que pour
des fonctions vérifiant cette
égalité

ż `8

´8

Ptpfqpxqφpxqdx “

ż `8

´8

fpxqφpxqdx “ 1

Donc Ptpfq vérifie les hypothèses de la question précédente, par conséquent Sptq “ Entφ pPtpfqq est
bien définie.

14 Ź On suit l’indication. Soit x P R. on note F pt, yq “ f
`

e´tx `
?
1 ´ e´2ty

˘

φpyq pour t P R` et y P R.
On a :

‚ pour tout y P R, t ÞÑ F pt, yq est continue sur R` ;

‚ pour tout t P R` et y P R,

|F pt, yq| “

ˇ

ˇ

ˇ
f

´

e´tx `
a

1 ´ e´2ty
¯

ˇ

ˇ

ˇ
φpyq ď C

´

1 ` p|x| ` |y|q
k
¯

φpyq

Et y ÞÑ C
´

1 ` p|x| ` |y|q
k
¯

φpyq est intégrable sur R (cf question 5).

Donc d’après le théorème de continuité des intégrales à paramètre, t ÞÑ Ptpfq est continue sur R`.

Montrons maintenant que S : t ÞÑ Entφ pPtpfqq est continue.

Notons Hpt, xq “ ln pPtpfqpxqqPtpfqpxqφpxq “ h pPtpfqpxqqφpxq.

‚ pour tout x P R, t ÞÑ Hpt, xq est continue par continuité de t ÞÑ Ptpfqpxq (à valeurs strictement
positives), continuité de h et de φ.

‚ hypothèse de domination : pour tout t P R`, pour tout x P R, l’utilisation du résultat de
la question 6 permettait
de majorer simplement
Ptpfqpxq indépendamment
de t

en utilisant que Ptpfq est majorée par une fonction polynômiale en |x|, indépendante de t

d’après la question 6, on peut alors majorer d’après la question 1, |Ptpfqpxq| ď C
`

1 ` |x|k
˘

et
par la majoration déjà vue à la question 12 :

|h pPtpfqpxqq| ď e´1 ` h
“

C
`

1 ` |x|k
˘‰

Et par conséquent,

|Hpt, xq| “ |h pPtpfqpxq|φpxq ď
`

e´1 ` h
“

C
`

1 ` |x|k
˘‰˘

φpxq

6



Et on a déjà justifié à la question 12 que l’application x ÞÑ
`

e´1 ` h
“

C
`

1 ` |x|k
˘‰˘

φpxq est
intégrable sur R.

On en déduit par le théorème de continuité d’une intégrale à paramètre, S est continue sur R`.

15 Ź Pour tout x P R,

P0pfqpxq “

ż `8

´8

f pxqφpyqdy “ fpxq

ż `8

´8

φpyqdy “ fpxq

Par conséquent,

Sp0q “

ż `8

´8

ln pP0pfqpxqqP0pfqpxqφpxqdx “

ż `8

´8

ln pfpxqq fpxqφpxqdx “ Entφpfq

Pour montrer que lim
tÑ`8

Sptq “ 0, on applique le théorème de convergence dominée à paramètre
continu :

‚ pour tout x P R, d’après la question 5, lim
tÑ`8

Ptpfqpxq “

ż `8

´8

fpyqφpyqdy “ 1 donc

lim
tÑ`8

ln pPtpfqpxqqPtpfqpxqφpxq “ 0

‚ pour tout t P R˚
`, pour tout x P R, en utilisant la même majoration qu’à la question 14

|ln pPtpfqpxqqPtpfqpxqφpxq| ď
`

e´1 ` h
“

C
`

1 ` |x|k
˘‰˘

φpxq

Et x ÞÑ
`

e´1 ` h
“

C
`

1 ` |x|k
˘‰˘

φpxq est intégrable sur R (cf question 12).

Donc d’après le théorème de convergence dominée à paramètre continu :

lim
tÑ`8

Sptq “

ż `8

´8

lim
tÑ`8

ln pPtpfqpxqqPtpfqpxqφpxqdx “ 0

16 Ź Conséquence immédiate de l’égalité de la question 10.

17 Ź Soit t P R˚
`. On utilise la question précédente et la question 7 comme indiqué dans l’énoncé :

´S1ptq “ ´

ż `8

´8

L pPtpfqpxqq r1 ` ln pPtpfqpxqqsφpxq dx

“

ż `8

´8

Ptpfq1pxq p1 ` ln ˝Ptpfqq
1
pxqφpxq dx d’après q7

“

ż `8

´8

Ptpfq1pxq
Ptpfq1pxq

Ptpfqpxq
φpxq dx

“ e´2t

ż `8

´8

Ptpf
1qpxq2

Ptpfqpxq
φpxq dx car Ptpfq1pxq “ e´tPtpf

1qpxq d’après q10

18 Ź Soit t P R˚
`.

D’après l’inégalité de Cauchy-Schwarz appliqué dans l’espace euclidien C1pRq X CLpRq muni du

produit scalaire pf |gq “

ż `8

´8

fpyqgpyqφpyq, pour tout x P R :

Ptpf
1q2pxq “

ˆ
ż `8

´8

f 1
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

˙2

“

¨

˝

ż `8

´8

c

f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq

»

–

f 1
`

e´tx `
?
1 ´ e´2ty

˘
a

φpyq
b

f
`

e´tx `
?
1 ´ e´2ty

˘

fi

fl dy

˛

‚

2

ď

ˆ
ż `8

´8

f
´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

˙ ˆ
ż `8

´8

f 12

f

´

e´tx `
a

1 ´ e´2ty
¯

φpyq dy

˙

ď PtpfqpxqPt

ˆ

f 12

f

˙

pxq

7



Or Ptpfqpxq ą 0 d’où
Ptpf

1q2pxq

Ptpfqpxq
ď Pt

ˆ

f 12

f

˙

pxq ; donc par croissance de l’intégrale et la question

précédente :

´S1ptq “ e´2t

ż `8

´8

Ptpf
1qpxq2

Ptpfqpxq
φpxq dx ď e´2t

ż `8

´8

Pt

ˆ

f 12

f

˙

pxqφpxq dx

19 Ź D’après le résultat admis entre la question 6 et 7, appliqué à la fonction
f 12

f
P C0pRq X CLpRq

(hypothèse faite dans cette partie) :

@t P R`,

ż `8

´8

Pt

ˆ

f 12

f

˙

pxqφpxq dx “

ż `8

´8

f 12pxq

fpxq
φpxq dx

Donc d’après la question précédente,

@t P R`, ´S1ptq ď e´2t

ż `8

´8

f 12pxq

fpxq
φpxq dx

20 Ź On a d’après la question 15 et continuité de S en 0 :

ż `8

0

´S1ptq dt “ Sp0q ´ lim
tÑ`8

Sptq “ Entφpfq

Et
ż `8

0

e´2t dt “
1

2
donc d’après la question précédente et par croissance de l’intégrale en notant

K “

ż `8

´8

f 12pxq

fpxq
φpxq dx :

ż `8

0

´S1ptq dt ď K

ż `8

0

e´2t dt i.e. Entφpfq ď
1

2

ż `8

´8

f 12pxq

fpxq
φpxq dx

8


