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ESPACES PROBABILISÉS
Cours

I. Rappels sur les espaces probabilisés finis

▸ On appelle expérience aléatoire une expérience qui, reproduite dans des conditions
identiques, peut conduire à des résultats différents non prévisibles à l’avance.

▸ On appelle univers l’ensemble des résultats observables - ou issues possibles - d’une
expérience aléatoire.

Définition 1

▸ On utilise habituellement les notations Ω pour l’univers et ω pour l’un de ses éléments.
▸ En première année, vous n’avez étudié que le cas où l’univers Ω est un ensemble fini.

Exemple : On lance un dé à 6 faces. On choisit dans ce cas comme univers Ω = {1,2,3,4,5,6}.

On appelle événement un fait attaché à l’expérience aléatoire dont on peut dire suivant
le résultat observé s’il s’est réalisé ou non. On identifie un événement avec l’ensemble des
issues pour lesquelles il se réalise. Un événement est donc aussi une partie de l’univers Ω.

Définition 2

Exemple : Soit A l’événement « Obtenir un chiffre pair ». On a A = {2,4,6}.

▸ Les opérations sur les événements correspondent à des opérations sur les parties de Ω.
On utilise un vocabulaire spécifique aux événements (cf page suivante).

▸ Un événement est une partie de Ω.
Réciproquement, lorsque Ω est fini, on considère que toute partie de Ω est un événement.
L’ensemble P(Ω) des parties de Ω représente donc l’ensemble des événements.

Soit Ω un ensemble fini.
▸ On appelle probabilité sur Ω toute application P ∶P(Ω) → [0,1] vérifiant :

1 P (Ω) = 1,
2 Additivité : ∀(A,B) ∈ (P(Ω))2 vérifiant A∩B = ∅, on a P (A∪B) = P (A)+P (B).

▸ Pour A ∈P(Ω), on dit alors que P (A) est la probabilité de l’événement A.

Définition 3
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On rappelle le cas particulier de la probabilité uniforme, utilisée en situation d’équiprobabilité.

▸ Deux événements sont dits équiprobables lorsqu’ils ont la même probabilité.
▸ Il y a équiprobabilité lorsque tous les événements élémentaires sont équiprobables.
▸ Soit Ω un ensemble fini.

Il existe une unique probabilité P sur Ω telle qu’il y ait équiprobabilité.
Elle est appelée la probabilité uniforme et elle vérifie pour tout événement A :

P (A) = Card(A)
Card(Ω) =

nombre de cas favorables (c’est-à-dire où A se réalise)
nombre de cas possibles

.

Définition/Proposition 4

Dans le cas général, on peut définir une probabilité sur un ensemble fini en définissant la probabilité
de chaque événément élémentaire.

Soit Ω un ensemble fini.
Si (pω)ω∈Ω est une famille de réels positifs vérifiant ∑

ω∈Ω
pω = 1 alors il existe une unique

probabilité P sur Ω telle que pour tout ω ∈ Ω, P ({ω}) = pω.

Proposition 5

Soit Ω un ensemble fini. Soit P une probabilité sur Ω.
On dit que (Ω,P(Ω), P ) - ou (Ω, P ) - est un espace probabilisé fini.

Définition 6

On dispose d’un cadre théorique pour étudier une expérience aléatoire avec un univers fini :
(Ω,P(Ω), P )

où : ⋆ Ω désigne l’univers,
⋆ P(Ω) représente l’ensemble des événements considérés,
⋆ P désigne la probabilité choisie.

C’est une modélisation de l’expérience aléatoire.

Exemple 1 : On lance à trois reprises une pièce équilibrée.
Quelle est la probabilité d’obtenir exactement deux face ?

Exemple 2 : Une urne contient 5 boules blanches et 10 boules noires.
1. On tire au hasard successivement et avec remise 2 boules de l’urne.

Quelle est la probabilité d’obtenir une boule blanche et une boule noire dans cet ordre ?
Quelle est la probabilité d’obtenir une boule blanche et une boule noire dans un ordre quel-
conque ?

2. Mêmes questions dans le cas de tirages sans remise.
3. On tire simultanément 5 boules de l’urne.

Quelle est la probabilité d’obtenir 2 boules blanches et 3 boules noires ?
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II. Cas général

On cherche désormais à modéliser une expérience aléatoire d’univers Ω non néssairement fini.

Exemples :
▸ On lance un dé à six faces et on s’arrête lorsqu’on obtient 6.

On choisit de représenter l’expérience par le nombre de lancers effectués.
On considère comme univers Ω = N∗ ∪ {+∞}, +∞ désignant le cas où on n’obtient jamais 6
(Ω est dénombrable).

▸ On s’intéresse à la durée de vie d’un atome radioactif.
On choisit dans ce cas comme univers Ω = [0,+∞[ (Ω n’est pas dénombrable).

A. Tribu

Lorsque Ω est un ensemble fini, on modélise l’expérience aléatoire en considérant que l’ensemble des
événements étudiés est P(Ω). Lorsque Ω est un ensemble infini non dénombrable, l’ensemble P(Ω)
est « trop gros » et construire une probabilité P ∶P(Ω) → [0,1] pose des problèmes théoriques. On
décide alors de modéliser l’ensemble des événements considérés par une tribu dont voici la définition.

Soit Ω un ensemble. Soit A un sous-ensemble de P(Ω).
On dit que A est une tribu sur Ω lorsque :
▸ Ω ∈ A ,
▸ A est stable par passage au complémentaire : pour tout A ∈ A , on a A ∈ A ,
▸ A est stable par union dénombrable :

pour toute famille dénombrable (Ai)i∈I d’éléments de A , on a ⋃
i∈I

Ai ∈ A .

Définition 7

Exemples : Soit Ω un ensemble.
▸ P(Ω) est une tribu.
▸ {∅,Ω} est une tribu.
▸ Si A est un sous-ensemble de Ω alors {∅,A,A,Ω} est une tribu.

Soit Ω un ensemble et A une tribu sur Ω.
▸ ∅ ∈ A .
▸ A est stable par union finie et intersection finie :

pour toute famille finie (A1, . . . ,An) d’éléments de A , on a
n

⋃
i=1

Ai ∈ A et
n

⋂
i=1

Ai ∈ A .

▸ A est stable par intersection dénombrable :
pour toute famille dénombrable (Ai)i∈I d’éléments de A , on a ⋂

i∈I
Ai ∈ A .

Proposition 8
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Décider de représenter l’ensemble des événements considérés par la tribu A , signifie qu’il est équi-
valent d’écrire :

A ∈ A ou A est un événement.
D’après les propriétés d’une tribu, toutes les opérations « habituelles » entre des événements donnent
bien toujours un événement.

Exemple 3 : Soit A et B deux événements.
On considère les ensembles A∖B (appelé différence de A et B) et A∆B (appelé différence symétrique
de A et B) définis par :

A ∖B = {ω ∈ Ω; ω ∈ A et ω ∉ B} , A∆B = {ω ∈ Ω; ω ∈ A ∪B et ω ∉ A ∩B}.
Montrer que A ∖B et A∆B sont des événements et préciser quand ils se réalisent.

Précisons ce que signifient les événements ⋃
i∈I

Ai et ⋂
i∈I

Ai avec I dénombrable.

Soit (Ai)i∈I une famille dénombrable d’événements.
▸ ⋃

i∈I
Ai est l’événement qui se réalise lorsque l’un au moins des Ai se réalise.

En termes ensemblistes, pour ω ∈ Ω : ω ∈ ⋃
i∈I

Ai⇔∃i ∈ I tel que ω ∈ Ai.

▸ ⋂
i∈I

Ai est l’événement qui se réalise lorsque tous les Ai se réalisent.

En termes ensemblistes, pour ω ∈ Ω : ω ∈ ⋂
i∈I

Ai⇔∀i ∈ I , ω ∈ Ai.

Définition 9

On notera que la distributivité et les lois de Morgan, connues pour les unions et intersections finies,
sont encore vraies avec les unions et intersections dénombrables.
Si B est un événement, on a :

B ∩ (⋃
i∈I

Ai) = ⋃
i∈I
(B ∩Ai) et B ∪ (⋂

i∈I
Ai) = ⋂

i∈I
(B ∪Ai).

On a :
⋃
i∈I

Ai = ⋂
i∈I

Ai et ⋂
i∈I

Ai = ⋃
i∈I

Ai.

Exemple 4 : On lance une pièce équilibrée une infinité de fois.
1. Déterminer l’univers de cette expérience aléatoire. Est-il dénombrable ?
2. Soit A : « On n’obtient que des face » et B : « On obtient au moins une fois pile ».

Exprimer A et B en fonction des événements Fk : « On obtient face au k-ème lancer » (k ∈ N∗).

On appelle système complet d’événements toute famille (Ai)i∈I au plus dénombrable d’évé-
nements telle que quelle que soit l’issue de l’expérience aléatoire, un et un seul des Ai est
réalisé.
En d’autres termes, c’est une famille d’événements deux à deux incompatibles et d’union Ω
c’est-à-dire vérifiant :

∀(i, j) ∈ I2 avec i ≠ j, Ai ∩Aj = ∅ et ⋃
i∈I

Ai = Ω.

Définition 10
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Soit Ω un ensemble. Soit A une tribu sur Ω.
On dit que (Ω,A ) est un espace probabilisable.

Définition 11

B. Probabilité

1. Définitions

Soit Ω un ensemble et A une tribu sur Ω.
▸ On appelle probabilité sur (Ω,A ) toute application P ∶ A → [0,1] vérifiant :

1 P (Ω) = 1,
2 σ-additivité : pour toute famille dénombrable (Ai)i∈I d’événements deux à deux

incompatibles, on a P (⋃
i∈I

Ai) = ∑
i∈I

P (Ai).

▸ Pour A ∈ A , on dit que P (A) est la probabilité de l’événement A.

Définition 12

Notons que la somme ∑
i∈I

P (Ai) ci-dessus est à comprendre au sens des familles sommables et qu’on

a nécessairement dans ce cas ∑
i∈I

P (Ai) < +∞.

Dans le cas particulier où I = N, cela signifie que la série∑
n⩾0

P (An) converge et P (
+∞
⋃
n=0

An) =
+∞
∑
n=0

P (An).

Soit Ω un ensemble, A une tribu sur Ω et P une probabilité sur (Ω,A ).
On dit que (Ω,A , P ) est un espace probabilisé.

Définition 13

(Ω,A , P ) est une modélisation de l’expérience aléatoire étudiée où :
⋆ l’ensemble Ω désigne l’univers,
⋆ la tribu A représente l’ensemble des événements considérés,
⋆ P est la probabilité choisie.

Si Ω est au plus dénombrable, on choisit habituellement A =P(Ω) et on peut définir P à partir des
probabilités des événements élémentaires.

On suppose que Ω est un ensemble au plus dénombrable.
Si (pω)ω∈Ω est une famille de réels positifs vérifiant ∑

ω∈Ω
pω = 1 alors il existe une unique

probabilité P sur Ω telle que pour tout ω ∈ Ω, P ({ω}) = pω.

Proposition 14
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Dans la plupart des cas, on ne déterminera explicitement ni l’univers, ni la probabilité, ni la tribu.
On supposera juste qu’il existe un espace probabilisé (Ω,A , P ) modélisant l’expérience aléatoire et
dans lequel on peut mener les calculs souhaités.

Dans toute la suite, on suppose fixé un espace probabilisé (Ω,A , P ).

Un événement A est dit négligeable lorsque P (A) = 0.
Un événement A est dit presque sûr lorsque P (A) = 1.

Définition 15

Attention, un événement peut être de probabilité nulle sans être l’événement impossible ∅ ou être
de probabilité 1 sans être l’événement certain Ω.

Exemple 4 (suite) : Exprimer B en fonction des événements Ak : « On obtient pile pour la première
fois au k-ème lancer » (k ∈ N∗) et en déduire P (B).

On appelle système quasi-complet d’événements toute famille (Ai)i∈I au plus dénombrable
d’événements telle que :

∀(i, j) ∈ I2 avec i ≠ j, Ai ∩Aj = ∅ et ∑
i∈I

P (Ai) = 1.

Définition 16

On notera qu’un système complet d’événements est un système quasi-complet d’événements.

2. Propriétés de calculs

On a P (∅) = 0.

Proposition 17

Soit A et B deux événements.
▸ Croissance Si A ⊂ B alors P (A) ⩽ P (B).
▸ On a P (A) = 1 − P (A).
▸ On a P (A ∖B) = P (A) − P (A ∩B).
▸ On a P (A ∪B) = P (A) + P (B) − P (A ∩B).

Proposition 18

Exemple 5 : Soit A et B deux événements. On suppose que P (A) = 0.
Montrer que P (A ∩B) = 0.

7



Soit (Ai)i∈I une famille au plus dénombrable d’événements.

▸ (σ)-additivité Si les événements Ai (i ∈ I) sont deux à deux incompatibles alors

P (⋃
i∈I

Ai) = ∑
i∈I

P (Ai).

▸ Sous-additivité On a toujours P (⋃
i∈I

Ai) ⩽ ∑
i∈I

P (Ai).

Proposition 19

On notera que dans la sous-additivité, on peut avoir ∑
i∈I

P (Ai) = +∞.

Soit (An)n∈N une suite d’événements.
▸ Si (An)n∈N est une suite croissante d’événements i.e. pour tout n ∈ N, An ⊂ An+1

alors P (
+∞
⋃
n=0

An) = lim
n→+∞P (An).

▸ Si (An)n∈N est une suite décroissante d’événements i.e. pour tout n ∈ N, An+1 ⊂ An

alors P (
+∞
⋂
n=0

An) = lim
n→+∞P (An).

▸ On a toujours :

P (
+∞
⋃
n=0

An) = lim
n→+∞P (

n

⋃
k=0

Ak) et P (
+∞
⋂
n=0

An) = lim
n→+∞P (

n

⋂
k=0

Ak) .

Proposition 20 (Propriété de continuité croissante / décroissante)

Exemple 6 : On lance un dé parfait dont les faces sont numérotées de 1 à 6.
Pour tout n ∈ N, on note An l’événement « Avant le n-ème lancer, on a obtenu 4 au moins une fois ».
On note A l’événement « Le 4 sort au moins une fois ».
Exprimer A en fonction des événements (An)n∈N∗ et déterminer P (A).

8



III. Probabilités conditionnelles et indépendance

A. Probabilités conditionnelles

1. Définition

Soit (Ω,A , P ) un espace probabilisé. Soit A un événement tel que P (A) ≠ 0.
▸ Pour tout événement B, on note :

PA(B) =
P (B ∩A)
P (A) .

L’application PA ∶ A → [0,1] est une probabilité sur (Ω,A ).
▸ Pour B ∈ A , PA(B) est appelée la probabilité conditionnelle de B sachant A.

Définition/Proposition 21

▸ On rencontre parfois les notations P (B∣A) et P (B/A) à la place de PA(B).

▸ Comme une probabilité conditionnelle est une probabilité, toutes les propriétés vues pour les
probabilités sont encore vraies avec des probabilités conditionnelles.

▸ Lorsque P est la probabilité uniforme, on a pour tous événements A et B avec P (A) ≠ 0 :

PA(B) =
Card(B∩A)
Card(Ω)
Card(A)
Card(Ω)

= Card(B ∩A)
Card(A)

= nombre de cas favorables à B ∩A
nombre de cas possibles pour A

.

On peut voir cette formule comme un changement d’ensemble de référence.

2. Propriétés

a) Formule des probabilités composées

Soit A et B deux événements.
Si P (A) ≠ 0 alors comme PA(B) =

P (A ∩B)
P (A) , on a P (A ∩B) = P (A) × PA(B).

Si P (A) = 0 alors P (A ∩B) = 0 (voir exemple 5 ) et on pose alors par convention P (A) × PA(B) = 0
(même si PA(B) n’existe pas).
Avec cette convention, on a alors dans tous les cas :

P (A ∩B) = P (A) × PA(B).

On peut généraliser cette formule à une intersection finie d’événements.

Soit A1, . . . ,An n événements (avec n ⩾ 2). On a :

P (
n

⋂
i=1

Ai) = P (A1) × PA1(A2) × PA1∩A2(A3) × . . . × PA1∩A2∩...∩An−1(An).

Théorème 22 (Formule des probabilités composées)
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Exemple 7 : Une urne contient 3 boules blanches et 7 boules noires.
On tire successivement et sans remise 3 boules dans cette urne.
Quelle est la probabilité d’obtenir la première boule blanche au troisième tirage ?
On proposera deux méthodes.

b) Formule des probabilités totales

Soit (Ai)i∈I un système quasi-complet d’événements (avec I ensemble au plus dénombrable).
Pour tout événement B, on a :

P (B) = ∑
i∈I

P (B ∩Ai) = ∑
i∈I

P (Ai) × PAi
(B).

Théorème 23 (Formule des probabilités totales)

▸ On utilise ici la même convention que précédemment.
▸ On notera que comme (A,A) est un système complet d’événements, on a en particulier pour

tous événements A et B :

P (B) = P (A ∩B) + P (A ∩B) = P (A) × PA(B) + P (A) × PA(B).

▸ En pratique, la formule des probabilités totales s’utilise pour une expérience aléatoire se dé-
roulant en deux étapes, la seconde étape dépendant de la première.
À la première étape, un et un seul des Ai est réalisé. À la seconde étape, B est réalisé ou non.
Cette formule permet alors de calculer la probabilité de B (étape 2).

▸ Cette situation peut être représentée par un arbre probabiliste. Un tel arbre peut être repré-
senté mais ne constitue pas une preuve rigoureuse. Il faudra clairement indiquer qu’on applique
la formule des probabilités totales en indiquant le système quasi-complet d’événements utilisé.

Exemple 8 : On dispose d’une pièce équilibrée et d’une urne contenant une boule blanche.
On suppose que l’on dispose également d’un stock infini de boules noires.
On lance la pièce jusqu’à obtenir Face.
S’il a fallu n lancers pour obtenir Face (n ∈ N∗), on rajoute n! − 1 boules noires dans l’urne.
On tire alors une boule dans cette urne.
Déterminer la probabilité d’obtenir la boule blanche.

c) Formule de Bayes

Si A et B sont deux événements avec P (B) ≠ 0, on a :

PB(A) =
P (A) × PA(B)

P (B) .

Théorème 24 (Formule de Bayes)

▸ On notera que l’on peut de plus utiliser la formule des probabilités totales pour calculer P (B).

PB(A) =
P (A) × PA(B)

P (A) × PA(B) + P (A) × PA(B)
.
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Plus généralement avec (Ai)i∈I un système quasi-complet d’événements, on a pour tout i ∈ I :

PB(Ai) =
P (Ai) × PAi

(B)
∑
j∈I

P (Aj) × PAj
(B)

.

▸ La formule de Bayes s’utilise également pour une expérience aléatoire se déroulant en deux
étapes. Elle est aussi appelée formule de probabilité des causes.
Connaissant la conséquence (événement B - étape 2), elle permet de calculer la probabilité
d’une cause (événement Ai - étape 1) (ordre antichronologique).

Exemple 8 (suite) : On obtient une boule noire.
Quelle est la probabilité d’avoir fait 10 lancers de la pièce ?

B. Indépendance

1. Indépendance de deux événements

Soit A et B deux événements.
On dit que les événements A et B sont indépendants (pour la probabilité P ) lorsque

P (A ∩B) = P (A) × P (B).

Définition 25

Notons que la notion d’indépendance dépend de la probabilité.

▸ Soit A un événement tel que P (A) ≠ 0. Soit B un événement.
Alors A et B sont indépendants si et seulement si PA(B) = P (B).

▸ Soit A un événement tel que P (A) = 0.
Alors A est indépendant de tout autre événement.

Proposition 26

▸ Intuitivement, deux événements A et B de probabilités non nulles sont indépendants lorsque
la réalisation d’un de ces événements ne donne pas d’information sur la réalisation de l’autre.

▸ Attention de ne pas confondre incompatible et indépendant.
Deux événements incompatibles sont deux événements qui ne peuvent pas se réaliser en même temps.
Deux événements indépendants sont deux événements dont la réalisation de l’un n’influe pas sur la
réalisation de l’autre.

Si les événements A et B sont indépendants alors les événements A et B, les événements
A et B et les événements A et B sont indépendants.

Proposition 27
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2. Indépendance d’une famille finie d’événements

Soit (Ai)i∈I une famille finie d’événements.
On dit que les événements Ai pour i ∈ I sont indépendants (pour la probabilité P ) lorsque

pour tout sous-ensemble J non vide de I, P (⋂
i∈J

Ai) =∏
i∈J

P (Ai).

Définition 28

▸ L’indépendance implique l’indépendance deux à deux mais la réciproque est fausse dès que
Card(I) ⩾ 3.

▸ L’indépendance est conservée si l’on remplace certains événements par leur événement contraire.

▸ Certaines situations donnent naturellement lieu à des événements indépendants (on lance plu-
sieurs fois une pièce / on effectue des tirages successifs avec remise).
Attention, des tirages successifs sans remise ne donnent pas des événements indépendants.

On retiendra les formules permettant de calculer la probabilité d’une intersection finie d’événements :

Soit A1, . . . ,An n événements (avec n ⩾ 2).
▸ Formule des probabilités composées :

P (
n

⋂
i=1

Ai) = P (A1) × PA1(A2) × PA1∩A2(A3) × . . . × PA1∩A2∩...∩An−1(An).

▸ Si les événements A1, . . . ,An sont indépendants alors :

P (
n

⋂
i=1

Ai) =
n

∏
i=1

P (Ai).

Proposition 29 (Probabilité d’une intersection finie)

Exemple 9 : Étant donnés des événements indépendants Ai où i ∈ J1, nK, montrer que la probabilité

pour qu’aucun des Ai ne soit réalisé est au plus égale à : exp(−
n

∑
i=1

P (Ai)).
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